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Preface 


T HIS BOOK IS intended to survey the most important computer 
algorithms in use today, and to teach fundamental techniques to 

the growing number of people in need of knowing them. It can be 
used as a textbook for a second, third, or fourth course in computer 
science, after students have acquired basic programming skills and fa
miliarity with computer systems, but before they have taken specialized 
courses in advanced areas of computer science or computer applica
tions. The book also may be useful for self-study or as a reference for 
'people engaged in the development of computer systems or applica
tions programs, since it contains implementations of useful algorithms 
and detailed information on these algorithms' performance character
istics. The broad perspective taken makes the book an appropriate 
introduction to the field. 

I have completely rewritten the text for this new edition, and I 
have added more than a thousand new exercises, more than a hundred 
new figures, and dozens of new programs. I have also added detailed 
commentary on all the figures and programs. This new material pro
vides both coverage of new topics and fuller explanations of many of 
the classic algorithms. A new emphasis on abstract data types through
out the book makes the programs more broadly useful and relevant in 
modern object-oriented programming environments. People who have 
read old editions of the book will find a wealth of new information 
throughout; all readers will find a wealth of pedagogical material that 
provides effective access to essential concepts. 

Due to the large amount of new material, we have split the new 
edition into two volumes (each about the size of the old edition) of 
which this is the first. This volume covers fundamental concepts, data 
structures, sorting algorithms, and searching algorithms; the second 
volume covers advanced algorithms and applications, building on the 
basic abstractions and methods developed here. Nearly all the material 
on fundamentals and data structures in this edition is new. 



PREFACE 

This book is not just for programmers and computer-science stu
dents. Nearly everyone who uses a computer wants it to run faster 
or to solve larger problems. The algorithms in this book represent 
a body of knowledge developed over the last 50 years that has be
come indispensible in the efficient use of the computer, for a broad 
variety of applications. From N -body simulation problems in physics 
to genetic-sequencing problems in molecular biology, the basic meth
ods described here have become essential in scientific research; and 
from database systems to Internet search engines, they have become 
essential parts of modern software systems. As the scope of computer 
applications becomes more widespread, so grows the impact of many 
of the basic methods covered here. The goal of this book is to serve 
as a resource for students and professionals interested in knowing and 
making intelligent use of these fundamental algorithms as basic tools 
for whatever computer application they might undertake. 

Scope 

The book contains 16 chapters grouped into four major parts: funda
mentals, data structures, sorting, and searching. The descriptions here 
are intended to give readers an understanding of the basic properties 
of as broad a range of fundamental algorithms as possible. Ingenious 
methods ranging from binomial queues to patricia tries are described, 
all related to basic paradigms at the heart of computer science. The 
second volume consists of four additional parts that cover strings, ge
ometry, graphs, and advanced topics. My primary goal in developing 
these books has been to bring together the fundamental methods from 
these diverse areas, to provide access to the best methods known for 
solving problems by computer. 

You will most appreciate the material in this book ifyou have had 
one or two previous courses in computer science or have had equivalent 
programming experience: one course in programming in a high-level 
language such as C, Java, or C++, and perhaps another course that 
teaches fundamental concepts of programming systems. This book 
is thus intended for anyone conversant with a modern programming 
language and with the basic features of modern computer systems. 
References that might help to fill in gaps in your background are 
suggested in the text. 
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Most of the mathematical material supporting the analytic results 
is self-contained (or is labeled as beyond the scope of this book), so 
little specific preparation in mathematics is required for the bulk of the 
book, although mathematical maturity is definitely helpful. 

Use in the Curriculum 

There is a great deal of flexibility in how the material here can be 
taught, depending on the taste of the instructor and the preparation 
of the students. The algorithms described here have found widespread 
use for years, and represent an essential body of knowledge for both 
the practicing programmer and the computer-science student. There 
is sufficient coverage of basic material for the book to be used for a 
course on data structures, and there is sufficient detail and coverage of 
advanced material for the book to be used for a course on algorithms. 
Some instructors may wish to emphasize implementations and prac
tical concerns; others may wish to emphasize analysis and theoretical 
concepts. 

A complete set of slide masters for use in lectures, sample pro
gramming assignments, interactive exercises for students, and other 
course materials may be found via the book's home page. 

An elementary course on data structures and algorithms might 
emphasize the basic data structures in Part 2 and their use in the 
implementations in Parts 3 and 4. A course on design and analysis of 
algorithms might emphasize the fundamental material in Part 1 and 
Chapter 5, then study the ways in which the algorithms in Parts 3 
and 4 achieve good asymptotic performance. A course on software 
engineering might omit the mathematical and advanced algorithmic 
material, and emphasize how to integrate the implementations given 
here into large programs or systems. A course on algorithms might 
take a survey approach and introduce concepts from all these areas. 

Earlier editions of this book have been used in recent years at 
scores of colleges and universities around the world as a text for the 
second or third course in computer science and as supplemental reading 
for other courses. At Princeton, our experience has been that the 
breadth of coverage of material in this book provides our majors with 
an introduction to computer science that can be expanded upon in 
later courses on analysis of algorithms, systems programming and 
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theoretical computer science, while providing the growing group of 
students from other disciplines with a large set of techniques that these 
people can immediately put to good use. 

The exercises-most of which are new to this edition-fall into 
several types. Some are intended to test understanding of material 
in the text, and simply ask readers to work through an example or 
to apply concepts described in the text. Others involve implementing 
and putting together the algorithms, or running empirical studies to 
compare variants of the algorithms and to learn their properties. Still 
others are a repository for important information at a level of detail 
that is not appropriate for the text. Reading and thinking about the 
exercises will pay dividends for every reader. 

Algorithms of Practical Use 

Anyone wanting to use a computer more effectively can use this book 
for reference or for self-study. People with programming experience 
can find information on specific topics throughout the book. To a large 
extent, you can read the individual chapters in the book independently 
of the others, although, in some cases, algorithms in one chapter make 
use of methods from a previous chapter. 

The orientation of the book is to study algorithms likely to be of 
practical use. The book provides information about the tools of the 
trade to the point that readers can confidently implement, debug, and 
put to work algorithms to solve a problem or to provide functionality 
in an application. Full implementations of the methods discussed are 
included, as are descriptions of the operations of these programs on 
a consistent set of examples. Because we work with real code, rather 
than write pseudo-code, the programs can be put to practical use 
quickly. Program listings are available from the book's home page. 

Indeed, one practical application of the algorithms has been to 
produce the hundreds of figures throughout the book. Many algo
rithms are brought to light on an intuitive level through the visual 
dimension provided by these figures. 

Characteristics of the algorithms and of the situations in which 
they might be useful are discussed in detail. Although not emphasized, 
connections to the analysis of algorithms and theoretical computer 
science are developed in context. \Vhen appropriate, empirical and 
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analytic results are presented to illustrate why certain algorithms are 
preferred. When interesting, the relationship of the practical algo
rithms being discussed to purely theoretical results is described. Spe
cific information on performance characteristics of algorithms and im
plementations is synthesized, encapsulated, and discussed throughout 
the book. 

Programming Language 

The programming language used for all of the implementations is C. 
Any particular language has advantages and disadvantages; we use 
C because it is widely available and provides the features needed for 
our implementations. The programs can be translated easily to other 
modern programming languages, since relatively few constructs are 
unique to C. We use standard C idioms when appropriate, but this 
book is not intended to be a reference work on C programming. 

There are many new programs in this edition, and many of the 
old ones have been reworked, primarily to make them more readily 
useful as abstract-data-type implementations. Extensive comparative 
empirical tests on the programs are discussed throughout the text. 

Previous editions of the book have presented basic programs in 
Pascal, C++, and Modula-3. This code is available through the book 
home page on the web; code for new programs and code in new 
languages such as Java will be added as appropriate. 

A goal of this book is to present the algorithms in as simple and 
direct a form as possible. The style is consistent whenever possible, so 
that programs that are similar look similar. For many of the algorithms 
in this book, the similarities hold regardless of the language: Quicksort 
is quicksort (to pick one prominent example), whether expressed in 
Algol-60, Basic, Fortran, Smalltalk, Ada, Pascal, C, PostScript, Java, 
or countless other programming languages and environments where it 
has proved to be an effective sorting method. 

We strive for elegant, compact, and portable implementations, 
but we take the point of view that efficiency matters, so we try to 
he aware of the performance characteristics of our code at all stages 
of development. Chapter 1 constitutes a detailed example of this 
approach to developing efficient C implementations of our algorithms, 
and sets the stage for the rest of the hook. 
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Notes on Exercises 

Classifying exercises is an activity fraught with peril, because readers 
of a book such as this come to the material with various levels of 
knowledge and experience. Nonetheless, guidance is appropriate, so 
many of the exercises carry one of four annotations, to help you decide 
how to approach them. 

Exercises that test your understanding of the material are marked 
with an open triangle, as follows: 

[> 9.57 Give the binomial queue that results when the keys E A S Y 

QUE S T ION are inserted into an initially empty binomial queue. 


Most often, such exercises relate directly to examples in the text. They 
should present no special difficulty, but working them might teach you 
a fact or concept that may have eluded you when you read the text. 

Exercises that add new and thought-provoking information to the 
material are marked with an open circle, as follows: 

014.20 Write a program that inserts N random integers into a 

table of size N /100 using separate chaining, then finds the length 

of the shortest and longest lists, for N lO3, 104

, 105
, and 106

• 


Such exercises encourage you to think about an important concept 
that is related to the material in the text, or to answer a question that 
may have occurred to you when you read the text. You may find it 
worthwhile to read these exercises, even if you do not have the time to 

work them through. 
Exercises that are intended to challenge you are marked with a black 

dot, as follows: 

• 	8.46 Suppose that mergesort is implemented to split the file at 

a random position, rather than exactly in the middle. How many 

comparisons are used by such a method to sort N elements, on 

the average? 


Such exercises may require a substantial amount of time to complete, 
depending upon your experience. Generally, the most productive ap
proach is to work on them in a few different sittings. 

A few exercises that are extremely difficult (by comparison with 
most others) are marked with two black dots, as follows: 

•• 15.29 Prove that the height of a trie built from N random bit

strings is a bout 21g N. 
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These exercises are similar to questions that might be addressed in the 
research literature, but the material in the book may prepare you to 
enjoy trying to solve them (and perhaps succeeding). 

The annotations are intended to be neutral with respect to your 
programming and mathematical ability. Those exercises that require 
expertise in programming or in mathematical analysis are self-evident. 
All readers are encouraged to test their understanding of the algorithms 
by implementing them. Still, an exercise such as this one is straight
forward for a practicing programmer or a student in a programming 
course, but may require substantial work for someone who has not 
recently programmed: 

1.23 Modify Program 1.4 to generate random pairs of integers 
between 0 and ]V - 1 instead of reading them from standard input, 
and to loop until ]V - 1 union operations have been performed. 
Run your program for]V 103

, 10\ 105
, and 106 and print out 

the total number of edges generated for each value of N. 

In a similar vein, all readers are encouraged to strive to appreciate 
the analytic underpinnings of our knowledge about properties of al
gorithms. Still, an exercise such as this one is straightforward for a 
scientist or a student in a discrete mathematics course, but may require 
substantial work for someone who has not recently done mathematical 
analysis: 

1.13 Compute the average distance from a node to the root in 
a worst-case tree of 2n nodes built by the weighted quick-union 
algorithm. 

There are far too many exercises for you to read and assimilate 
them all; my hope is that there are enough exercises here to stimulate 
you to strive to come to a broader understanding on the topics that 
interest you than you can glean by simply reading the text. 
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CHAPTER ONE 


Introduction 


T HE OBJECTIVE OF this book is to study a broad variety of 
important and useful algorithms: methods for solving problems 

that are suited for computer implementation. We shall deal with many 
different areas of application, always concentrating on fundamental 
algorithms that are important to know and interesting to study. We 
shall spend enough time on each algorithm to understand its essential 
characteristics and to respect its subtleties. Our goal is to learn a large 
number of the most important algorithms used on computers today, 
well enough to be able to use and appreciate them. 

The strategy that we use for understanding the programs pre
sented in this book is to implement and test them, to experiment with 
their variants, to discuss their operation on small examples, and to try 
them out on larger examples similar to what we might encounter in 
practice. We shall use the C programming language to describe the 
algorithms, thus providing useful implementations at the same time. 
Our programs have a uniform style that is amenable to translation into 
other modem programming languages, as well. 

We also pay careful attention to performance characteristics of 
our algorithms, to help us develop improved versions, compare differ
ent algorithms for the same task, and predict or guarantee performance 
for large problems. Understanding how the algorithms perform might 
require experimentation or mathematical analysis or both. We con
sider detailed information for many of the most important algorithms, 
developing analytic results directly when feasible, or calling on results 
from the research literature when necessary. 
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4 CHAPTER ONE 

To illustrate our general approach to developing algorithmic so
lutions, we consider in this chapter a detailed example comprising a 
number of algorithms that solve a particular problem. The problem 
that we consider is not a toy problem; it is a fundamental compu
tational task, and the solution that we develop is of use in a variety 
of applications. We start with a simple solution, then seek to under
stand that solution's performance characteristics, which help us to see 
how to improve the algorithm. After a few iterations of this process, 
we come to an efficient and useful algorithm for solving the problem. 
This prototypical example sets the stage for our use of the same general 
methodology throughout the book. 

We conclude the cha pter with a short discussion of the contents 
of the book, including brief descriptions of what the major parts of 
the book are and how they relate to one another. 

I. I Algorithms 

When we write a computer program, we are generally implementing 
a method that has been devised previously to solve some problem. 
This method is often independent of the particular computer to be 
used-it is likely to be equally appropriate for many computers and 
many computer languages. It is the method, rather than the computer 
program itself, that we must study to learn how the problem is being 
attacked. The term algorithm is used in computer science to describe 
a problem-solving method suitable for implementation as a computer 
program. Algorithms are the stuff of computer science: They are 
central objects of study in many, if not most, areas of the field. 

Most algorithms of interest involve methods of organizing the 
data involved in the computation. Objects created in this way are 
called data structures, and they also are central objects of study in 
computer science. Thus, algorithms and data structures go hand in 
hand. In this book we take the view that data structures exist as the 
byproducts or end products of algorithms, and thus that we must study 
them in order to understand the algorithms. Simple algorithms can 
give rise to complicated data structures and, conversely, complicated 
algorithms can use simple data structures. We shall study the properties 
of many data structures in this book; indeed, the book might well have 
been called Algorithms and Data Structures in C. 



5 INTRODUCTION 

When we use a computer to help us solve a problem, we typically 
are faced with a number of possible different approaches. For small 
problems, it hardly matters which approach we use, as long as we 
have one that solves the problem correctly. For huge problems (or 
applications where we need to solve huge numbers of small problems), 
however, we quickly become motivated to devise methods that use 
time or space as efficiently as possible. 

The primary reason for us to learn about algorithm design is 
that this discipline gives us the potential to reap huge savings, even 
to the point of making it possible to do tasks that would otherwise 
be impossible. In an application where we are processing millions of 
objects, it is not unusual to be able to make a program millions of 
times faster by using a well-designed algorithm. We shall see such an 
example in Section 1.2 and on numerous other occasions throughout 
the book. By contrast, investing additional money or time to buy and 
install a new computer holds the potential for speeding up a program 
by perhaps a factor of only 10 or 100. Careful algorithm design is 
an extremely effective part of the process of solving a huge problem, 
whatever the applications area. 

When a huge or complex computer program is to be developed, 
a great deal of effort must go into understanding and defining the 
problem to be solved, managing its complexity, and decomposing it 
into smaller subtasks that can be implemented easily. Often, many 
of the algorithms required after the decomposition are trivial to im
plement. In most cases, however, there are a few algorithms whose 
choice is critical because most of the system resources will be spent 
running those algorithms. Those are the types of algorithms on which 
we concentrate in this book. We shall study a variety of fundamental 
algorithms that are useful for solving huge problems in a broad variety 
of applications areas. 

The sharing of programs in computer systems is becoming more 
widespread, so, although we might expect to be using a large fraction 
of the algorithms in this book, we also might expect to have to imple
ment only a smaller fraction of them. However, implementing simple 
versions of basic algorithms helps us to understand them better and 
thus to use advanced versions more effectively. More important, the 
opportunity to reimplement basic algorithms arises frequently. The 
primary reason to do so is that we are faced, all too often, with com
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pletely new computing environments (hardware and software) with 
new features that old implementations may not use to best advantage. 
In other words, we often implement basic algorithms tailored to our 
problem, rather than depending on a system routine, to make our so
lutions more portable and longer lasting. Another common reason to 
reimplement basic algorithms is that mechanisms for sharing software 
on many computer systems are not always sufficiently powerful to al
low us to tailor standard programs to perform effectively on specific 
tasks (or it may not be convenient to do so), so it is sometimes easier 
to do a new implementation. 

Computer programs are often overoptimized. It may not be 
worthwhile to take pains to ensure that an implementation of a partic
ular algorithm is the most efficient possible unless the algorithm is to 
be used for an enormous task or is to be used many times. Otherwise, 
a careful, relatively simple implementation will suffice: We can have 
some confidence that it will work, and it is likely to run perhaps five or 
10 times slower at worst than the best possible version, which means 
that it may run for an extra few seconds. By contrast, the proper choice 
of algorithm in the first place can make a difference of a factor of 100 
or 1000 or more, which might translate to minutes, hours, or even 
more in running time. In this book, we concentrate on the simplest 
reasonable implementations of the best algorithms. 

The choice of the best algorithm for a particular task can be 
a complicated process, perhaps involving sophisticated mathematical 
analysis. The branch of computer science that comprises the study of 
such questions is called analysis ofalgorithms. Many of the algorithms 
that we study have been shown through analysis to have excellent per
formance; others are simply known to work well through experience. 
Our primary goal is to learn reasonable algorithms for important tasks, 
yet we shall also pay careful attention to comparative performance of 
the methods. We should not use an algorithm without having an idea 
of what resources it might consume, and we strive to be aware of how 
our algorithms might be expected to perform. 

1.2 A Sample Problem: Connectivity 

Suppose that we are given a sequence of pairs of integers, where each 
integer represents an object of some type and we are to interpret the 
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pair p-q as meaning "p is connected to q." We assume the relation "is 
connected to" to be transitive: If p is connected to q, and q is connected 
to r, then p is connected to r. Our goal is to write a program to filter 
out extraneous pairs from the set: When the program inputs a pair 
p-q, it should output the pair only if the pairs it has seen to that point 
do not imply that p is connected to q. If the previous pairs do imply 
that p is connected to q, then the program should ignore p-q and 
should proceed to input the next pair. Figure 1.I gives an example of 
this process. 

Our problem is to devise a program that can remember sufficient 
information about the pairs it has seen to be able to decide whether or 
not a new pair of objects is connected. Informally, we refer to the task 
of designing such a method as the connectivity problem. This problem 
arises in a number of important applications. We briefly consider three 
examples here to indicate the fundamental nature of the problem. 

For example, the integers might represent computers in a large 
network, and the pairs might represent connections in the network. 
Then, our program might be used to determine whether we need to es
tablish a new direct connection for p and q to be able to communicate, 
or whether we could use existing connections to set up a communi
cations path. In this kind of application, we might need to process 
millions of points and billions of connections, or more. As we shall 
see, it would be impossible to solve the problem for such an application 
without an efficient algorithm. 

Similarly, the integers might represent contact points in an electri
cal network, and the pairs might represent wires connecting the points. 
In this case, we could use our program to find a way to connect all the 
points without any extraneous connections, if that is possible. There 
is no guarantee that the edges in the list will suffice to connect all the 
points-indeed, we shall soon see that determining whether or not they 
will could be a prime application of our program. 

Figure 1.2 illustrates these two types of applications in a larger 
example. Examination of this figure gives us an appreciation for the 
difficulty of the connectivity problem: How can we arrange to tell 
quickly whether any given two points in such a network are connected? 

Still another example arises in certain programming environ
ments where it is possible to declare two variable names as equivalent. 
The problem is to be able to determine whether two given names are 

3-4 3-4 
4-9 4-9 
8-0 8-0 
2-3 2-3 
5-6 5-6 
2-9 2-3-4-9 
5-9 5-9 
7-3 7-3 
4-8 4-8 
5-6 5-6 
0-2 0-8-4-3-2 
6-1 6-1 

Figure 1.1 

Connectivity example 

Given a sequence of pairs of in
tegers representing connections 
between objects (left), the task of a 
connectivity algorithm is to output 
those pairs that provide new con
nections (center). For example, the 
pair 2-9 is not part of the output 
because the connection 2-3-4-9 is 
implied by previous connections 
(this evidence is shown at right). 
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Figure 1.2 

A large connectivity example 

The objects in a connectivity prob
lem might represent connection 
points, and the pairs might be con
nections between them, as indi
cated in this idealized example 
that might represent wires connect
ing buildings in a city or compo
nents on a computer chip. This 
graphical representation makes it 
possible for a human to spot nodes 
that are not connected, but the al
gorithm has to work with only the 
pairs of integers that it is given. 
Are the two nodes marked with the 
large black dots connected? 

equivalent, after a sequence of such declarations. This application is an 
early one that motivated the development of several of the algorithms 
that we are about to consider. It directly relates our problem to a sim
ple abstraction that provides us with a way to make our algorithms 
useful for a wide variety of applications, as we shall see. 

Applications such as the variable-name-equivalence problem de
scribed in the previous paragraph require that we associate an integer 
with each distinct variable name. This association is also implicit in the 
network-connection and circuit-connection applications that we have 
described. We shall be considering a host of algorithms in Chapters 10 

through 16 that can provide this association in an efficient manner. 
Thus, we can assume in this chapter, without loss of generality, that 
we have N objects with integer names, from 0 to N - 1. 
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We are asking for a program that does a specific and well-defined 
task. There are many other related problems that we might want to 
have solved, as well. One of the first tasks that we face in developing 
an algorithm is to be sure that we have specified the problem in a 
reasonable manner. The more we require of an algorithm, the more 
time and space we may expect it to need to finish the task. It is 
impossible to quantify this relationship a priori, and we often modify 
a problem specification on finding that it is difficult or expensive to 
solve, or, in happy circumstances, on finding that an algorithm can 
provide information more useful than was called for in the original 
specification. 

For example, our connectivity-problem specification requires 
only that our program somehow know whether or not any given pair 
p-q is connected, and not that it be able to demonstrate any or all 
ways to connect that pair. Adding a requirement for such a specifica
tion makes the problem more difficult, and would lead us to a different 
family of algorithms, which we consider briefly in Chapter 5 and in 
detail in Part 7. 

The specifications mentioned in the previous paragraph ask us 
for more information than our original one did; we could also ask 
for less information. For example, we might simply want to be able 
to answer the question: "Are the AI connections sufficient to connect 
together all N objects?" This problem illustrates that, to develop 
efficient algorithms, we often need to do high-level reasoning about 
the abstract objects that we are processing. In this case, a fundamental 
result from graph theory implies that all N objects are connected if 
and only if the number of pairs output by the connectivity algorithm 
is precisely N 1 (see Section 5.4). In other words, a connectivity 
algorithm will never output more than N - 1 pairs, because, once it 
has output N 1 pairs, any pair that it encounters from that point on 
will be connected. Accordingly, we can get a program that answers 
the yes-no question just posed by changing a program that solves the 
connectivity problem to one that increments a counter, rather than 
writing out each pair that was not previously connected, answering 
"yes" when the counter reaches N ~- 1 and "no" if it never does. This 
question is but one example of a host of questions that we might 
wish to answer regarding connectivity. The set of pairs in the input is 
called a graph, and the set of pairs output is called a spanning tree for 
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that graph, which connects all the objects. We consider properties of 
graphs, spanning trees, and all manner of related algorithms in Part 7. 

It is worthwhile to try to identify the fundamental operations 
that we will be performing, and so to make any algorithm that we 
develop for the connectivity task useful for a variety of similar tasks. 
Specifically, each time that we get a new pair, we have first to determine 
whether it represents a new connection, then to incorporate the infor
mation that the connection has been seen into its understanding about 
the connectivity of the objects such that it can check connections to be 
seen in the future. We encapsulate these two tasks as abstract opera
tions by considering the integer input values to represent elements in 
abstract sets, and then design algorithms and data structures that can 

• Find the set containing a given item. 

• Replace the sets containing two given items by their union. 

Organizing our algorithms in terms of these abstract operations does 
not seem to foreclose any options in solving the connectivity problem, 
and the operations may be useful for solving other problems. Devel
oping ever more powerful layers of abstraction is an essential process 
in computer science in general and in algorithm design in particular, 
and we shall turn to it on numerous occasions throughout this book. 
In this chapter, we use abstract thinking in an informal way to guide us 
in designing programs to solve the connectivity problem; in Chapter 4, 

we shall see how to encapsulate abstractions in C code. 

The connectivity problem is easily solved in terms of the find 
and union abstract operations. After reading a new pair p-q from the 
input, we perform a find operation for each member of the pair. If 
the members of the pair are in the same set, we move on to the next 
pair; if they are not, we do a union operation and write out the pair. 
The sets represent connected components: subsets of the objects with 
the property that any two objects in a given component are connected. 
This approach reduces the development of an algorithmic solution for 
connectivity to the tasks of defining a data structure representing the 
sets and developing union and find algorithms that efficiently use that 
data structure. 

There are many possible ways to represent and process abstract 
sets, which we consider in more detail in Chapter 4. In this chapter, 
our focus is on finding a representation that can support efficiently 
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the union and find operations that we see in solving the connectivity 
problem. 

Exercises 

1.1 Give the output that a connectivity algorithm should produce when 
given the input 0-2,1-4,2-5,3-6,0-4,6-0, and 1-3. 

1.2 List all the different ways to connect two different objects for the ex
ample in Figure I. I. 

1.3 Describe a simple method for counting the number of sets remaining 
after using the union and find operations to solve the connectivity problem as 
described in the text. 

I.3 Union-Find Algorithms 

The first step in the process of developing an efficient algorithm to 
solve a given problem is to implement a simple algorithm that solves p q 012 3 4 5 6 789 

the problem. If we need to solve a few particular problem instances 
3 4 0 1 2 445 6 7 8 9 

that turn out to be easy, then the simple implementation may finish 	 4 9 012 995 6 789 

the job for us. If a more sophisticated algorithm is called for, then the 	 8 0 012 9 9 5 6 7 0 9 

2 3 o 1 9 9 9 5 6 7 o 9simple implementation provides us with a correctness check for small 
5 6 019 9 9 6 6 7 o 9

cases and a baseline for evaluating performance characteristics. We 2 9 0 1 9 9 9 6 6 7 0 9 
always care about efficiency, but our primary concern in developing 	 5 9 0 1 9 9 9 9 9 7 0 9 

the first program that we write to solve a problem is to make sure that 	 7 3 o 1 9 9 9 999 o 9 
4 8 o 1 0 o 0 0 o 0 o 0the program is a correct solution to the problem. 
5 6 0 1 0 0 o 0 0 o 0 0 

The first idea that might come to mind is somehow to save all o 2 0 1 0 o 0 0 0 0 0 0 

the input pairs, then to write a function to pass through them to try 6 1 1 1 1 1 1 1 1 1 1 1 

to discover whether the next pair of objects is connected. We shall use 
a different approach. First, the number of pairs might be sufficiently Figure 1.3 
large to preclude our saving them all in memory in practical applica Example of quick find (slow 

umon)tions. Second, and more to the point, no simple method immediately 
This sequence depicts the consuggests itself for determining whether two objects are connected from 
tents of the id array after each 

the set of all the connections, even if we could save them all! We of the pairs at left is processed 
consider a basic method that takes this approach in Chapter 5, but the by the quick-find algorithm (Pro
methods that we shall consider in this chapter are simpler, because they 	 gram 1. 1J. Shaded entries are 

those that change for the union opsolve a less difficult problem, and are more efficient, because they do 
eration. When we process the pair

not require saving all the pairs. They all use an array of integers-one p q, we change all entries with 
corresponding to each object-to hold the requisite information to be the value id [p] to have the value 
able to implement union and find. 	 id [q]. 
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Program 1.1 Quick-find solution to connectivity problem 

This program reads a sequence of pairs of nonnegative integers less than 
N from standard input (interpreting the pair p q to mean "connect object 
p to object q") and prints out pairs representing objects that are not yet 
connected. It maintains an array id that has an entry for each object, 
with the property that id[p] and id[q] are equal if and only if p and 
q are connected. For simplicity, we define N as a compile-time constant. 
Alternatively, we could take it from the input and allocate the id array 
dynamically (see Section 3.2). 

#include <stdio.h> 

#define N 10000 

mainO 


{ 	int i, p, q, t, id[NJ; 

for (i = 0; i < N; i++) id[iJ = i; 

while (scanfC"%d %d\n", &p, &q) 2) 


{ 

if (id[pJ == id[qJ) continue; 
for (t = id[pJ, i 0; i < N; i++) 

if (id[iJ == t) id[iJ = id[qJ; 
printfC" %d %d\n", p, q); 

} 

Arrays are elementary data structures that we shall discuss in 
detail in Section 3.2. Here, we use them in their simplest form: we 
declare that we expect to use, say, 1000 integers, by writing a [1000J; 
then we refer to the ith integer in the array by writing a[iJ for 0 ::; 
i < 1000. 

Program I. I is an implementation of a simple algorithm called 
the quick-find algorithm that solves the connectivity problem. The 
basis of this algorithm is an array of integers with the property that 
p and q are connected if and only if the pth and qth array entries 
are equal. We initialize the ith array entry to i for 0 ::; i < N. To 
implement the union operation for p and q, we go through the array, 
changing all the entries with the same name as p to have the same name 
as q. This choice is arbitrary-we could have decided to change all the 
entries with the same name as q to have the same name as p. 
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Figure 1.3 shows the changes to the array for the union opera
tions in the example in Figure 1.1. To implement find, we just test 
the indicated array entries for equality-hence the name quick find. 
The union operation, on the other hand, involves scanning through 
the whole array for each input pair. 

Property I. I The quick-find algorithm executes at least 1\11N instruc
tions to solve a connectivity problem with N objects that involves 1v1 
union operations. 

For each of the iV1 union operations, we iterate the for loop N times. 
Each iteration requires at least one instruction (if only to check whether 
the loop is finished). _ 

We can execute tens or hundreds of millions of instructions per 
second on modern computers, so this cost is not noticeable if Iv! and 
N are small, but we also might find ourselves with millions of objects 
and billions of input pairs to process in a modern application. The 
inescapable conclusion is that we cannot feasibly solve such a problem 
using the quick-find algorithm (see Exercise 1.IO). We consider the 
process of quantifying such a conclusion precisely in Chapter 2. 

Figure 1.4 shows a graphical representation of Figure I.3. We 
ma y think of some of the objects as representing the set to which they 
belong, and all of the other objects as pointing to the representative 
in their set. The reason for moving to this graphical representation 
of the array will become clear soon. Observe that the connections 
between objects in this representation are not necessarily the same as 
the connections in the input pairs-they are the information that the 
algorithm chooses to remember to be able to know whether future 
pairs are connected. 

The next algorithm that we consider is a complementary method 
called the quick-union algorithm. It is based on the same data 
structure-an array indexed by object names-but it uses a differ
ent interpretation of the values that leads to more complex abstract 
structures. Each object points to another object in the same set, in a 
structure with no cycles. To determine whether two objects are in the 
same set, we follow pointers for each until we reach an object that 
points to itself. The objects are in the same set if and only if this 
process leads them to the same object. If they are not in the same set, 
we wind up at different objects (which point to themselves), To form 
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Figure 1.4 
Tree representation of quick 

find 

This figure depicts graphical repre
sentations for the example in Fig
ure 1.3. The connections in these 
figures do not necessarily represent 
the connections in the input. For 
example, the structure at the bot
tom has the connection 1-7. which 
is not in the input, but which is 
made because of the string of con
nections 7-3-4-9-5-6-1. 
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Figure 1.5 
Tree representation of quick 

union 

This figure is a graphical represen
tation of the example in Figure 1.3. 
We draw a line from object i to 
object id [i] . 
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the union, then we just link one to the other to perform the union 
operation; hence the name quick-union. 

Figure 1.5 shows the graphical representation that corresponds to 
Figure 1.4 for the operation of the quick-union algorithm on the exam
ple of Figure 1.1, and Figure 1.6 shows the corresponding changes to 
the id array. The graphical representation of the data structure makes 
it relatively easy to understand the operation of the algorithm-input 
pairs that are known to he connected in the data are also connected to 
one another in the data structure. As mentioned previously, it is im
portant to note at the outset that the connections in the data structure 
are not necessarily the same as the connections in the application im
plied by the input pairs; rather, they are constructed by the algorithm 
to facilitate efficient implementation of union and find. 

The connected components depicted in Figure 1.5 are called trees; 
they are fundamental combinatorial structures that we shall encounter 
on numerous occasions throughout the book. We shall consider the 
properties of trees in detail in Chapter 5. For the union and find 
operations, the trees in Figure I.5 are useful because they are quick to 
build and have the property that two objects are connected in the tree 
if and only if the objects are connected in the input. By moving up the 
tree, we can easily find the root of the tree containing each object, so 
we have a way to find whether or not they are connected. Each tree 
has precisely one object that points to itself, which is called the root 
of the tree. The self-pointer is not shown in the diagrams. When we 
start at any object in the tree, move to the object to which it points, 
then move to the object to which that object points, and so forth, we 
eventually end up at the root, always. We can prove this property to be 
true by induction: It is true after the array is initialized to have every 
object point to itself, and if it is true before a given union operation, it 
is certainly true afterward. 

The diagrams in Figure 1.4 for the quick-find algorithm have the 
same properties as those described in the previous paragraph. The 
difference between the two is that we reach the root from all the nodes 
in the quick-find trees after following just one link, whereas we might 
need to follow several links to get to the root in a quick-union tree. 

Program 1.2 is an implementation of the union and find opera
tions that comprise the quick-union algorithm to solve the connectivity 
problem. The quick-union algorithm would seem to be faster than the 
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Program 1.2 Quick-union solution to connectivity problem 

If we replace the body of the while loop in Program I. I by this code, we 
have a program that meets the same specifications as Program 1.1, but 
does less computation for the union operation at the expense of more 
computation for the find operation. The for loops and subsequent if 
statement in this code specify the necessary and sufficient conditions on 
the id array for p and q to be connected. The assignment statement 
id [i] = j implements the union operation. 

for (i p; 
for (j q; 

if (i j) 

id [i] j; 

printf(" %d 

i != id [i] ; i 
j != id [j] ; j 

continue; 

%d\n" , p, q); 

id [i] ) 
id [j] ) 

quick-find algorithm, because it does not have to go through the entire 
array for each input pair; but how much faster is it? This question is 
more difficult to answer here than it was for quick find, because the 
running time is much more dependent on the nature of the input. By 
running empirical studies or doing mathematical analysis (see Chap
ter 2), we can convince ourselves that Program 1.2 is far more efficient 
than Program 1.1, and that it is feasible to consider using Program 1.2 

for huge practical problems. We shall discuss one such empirical study 
at the end of this section. For the moment, we can regard quick union 
as an improvement because it removes quick find's main liability (that 
the program requires at least NIt1 instructions to process lvI union 
operations among N objects). 

This difference between quick union and quick find certainly 
represents an improvement, but quick union still has the liability that 
we cannot guarantee it to be substantially faster than quick find in 
every case, because the input data could conspire to make the find 
operation slow. 

Property 1.2 For M > N, the quick-union algorithm could take 
more than 1\1N /2 instructions to solve a connectivity problem with ]vI 
pairs of N objects. 

Suppose that the input pairs come in the order 1-2, then 2-3, then 
and so forth. After N 1 such pairs, we have N objects all in 

the same set, and the tree that is formed by the quick-union algorithm 

p q 012 3 4 567 8 9 

3 4 o 1 2 445 6 7 8 9 

4 9 o 1 :2 4 \I 5 6 7 8 9 

8 0 o 1 :2 495 6 7 o \I 

2 3 o 1 9 4 \I 5 6 7 o 9 

5 6 o 1 \I 4 9 6 6 7 o \I 

2 \I 01\1 4 9 6 6 7 o \I 

5 \I 01\1 4 \I 6 9 7 o 9 

7 3 01\1 496 9 \I o 9 

4 8 o 1 \I 4 \I 6 9 900 

5 6 o 1 9 1I 969 \I 0 0 

o :2 o 1 9 4 96\1 900 

6 1 11\1 4 9 699 o 0 

5 8 1 1 9 4 \I 6 \I 9 o 0 

Figure 1.6 

Example of quick union (not
too-quick find) 

This sequence depicts the con
tents of the id array after each of 
the pairs at leff are processed by 
the quick-union algorithm (Pro
gram 1.2). Shaded entries are 
those that change for the union 
operation (just one per operation). 
When we process the pair p q" we 
follow pointers from p to get an 
entry i with id[i] i; then, 
we follow pointers from q to get 
an entry j with id [j] == j; then, 
if i and j differ; we set id [i] 
id [j]. For the find operation for 
the pair 5-8 (final line), i lakes on 
the values 5 6 9 0 1, and j takes 
on the values 8 0 1. 
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Figure 1.7 
Tree representation of 

weighted quick union 

This sequence depicts the result 
of changing the quick-union algo
rithm to link the root of the smaller 
of the two trees to the root of the 
larger of the two trees. The dis
tance from each node to the root 
of its tree is small, so the find oper
ation is efficient. 
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is a straight line, with 1'1 pointing to 1'1 1, which points to 1'1 - 2, 
which points to 1'1 - 3, and so forth. To execute the find operation for 
object 1'1, the program has to follow 1'1 -1 pointers. Thus, the average 
number of pointers followed for the first 1'1 pairs is 

(0+1+ ... +(1'1-1))/1'1=(1'1 1)/2. 

Now suppose that the remainder of the pairs all connect 1'1 to some 
other object. The find operation for each of these pairs involves at 
least (1'1 1) pointers. The grand total for the j\ll find operations for 
this sequence of input pairs is certainly greater than AIN /2. • 

Fortunately, there is an easy modification to the algorithm that 
allows us to guarantee that bad cases such as this one do not occur. 
Rather than arbitrarily connecting the second tree to the first for union, 
we keep track of the number of nodes in each tree and always connect 
the smaller tree to the larger. This change requires slightly more code 
and another array to hold the node counts, as shown in Program 1.3, 
but it leads to substantial improvements in efficiency. We refer to this 
algorithm as the weighted quick-union algorithm. 

Figure 1.7 shows the forest of trees constructed by the weighted 
union-find algorithm for the example input in Figure 1.1. Even for 
this small example, the paths in the trees are substantially shorter than 
for the unweighted version in Figure 1.5. Figure 1.8 illustrates what 
happens in the worst case, when the sizes of the sets to be merged in 
the union operation are always equal (and a power of 2). These tree 
structures look complex, but they have the simple property that the 
maximum number of pointers that we need to follow to get to the root 
in a tree of 2n nodes is n. Furthermore, when we merge two trees of 
2" nodes, we get a tree of 2n+1 nodes, and we increase the maximum 
distance to the root to n + 1. This observation generalizes to provide a 
proof that the weighted algorithm is substantially more efficient than 
the unweighted algorithm. 

Property 1.3 The weighted quick-union algorithm follows at most 
2lg 1'1 pointers to determine whether two of 1'1 objects are connected. 

We can prove that the union operation preserves the property that the 
number of pointers followed from any node to the root in a set of k 

objects is no greater than 19 k (we do not count the self-pointer at the 
root). When we combine a set of i nodes with a set of j nodes with 

mailto:Q)�.@3��CV
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Program 1.3 Weighted version of quick union 

This program is a modification to the quick-union algorithm (see Pro
gram 1.2) that keeps an additional array sz for the purpose of main
taining, for each object with id [i] == i, the number of nodes in the 
associated tree, so that the union operation can link the smaller of the 
two specified trees to the larger, thus preventing the growth of long paths 
in the trees. 

#include <stdio.h> 

#define N 10000 

mainO 


{ int i, j, p, q, id[N] , sz[N]; 

for (i 0; i < N; i++) 


{ id[i] = i; sz[i] = 1; } 

while (scanfC"%d %d\n", &p, &q) 2) 


{ 


for (i = p; i != id [i] ; i id [i]) 

for (j = q; j != id [j] ; j id[j]) 

if (i == j) continue; 

if (sz < sz[j]) 


{ id[i] = j; sz[j] += sz [i] ; } 

else { id [j] = i; sz[i] += sz [j] ; } 

printf(" %d %d\n" , p, q); 
} 

} 
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i :::; j, we increase the number of pointers that must be followed in the 
smaller set by 1, but they are now in a set of size i j, so the property 
is preserved because 1 19i 19(i i):::; 19(i + j).• 

The practical implication of Property I. 3 is that the weighted 
quick-union algorithm uses at most a constant times "~,f 19 N instruc
tions to process 11.1 edges on N objects (see Exercise 1.9). This result is 
in stark contrast to our finding that quick find always (and quick union 
sometimes) uses at least A1N/2 instructions. The conclusion is that, 
with weighted quick union, we can guarantee that we can solve huge 
practical problems in a reasonable amount of time (see Exercise LIT). 
For the price of a few extra lines of code, we get a program that is 

Figure r.8 
Weighted quick union (worst 

case) 

The worst scenario for the weighted 
quick-union algorithm is that each 
union operation links trees of equal 
size. If the number of objects is 
less than 2n

, the distance from any 
node to the root of its tree is less 
thann. 
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Figure 1.9 
Path compression 

We can make paths in the trees 
even shorter by simply making all 
the objects that we touch point 
to the root of the new tree for the 
union operation, as shown in these 
two examples. The example at the 
top shows the result correspond
ing to Figure 1.7. For short paths, 
path compression has no effect, 
but when we process the pair 1 
6, we make 1, 5, and 6 all point 
to 3 and get a tree flatter than the 
one in Figure 1.7. The example at 
the bottom shows the result cor
responding to Figure 1.8. Paths 
that are longer than one or two 
links can develop in the trees, 
but whenever we traverse them/ 
we flatten them. Here/ when we 
process the pair 6 8, we flatten 
the tree by making 4/ 6, and 8 all 
point to O. 
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literally millions of times faster than the simpler algorithms for the 
huge problems that we might encounter in practical applications. 

It is evident from the diagrams that relatively few nodes are 
far from the root; indeed, empirical studies on huge problems tell us 
that the weighted quick-union algorithm of Program 1.3 typically can 
solve practical problems in linear time. That is, the cost of running the 
algorithm is within a constant factor of the cost of reading the input. 
We could hardly expect to find a more efficient algorithm. 

We immediately come to the question of whether or not we can 
find an algorithm that has guaranteed linear performance. This ques
tion is an extremely difficult one that plagued researchers for many 
years (see Section 2.7). There are a number of easy ways to improve 
the weighted quick-union algorithm further. Ideally, we would like 
every node to point directly to the root of its tree, but we do not want 
to pay the price of changing a large number of pointers, as we did 
in the quick-union algorithm. We can approach the ideal simply by 
making all the nodes that we do examine point to the root. This step 
seems drastic at first blush, but it is easy to implement, and there is 
nothing sacrosanct about the structure of these trees: If we can modify 
them to make the algorithm more efficient, we should do so. We can 
implement this method, called path compression, easily, by adding an
other pass through each path during the union operation, setting the 
id entry corresponding to each vertex encountered along the way to 
point to the root. The net result is to flatten the trees almost com
pletely, approximating the ideal achieved by the quick-find algorithm, 
as illustrated in Figure 1.9. The analysis that establishes this fact is 
extremely complex, but the method is simple and effective. Figure I. I I 

shows the result of path compression for a large example. 
There are many other ways to implement path compression. For 

example, Program 1.4 is an implementation that compresses the paths 
by making each link skip to the next node in the path on the way up 
the tree, as depicted in Figure 1.10. This method is slightly easier to 
implement than full path compression (see Exercise 1.16), and achieves 
the same net result. We refer to this variant as weighted quick-union 
with path compression by halving. Which of these methods is the 
more effective? Is the savings achieved worth the extra time required 
to implement path compression? Is there some other technique that 
we should consider? To answer these questions, we need to look more 
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Program 1.4 Path compression by halving 

If we replace the for loops in Program I. 3 by this code, we halve the 
length of any path that we traverse. The net result of this change is 
that the trees become almost completely flat after a long sequence of 
operations. 

for (i = p; i != id[i]; i id [i] ) 

id[i] = id[id[i]]; 


for (j q; j != id[j]; j id[j]) 

id[j] = id[id[j]]; 


carefully at the algorithms and implementations. We shall return to this 
topic in Chapter 2, in the context of our discussion of basic approaches 
to the analysis of algorithms. 

The end result of the succession of algorithms that we have con
sidered to solve the connectivity problem is about the best that we 
could hope for in any practical sense. We have algorithms that are 
easy to implement whose running time is guaranteed to be within a 
constant factor of the cost of gathering the data. Moreover, the al
gorithms are online algorithms that consider each edge once, using 
space proportional to the number of objects, so there is no limitation 
on the number of edges that they can handle. The empirical studies 
in Table LI validate our conclusion that Program I.3 and its path
compression variations are useful even for huge practical applications. 
Choosing which is the best among these algorithms requires careful 
and sophisticated analysis (see Chapter 2). 

Exercises 

I> I.4 Show the contents of the id array after each union operation when you 
use the quick-find algorithm (Program L I) to solve the connectivity problem 
for the sequence 0-2, 1-4,2-5,3-6,0-4,6-0, and 1-3. Also give the number 
of times the program accesses the id array for each input pair. 

I> I.5 Do Exercise L4, but use the quick-union algorithm (Program L2). 

I> I.6 Give the contents of the id array after each union operation for the 
weighted quick-union algorithm running on the examples corresponding to 
Figure L7 and Figure L8. 

I> 1.7 Do Exercise L4, but use the weighted quick-union algorithm (Pro
gram 1.3). 

Figure 1.10 

Path compression by halving 

We can nearly halve the length 
of paths on the way up the tree 
by taking two links at a time, and 
setting the bottom one to point to 
the same node as the top one, as 
shown in this example. The net 
result of performing this opera
tion on every path that we traverse 
is asymptotically the same as full 
path compression. 
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Table 1.I Empirical study of union-find algorithms 

These relative timings for solving random connectivity problems us
ing various union-find algorithms demonstrate the effectiveness of the 
weighted version of the quick union algorithm. The added incremental 
benefit due to path compression is less important. In these experiments, 
M is the number of random connections generated until all N objects 
were connected. This process involves substantially more find operations 
than union operations, so quick union is substantially slower than quick 
find. Neither quick find nor quick union is feasible for huge N. The 
running time for the weighted methods is evidently proportional to N, 
as it approximately doubles when N is doubled. 

N lVf F U W P H 

1000 6206 14 25 6 5 3 

2500 20236 82 210 13 15 12 

5000 41913 304 1172 46 26 25 

10000 83857 1216 4577 91 73 50 

25000 309802 219 208 216 

50000 708701 469 387 497 

100000 1545119 1071 1106 1096 

Key: 
F quick find (Program 1.1) 

U quick union (Program 1.2) 
W weighted quick union (Program 1.3) 
P weighted quick union with path compression (Exercise 1.I6) 
H weighted quick union with halving (Program 1.4) 

I> 1.8 Do Exercise 1.4, but use the weighted quick-union algorithm with path 
compression by halving (Program 1.4). 

1.9 Prove an upper bound on the number of machine instructions required 
to process 1M connections on N objects using Program 1.3. You may assume, 
for example, that any C assignment statement always requires less than c 
instructions, for some fixed constant c. 

1.10 Estimate the minimum amount of time (in days) that would be required 
for quick find (Program 1. I) to solve a problem with 10" objects and 109 input 
pairs, on a computer capable of executing 109 instructions per second. Assume 
that each iteration of the while loop requires at least 10 instructions. 
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1.11 Estimate the maximum amount of time (in seconds) that would be 
required for weighted quick union (Program 1.3) to solve a problem with 
106 objects and 109 input pairs, on a computer capable of executing 109 

instructions per second. Assume that each iteration of the while loop requires 
at most 100 instructions. 

1.12 Compute the average distance from a node to the root in a worst-case 
tree of 2n nodes built by the weighted quick-union algorithm. 

I> 1.13 Draw a diagram like Figure 1. 10, starting with eight nodes instead of 
nme. 

01.14 	 Give a sequence of input pairs that causes the weighted quick-union 
algorithm (Program 1.3) to prod uce a path of length 4. 

• 	 LIS Give a sequence of input pairs that causes the weighted quick-union 
algorithm with path compression by halving (Program 1.4) to produce a path 
of length 4. 

1.16 Show how to modify Program 1.3 to implement full path compression, 
where we complete each union operation by making every node that we touch 
point to the root of the new tree. 

I> 1.17 Answer Exercise 1.4, but using the weighted quick-union algorithm 
with full path compression (Exercise 1. 16). 

•• 1.18 Give a sequence of input pairs that causes the weighted quick-union 
algorithm with full path compression (Exercise 1.16) to produce a path of 
length 4. 

o 1.19 Give an example showing that modifying quick union (Program 1.2) to 
implement full path compression Exercise I. 16) is not sufficient to ensure 
that the trees have no long paths. 

• 	 1.20 Modify Program 1.3 to use the height of the trees (longest path from any 
node to the root), instead of the weight, to decide whether to set id [i] = j or 
id[j] = i. Run empirical studies to compare this variant with Program 1.3 . 

•• 1.21 Show that Property 1.3 holds for the algorithm described in Exer
cise 1.20. 

• 	 1.22 Modify Program 1.4 to generate random pairs of integers between 0 
and N 1 instead of reading them from standard input, and to loop until N -1 
union operations have been performed. Run your program for N 103

, 104
, 

105
, and 106 and print out the total number of edges generated for each value 

of N . 

• 	 1.23 Modify your program from Exercise 1.22 to plot the number of edges 
needed to connect N items, for 100 N :S 1000 . 

•• 1.24 Give an approximate formula for the number of random edges that are 
required to connect N objects, as a function of N. 
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Figure LII 

A large example of the ef
fect of path compression 

This sequence depicts the result of 
processing random pairs from 100 
objects with the weighted quick
union algorithm with path com
pression. All but two of the nodes 
in the tree are one or two steps 
from the root. 

I.4 Perspective 

Each of the algorithms that we considered in Section 1.3 seems to 
be an improvement over the previous in some intuitive sense, but the 
process is perhaps artificially smooth because we have the benefit of 
hindsight in looking over the development of the algorithms as they 
were studied by researchers over the years (see reference section). The 
implementations are simple and the problem is well specified, so we can 
evaluate the various algorithms directly by running empirical studies. 
Furthermore, we can validate these studies and quantify the compar
ative performance of these algorithms (see Chapter 2). Not all the 
problem domains in this book are as well developed as this one, and 
we certainly can run into complex algorithms that are difficult to com
pare and mathematical problems that are difficult to solve. We strive to 
make objective scientific judgements about the algorithms that we use, 
while gaining experience learning the properties of implementations 
running on actual data from applications or random test data. 

The process is prototypical of the way that we consider various 
algorithms for fundamental problems throughout the book. When 
possible, we follow the same basic steps that we took for union-find 
algorithms in Section I.2, some of which are highlighted in this list: 

• 	 Decide on a complete and specific problem statement, including 
identifying fundamental abstract operations that are intrinsic to 
the problem. 

• 	 Carefully develop a succinct implementation for a straightfor
ward algorithm. 

• 	 Develop improved implementations through a process of step
wise refinement, validating the efficacy of ideas for improvement 
through empirical analysis, mathematical analysis, or both. 

• Find high-level abstract representations of data structures or al
gorithms in operation that enable effective high-level design of 
improved versions. 

• 	 Strive for worst-case performance guarantees when possible, but 
accept good performance on actual data when available. 
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The potential for spectacular performance improvements for practical 
problems such as those that we saw in Section 1.2 makes algorithm 
design a compelling field of study; few other design activities hold the 
potential to reap savings factors of millions or billions, or more. 

More important, as the scale of our computational power and 
our applications increases, the gap between a fast algorithm and a 
slow one grows. A new computer might be 10 times faster and be 
able to process 10 times as much data as an old one, but if we are 
using a quadratic algorithm such as quick find, the new computer will 
take 10 times as long on the new job as the old one took to finish 
the old job! This statement seems counterintuitive at first, but it is 
easily verified by the simple identity (lON)2/1O = lON2 

, as we shall 
see in Chapter 2. As computational power increases to allow us to 
take on larger and larger problems, the importance of having efficient 
algorithms increases, as well. 

Developing an efficient algorithm is an intellectually satisfying 
activity that can have direct practical payoff. As the connectivity 
problem indicates, a simply stated problem can lead us to study nu
merous algorithms that are not only both useful and interesting, but 
also intricate and challenging to understand. We shall encounter many 
ingenious algorithms that have been developed over the years for a host 
of practical problems. As the scope of applicability of computational 
solutions to scientific and commercial problems widens, so also grows 
the importance of being able to apply efficient algorithms to solve 
known problems and of being able to develop efficient solutions to 
new problems. 

Exercises 

1.25 Suppose that we use weighted quick union to process 10 times as many 
connections on a new computer that is 10 times as fast as an old one. How 
much longer would it take the new computer to finish the new job than it took 
the old one to finish the old job? 

1.26 Answer Exercise 1.25 for the case where we use an algorithm that 
requires N 3 instructions. 

I.5 Summary of Topics 

This section comprises brief descriptions of the major parts of the 
book, giving specific topics covered and an indication of our general 
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orientation toward the material. This set of topics is intended to touch 
on as many fundamental algorithms as possible. Some of the areas 
covered are core computer-science areas that we study in depth to 
learn basic algorithms of wide applicability. Other algorithms that we 
discuss are from advanced fields of study within computer science and 
related fields, such as numerical analysis and operations research
in these cases, our treatment serves as an introduction to these fields 
through examination of basic methods. 

The first four parts of the book, which are contained in this vol
ume, cover the most widely used set of algorithms and data structures, 
a first level of abstraction for collections of objects with keys that can 
support a broad variety of important fundamental algorithms. The 
algorithms that we consider are the products of decades of research 
and development, and continue to play an essential role in the ever
expanding applications of computation. 

Fundamentals (Part I) in the context of this book are the basic 
principles and methodology that we use to implement, analyze, and 
compare algorithms. The material in Chapter I motivates our study 
of algorithm design and analysis; in Chapter 2, we consider basic 
methods of obtaining quantitative information about the performance 
of algorithms. 

Data Structures (Part 2) go hand-in-hand with algorithms: we 
shall develop a thorough understanding of data representation meth
ods for use throughout the rest of the book. We begin with an in
troduction to basic concrete data structures in Chapter 3, including 
arrays, linked lists, and strings; then we consider recursive programs 
and data structures in Chapter 5, in particular trees and algorithms for 
manipulating them. In Chapter 4, we consider fundamental abstract 
data types (ADTs) such as stacks and queues, including implementa
tions using elementary data structures. 

Sorting algorithms (Part 3) for rearranging files into order are of 
fundamental importance. We consider a variety of algorithms in con
siderable depth, including Shell sort, quicksort, mergesort, heapsort, 
and radix sorts. We shall encounter algorithms for several related 
problems, including priority queues, selection, and merging. Many of 
these algorithms will find application as the basis for other algorithms 
later in the book. 
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Searching algorithms (Part 4) for finding specific items among 
large collections of items are also of fundamental importance. We 
discuss basic and advanced methods for searching using trees and dig
ital key transformations, including binary search trees, balanced trees, 
hashing, digital search trees and tries, and methods appropriate for 
huge files. We note relationships among these methods, comparative 
performance statistics, and correspondences to sorting methods. 

Parts 5 through 8, which are contained in a separate volume, 
cover advanced applications of the algorithms described here for a di
verse set of applications-a second level of abstractions specific to a 
number of important applications areas. We also delve more deeply 
into techniques of algorithm design and analysis. Many of the prob
lems that we touch on are the subject on ongoing research. 

String Processing algorithms (Part 5) include a range of methods 
for processing (long) sequences of characters. String searching leads to 
pattern matching, which leads to parsing. File-compression techniques 
are also considered. Again, an introduction to advanced topics is given 
through treatment of some elementary problems that are important in 
their own right. 

Geometric Algorithms (Part 6) are methods for solving problems 
involving points and lines (and other simple geometric objects) that 
have only recently come into use. We consider algorithms for find
ing the convex hull of a set of points, for finding intersections among 
geometric objects, for solving closest-point problems, and for multidi
mensional searching. Many of these methods nicely complement the 
more elementary sorting and searching methods. 

Graph Algorithms (Part 7) are useful for a variety of difficult and 
important problems. A general strategy for searching in graphs is de
veloped and applied to fundamental connectivity problems, including 
shortest path, minimum spanning tree, network flow, and matching. 
A unified treatment of these algorithms shows that they are all based 
on the same procedure, and that this procedure depends on the basic 
priority queue ADT. 

Advanced Topics (Part 8) are discussed for the purpose of relating 
the material in the book to several other advanced fields of study. We 
begin with major approaches to the design and analysis of algorithms, 
including divide-and-conquer, dynamic programming, randomization, 
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and amortization. We survey linear programming, the fast Fourier 
transform, NP-completeness, and other advanced topics from an in
troductory viewpoint to gain appreciation for the interesting advanced 
fields of study suggested by the elementary problems confronted in this 
book. 

The study of algorithms is interesting because it is a new field 
(almost all the algorithms that we study are less than 50 years old, and 
some were just recently discovered) with a rich tradition (a few algo
rithms have been known for thousands of years). New discoveries are 
constantly being made, but few algorithms are completely understood. 
In this book we shall consider intricate, complicated, and difficult algo
rithms as well as elegant, simple, and easy algorithms. Our challenge 
is to understand the former and to appreciate the latter in the context 
of many different potential applications. In doing so, we shall explore 
a variety of useful tools and develop a style of algorithmic thinking 
that will serve us well in computational challenges to come. 
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Principles of Algorithm Analysis 


A NALYSIS IS THE key to being able to understand algorithms 
sufficiently well that we can apply them effectively to practical 

problems. Although we cannot do extensive experimentation and 
deep mathematical analysis on each and every program that we run, we 
can work within a basic framework involving both empirical testing 
and approximate analysis that can help us to know the important 
facts about the performance characteristics of our algorithms, so that 
we may compare those algorithms and can apply them to practical 
problems. 

The very idea of describing the performance of a complex al
gorithm accurately with a mathematical analysis seems a daunting 
prospect at first, and we do often call on the research literature for 
results based on detailed mathematical study. Although it is not our 
purpose in this book to cover methods of analysis or even to summa
rize these results, it is important for us to be aware at the outset that we 
are on firm scientific ground when we want to compare different meth
ods. Moreover, a great deal of detailed information is available about 
many of our most important algorithms through careful application 
of relatively few elementary techniques. We do highlight basic ana
lytic results and methods of analysis throughout the book, particularly 
when such understanding helps us to understand the inner workings 
of fundamental algorithms. Our primary goal in this chapter is to 
provide the context and the tools that we need to work intelligently 
with the algorithms themselves. 

The example in Chapter 1 provides a context that illustrates 
many of the basic concepts of algorithm analysis, so we frequently refer 
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back to the performance of union-find algorithms to make particular 
points concrete. We also consider a detailed pair of new examples, in 
Section 2.6. 

Analysis plays a role at every point in the process of designing and 
implementing algorithms. At first, as we saw, we can save factors of 
thousands or millions in the running time with appropriate algorithm 
design choices. As we consider more efficient algorithms, we find 
it more of a challenge to choose among them, so we need to study 
their properties in more detail. In pursuit of the best (in some precise 
technical sense) algorithm, we find both algorithms that are useful in 
practice and theoretical questions that are challenging to resolve. 

Complete coverage of methods for the analysis of algorithms is 
the subject of a book in itself (see reference section), but it is worthwhile 
for us to consider the basics here, so that we can 

• Illustrate the process. 
• Describe in one place the mathematical conventions that we use. 
• Provide a basis for discussion of higher-level issues. 
• Develop an appreciation for scientific underpinnings of the con

clusions that we draw when comparing algorithms. 
Most important, algorithms and their analyses are often intertwined. 
In this book, we do not delve into deep and difficult mathematical 
derivations, but we do use sufficient mathematics to be able to under
stand what our algorithms are and how we can use them effectively. 

2.I Implementation and Empirical Analysis 

We design and develop algorithms by layering abstract operations that 
help us to understand the essential nature of the computational prob
lems that we want to solve. In tbeoretical studies, this process, al
though valuable, can take us far afield from the real-world problems 
that we need to consider. Thus, in this book, we keep our feet on the 
ground by expressing all the algorithms that we consider in an actual 
programming language: C. This approach sometimes leaves us with a 
blurred distinction between an algorithm and its implementation, but 
that is small price to pay for tbe ability to work with and to learn from 
a concrete implementation. 

Indeed, carefully constructed programs in an actual program
ming language provide an effective means of expressing our algorithms. 
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In this book, we consider a large number of important and efficient 
algorithms that we describe in implementations that are both concise 
and precise in C. English-language descriptions or abstract high-level 
representations of algorithms are all too often vague or incomplete; ac
tual implementations force us to discover economical representations 
to avoid being inundated in detail. 

We express our algorithms in C, but this book is about algo
rithms, rather than about C programming. Certainly, we consider C 
implementations for many important tasks, and, when there is a par
ticularly convenient or efficient way to do a task in C, we will take 
advantage of it. But the vast majority of the implementation decisions 
that we make are worth considering in any modern programming en
vironment. Translating the programs in Chapter I, and most of the 
other programs in this book, to another modern programming lan
guage is a straightforward task. On occasion, we also note when some 
other language provides a particularly effective mechanism suited to 
the task at hand. Our goal is to use C as a vehicle for expressing the 
algorithms that we consider, rather than to dwell on implementation 
issues specific to C. 

If an algorithm is to be implemented as part of a large system, we 
use abstract data types or a similar mechanism to make it possible to 
change algorithms or implementations after we determine what part 
of the system deserves the most attention. From the start, however, 
we need to have an understanding of each algorithm's performance 
characteristics, because design requirements of the system may have 
a major influence on algorithm performance. Such initial design de
cisions must be made with care, because it often does turn out, in 
the end, that the performance of the whole system depends on the 
performance of some basic algorithm, such as those discussed in this 
book. 

Implementations of the algorithms in this book have been put to 
effective use in a wide variety of large programs, operating systems, 
and applications systems. Our intention is to describe the algorithms 
and to encourage a focus on their dynamic properties through experi
mentation with the implementations given. For some applications, the 
implementations may be quite useful exactly as given; for other ap
plications, however, more work may be required. For example, using 
a more defensive programming style than the one that we use in this 
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book is justified when we are building real systems. Error conditions 
must be checked and reported, and programs must be implemented 
such that they can be changed easily, read and understood quickly by 
other programmers, interface well with other parts of the system, and 
be amenable to being moved to other environments. 

Notwithstanding all these comments, we take the position when 
analyzing each algorithm that performance is of critical importance, 
to focus our attention on the algorithm's essential performance char
acteristics. We assume that we are always interested in knowing about 
algorithms with substantially better performance, particularly if they 
are simpler. 

To use an algorithm effectively, whether our goal is to solve a 
huge problem that could not otherwise be solved, or whether our goal 
is to provide an efficient implementation of a critical part of a system, 
we need to have an understanding of its performance characteristics. 
Developing such an understanding is the goal of algorithmic analysis. 

One of the first steps that we take to understand the performance 
of algorithms is to do empirical analysis. Given two algorithms to 
solve the same problem, there is no mystery in the method: We run 
them both to see which one takes longer! This concept might seem 
too obvious to mention, but it is an all-too-common omission in the 
comparative study of algorithms. The fact that one algorithm is 10 
times faster than another is unlikely to escape the notice of someone 
who waits 3 seconds for one to finish and 30 seconds for the other to 
finish, but it is easy to overlook as a small constant overhead factor in 
a mathematical analysis. When we monitor the performance of careful 
implementations on typical input, we get performance results that not 
only give us a direct indicator of efficiency, but also provide us with the 
information that we need to compare algorithms and to validate any 
mathematical analyses that may apply (see, for example, Table 1.I). 
When empirical studies start to consume a significant amount of time, 
mathematical analysis is called for. Waiting an hour or a day for 
a program to finish is hardly a productive way to find out that it is 
slow, particularly when a straightforward analysis can give us the same 
information. 

The first challenge that we face in empirical analysis is to develop 
a correct and complete implementation. For some complex algorithms, 
this challenge may present a significant obstacle. Accordingly, we 
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typically want to have, through analysis or through experience with 
similar programs, some indication of how efficient a program might 
be before we invest too much effort in getting it to work. 

The second challenge that we face in empirical analysis is to 
determine the nature of the input data and other factors that have 
direct influence on the experiments to be performed. Typically, we 
have three basic choices: use actual data, random data, or perverse 
data. Actual data enable us truly to measure the cost of the program in 
use; random data assure us that our experiments test the algorithm, not 
the data; and perverse data assure us that our programs can handle any 
input presented them. For example, when we test sorting algorithms, 
we run them on data such as the words in Moby Dick, on randomly 
generated integers, and on files of numbers that are all the same value. 
This problem of determining which input data to use to compare 
algorithms also arises when we analyze the algorithms. 

It is easy to make mistakes when we compare implementations, 
particularly if differing machines, compilers, or systems are involved, 
or if huge programs with ill-specified inputs are being compared. The 
principal danger in comparing programs empirically is that one imple
mentation may be coded more carefully than the other. The inventor 
of a proposed new algorithm is likely to pay careful attention to every 
aspect of its implementation, and not to expend so much effort on 
the details of implementing a classical competing algorithm. To be 
confident of the accuracy of an empirical study comparing algorithms, 
we must be sure to give the same attention to each implementation. 

One approach that we often use in this book, as we saw in Chap
ter I, is to derive algorithms by making relatively minor modifications 
to other algorithms for the same problem, so comparative studies really 
are valid. More generally, we strive to identify essential abstract oper
ations, and start by comparing algorithms on the basis of their use of 
such operations. For example, the comparative empirical results that 
we examined in Table 1.1 are likely to be robust across programming 
languages and environments, as they involve programs that are similar 
and that make use of the same set of basic operations. For a particu
lar programming environment, we can easily relate these numbers to 
actual running times. Most often, we simply want to know which of 
two programs is likely to be faster, or to what extent a certain change 
will improve the time or space requirements of a certain program. 
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Choosing among algorithms to solve a given problem is tricky 
business. Perhaps the most common mistake made in selecting an al
gorithm is to ignore performance characteristics. Faster algorithms are 
often more complicated than brute-force solutions, and implementors 
are often willing to accept a slower algorithm to avoid having to deal 
with added complexity. As we saw with union-find algorithms, how
ever, we can sometimes reap huge savings with just a few lines of code. 
Users of a surprising number of computer systems lose substantial time 
waiting for simple quadratic algorithms to finish when N log N algo
rithms are available that are only slightly more complicated and could 
run in a fraction of the time. When we are dealing with huge problem 
sizes, we have no choice but to seek a better algorithm, as we shall see. 

Perhaps the second most common mistake made in selecting an 
algorithm is to pay too much attention to performance characteristics. 
Improving the running time of a program by a factor of lOis incon
sequential if the program takes only a few microseconds. Even if a 
program takes a few minutes, it may not be worth the time and effort 
required to make it run 10 times faster, particularly if we expect to use 
the program only a few times. The total time required to implement 
and debug an improved algorithm might be substantially more than 
the time required simply to run a slightly slower one-we may as well 
let the computer do the work. Worse, we may spend a considerable 
amount of time and effort implementing ideas that should improve a 
program but actually do not do so. 

We cannot run empirical tests for a program that is not yet writ
ten, but we can analyze properties of the program and estimate the 
potential effectiveness of a proposed improvement. Not all putative 
improvements actually result in performance gains, and we need to 
understand the extent of the savings realized at each step. More
over, we can include parameters in our implementations, and can use 
analysis to help us set the parameters. Most important, by understand
ing the fundamental properties of our programs and the basic nature 
of the programs' resource usage, we hold the potentials to evaluate 
their effectiveness on computers not yet built and to compare them 
against new algorithms not yet designed. In Section 2.2, we outline 
our methodology for developing a basic understanding of algorithm 
performance. 
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Exercises 

2.1 Translate the programs in Chapter I to another programming language, 
and answer Exercise 1.22 for your implementations. 

2.2 How long does it take to count to 1 billion (ignoring overflow)? Deter
mine the amount of time it takes the program 

int i, j, k, count = 0, 
for (i 0; i < N; i++) 

for (j : 0; j < N, j++) 
for (k : 0; k < N; k++) 

count++; 

to complete in your programming environment, for N 10, 100, and 1000. If 
your compiler has optimization features that are supposed to make programs 
more efficient, check whether or not they do so for this program. 

2.2 Analysis of Algorithms 

In this section, we outline the framework within which mathematical 
analysis can playa role in the process of comparing the performance 
of algorithms, to lay a foundation for us to be able to consider basic 
analytic results as they apply to the fundamental algorithms that we 
consider throughout the book. We shall consider the basic mathemat
ical tools that are used in the analysis of algorithms, both to allow 
us to study classical analyses of fundamental algorithms and to make 
use of results from the research literature that help us understand the 
performance characteristics of our algorithms. 

The following are among the reasons that we perform mathe
matical analysis of algorithms: 

• To compare different algorithms for the same task 
• To predict performance in a new environment 
• To set values of algorithm parameters 

We shall see many examples of each of these reasons throughout the 
book. Empirical analysis might suffice for some of these tasks, but 
mathematical analysis can be more informative (and less expensive!), 
as we shall see. 

The analysis of algorithms can be challenging indeed. Some of the 
algorithms in this book are well understood, to the point that accurate 
mathematical formulas are known that can be used to predict running 
time in practical situations. People develop such formulas by carefully 
studying the program, to find the running time in terms of fundamental 
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mathematical quantities, and then doing a mathematical analysis of the 
quantities involved. On the other hand, the performance properties 
of other algorithms in this book are not fully understood-perhaps 
their analysis leads to unsolved mathematical questions, or perhaps 
known implementations are too complex for a detailed analysis to 
be reasonable, or (most likely) perhaps the types of input that they 
encounter cannot be characterized accurately. 

Several important factors in a precise analysis are usually out
side a given programmer's domain of influence. First, C programs are 
translated into machine code for a given computer, and it can be a 
challenging task to figure out exactly how long even one C statement 
might take to execute (especially in an environment where resources 
are being shared, so even the same program can have varying perfor
mance characteristics at two different times). Second, many programs 
are extremely sensitive to their input data, and performance might fluc
tuate wildly depending on the input. Third, many programs of interest 
are not well understood, and specific mathematical results may not be 
available. Finally, two programs might not be comparable at all: one 
may run much more efficiently on one particular kind of input, the 
other runs efficiently under other circumstances. 

All these factors notwithstanding, it is often possible to predict 
precisely how long a particular program will take, or to know that one 
program will do better than another in particular situations. Moreover, 
we can often acquire such knowledge by using one of a relatively small 
set of mathematical tools. It is the task of the algorithm analyst to 

discover as much information as possible about the performance of 
algorithms; it is the task of the programmer to apply such information 
in selecting algorithms for particular applications. In this and the next 
several sections, we concentrate on the idealized world of the analyst. 
To make effective use of our best algorithms, we need to be able to 
step into this world, on occasion. 

The first step in the analysis of an algorithm is to identify the 
abstract operations on which the algorithm is based, to separate the 
analysis from the implementation. Thus, for example, we separate 
the study of how many times one of our union-find implementations 
executes the code fragment i = a from the analysis of how many 
nanoseconds might be required to execute that particular code frag
ment on our computer. We need both these elements to determine 
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the actual running time of the program on a particular computer. 
The former is determined by properties of the algorithm; the latter by 
properties of the computer. This separation often allows us to compare 
algorithms in a way that is independent of particular implementations 
or of particular computers. 

Although the number of abstract operations involved can be 
large, in principle, the performance of an algorithm typically depends 
on only a few quantities, and typically the most important quantities to 
analyze are easy to identify. One way to identify them is to use a pro
filing mechanism (a mechanism available in many C implementations 
that gives instruction-frequency counts) to determine the most fre
quently executed parts of the program for some sample runs. Or, like 
the union-find algorithms of Section 1.3, our implementation might be 
built on a few abstract operations. In either case, the analysis amounts 
to determining the frequency of execution of a few fundamental opera
tions. Our modus operandi will be to look for rough estimates of these 
quantities, secure in the knowledge that we can undertake a fuller anal
ysis for important programs when necessary. Moreover, as we shall 
see, we can often use approximate analytic results in conjunction with 
empirical studies to predict performance accurately. 

We also have to study the data, and to model the input that 
might be presented to the algorithm. Most often, we consider one 
of two approaches to the analysis: we either assume that the input is 
random, and study the average-case performance of the program, or we 
look for perverse input, and study the worst-case performance of the 
program. The process of characterizing random inputs is difficult for 
many algorithms, but for many other algorithms it is straightforward 
and leads to analytic results that provide useful information. The 
average case might be a mathematical fiction that is not representative 
of the data on which the program is being used, and the worst case 
might be a bizarre construction that would never occur in practice, but 
these analyses give useful information on performance in most cases. 
For example, we can test analytic results against empirical results (see 
Section 2.r). If they match, we have increased confidence in both; if 
they do not match, we can learn about the algorithm and the model 
by studying the discrepancies. 

In the next three sections, we briefly survey the mathematical 
tools that we shall be using throughout the book. This material is 



outside our primary narrative thrust, and readers with a strong back
ground in mathematics or readers who are not planning to check our 
mathematical statements on the performance of algorithms in detail 
may wish to skip to Section 2.6 and to refer back to this material when 
warranted later in the book. The mathematical underpinnings that 
we consider, however, are generally not difficult to comprehend, and 
they are too close to core issues of algorithm design to be ignored by 
anyone wishing to use a computer effectively. 

First, in Section 2.3, we consider the mathematical functions 
that we commonly need to describe the performance characteristics of 
algorithms. Next, in Section 2.4, we consider the O-notation, and the 
notion of is proportional to, which allow us to suppress detail in our 
mathematical analyses. Then, in Section 2.5, we consider recurrence 
relations, the basic analytic tool that we use to capture the performance 
characteristics of an algorithm in a mathematical equation. Following 
this survey, we consider examples where we use the basic tools to 
analyze specific algorithms, in Section 2.6. 

Exercises 

.2..3 Develop an expression of the form Co + CtN + C2N1 + qN3 that accu
rately describes the running time of your program from Exercise 2.2. Compare 
the times predicted by this expression with actual times, for N = 10, 100, and 
1000 . 

• 	2..4 Develop an expression that accurately describes the running time of 
Program I.I in terms of !vI and N. 

2.3 Growth of Functions 

Most algorithms have a primary parameter N that affects the running 
time most significantly. The parameter N might be the degree of a 
polynomial, the size of a file to be sorted or searched, the number of 
characters in a text string, or some other abstract measure of the size of 
the problem being considered: it is most often directly proportional to 
the size of the data set being processed. When there is more than one 
such parameter (for example, 1v1 and N in the union-find algorithms 
that we discussed in Section I. 3), we often reduce the analysis to just 
one parameter by expressing one of the parameters as a function of 
the other or by considering one parameter at a time (holding the other 
constant), so we can restrict ourselves to considering a single parameter 
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N without loss of generality. Our goal is to express the resource 
requirements of our programs (most often running time) in terms of 
N, using mathematical formulas that are as simple as possible and that 
are accurate for large values of the parameters. The algorithms in this 
book typically have running times proportional to one of the following 
functions: 

1 	Most instructions of most programs are executed once or at 
most only a few times. If all the instructions of a program 
have this property, we say that the program's running time 
is constant. 

log N 	 When the running time of a program is logarithmic, the 
program gets slightly slower as N grows. This running 
time commonly occurs in programs that solve a big prob
lem by transformation into a series of smaller problems, 
cutting the problem size by some constant fraction at each 
step. For our range of interest, we can consider the run
ning time to be less than a large constant. The base of the 
logarithm changes the constant, but not by much: When 
N is 1 thousand, log N is 3 if the base is 10, or is about 10 
if the base is 2; when N is 1 million, log N is only double 
these values. Whenever N doubles, log N increases by a 
constant, but log N does not double until N increases to 
N 2 • 

N 	 When the running time of a program is linear, it is generally 
the case that a small amount of processing is done on each 
input element. When N is 1 million, then so is the running 
time. Whenever N doubles, then so does the running time. 
This situation is optimal for an algorithm that must process 
N inputs (or produce N outputs). 

N log N 	 The N log N running time arises when algorithms solve a 
problem by breaking it up into smaller subproblems, solv
ing them independently, and then combining the solutions. 
For lack of a better adjective (linearithmic?), we simply 
say that the running time of such an algorithm is N log N. 
When N is 1 million, N log N is perhaps 20 million. When 
N doubles, the running time more (but not much more) 
than doubles. 



seconds 

102 1.7 minutes 

104 2.8 hours 

105 1.1 days 

106 1.6 weeks 

107 3.8 months 

108 3.1 years 

109 3.1 decades 

1010 3.1 centuries 

1011 never 
Figure 2.1 

Seconds conversions 

The vast difference between num
bers such as 104 and 108 is more 
obvious when we consider them 
to measure time in seconds and 
convert to familiar units of time. 
We might let a program run for 2.8 
hours/ but we would be unlikely 
to contemplate running a program 
that would take at least 3.1 years 
to complete. Because 210 is ap
proximately 103

, this table is useful 
for powers of 2 as well. For ex
ample/ 232 seconds is about 124 
years. 
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N2 	When the running time of an algorithm is quadratic, that 
algorithm is practical for use on only relatively small prob
lems. Quadratic running times typically arise in algorithms 
that process all pairs of data items (perhaps in a double 
nested loop). When N is 1 thousand, the running time is 1 
million. Whenever N doubles, the running time increases 
fourfold. 

N 3 Similarly, an algorithm that processes triples of data items 
(perhaps in a triple-nested loop) has a cubic running time 
and is practical for use on only small problems. When N is 
100, the running time is 1 million. Whenever N doubles, 
the running time increases eightfold. 

2N 	Few algorithms with exponential running time are likely 
to be appropriate for practical use, even though such algo
rithms arise naturally as brute-force solutions to problems. 
When N is 20, the running time is 1 million. Whenever N 
doubles, the running time squares! 

The running time of a particular program is likely to be some 
constant multiplied by one of these terms (the leading term) plus some 
smaller terms. The values of the constant coefficient and the terms 
included depend on the results of the analysis and on implementation 
details. Roughly, the coefficient of the leading term has to do with the 
number of instructions in the inner loop: At any level of algorithm 
design, it is prudent to limit the number of such instructions. For 
large N, the effect of the leading term dominates; for small N or 
for carefully engineered algorithms, more terms may contribute and 
comparisons of algorithms are more difficult. In most cases, we will 
refer to the running time of programs simply as "linear," "NlogN," 
"cubic," and so forth. We consider the justification for doing so in 
detail in Section 2.4. 

Eventually, to reduce the total running time of a program, we 
focus on minimizing the number of instructions in the inner loop. Each 
instruction comes under scrutiny: Is it really necessary? Is there a more 
efficient way to accomplish the same task? Some programmers believe 
that the automatic tools provided by modern compilers can produce 
the best machine code; others believe that the best route is to hand
code inner loops into machine or assembly language. We normally 
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Table 2.1 Time to solve huge problems 

For many applications, our only chance to be able to solve huge problem 
instances is to use an efficient algorithm. This table indicates the min
imum amount of time required to solve problems of size 1 million and 
1 billion, using linear, N log N, and quadratic algorithms, on computers 
capable of executing 1 million, 1 billion, and 1 trillion instructions per 
second. A fast algorithm enables us to solve a problem on a slow ma
chine, but a fast machine is no help when we are using a slow algorithm. 

operations problem size 1 million problem size 1 billion 

per 


second IV NlgN IV2 N NlgN 11[2 


106 seconds seconds weeks hours hours never 

109 instant instant hours seconds seconds decades 

1012 instant instant seconds instant instant weeks 

stop short of considering optimization at this level, although we do 
occasionally take note of how many machine instructions are required 
for certain operations, to help us understand why one algorithm might 
be faster than another in practice. 

For small problems, it makes scant difference which method we 
use-a fast modern computer will complete the job in an instant. But 
as problem size increases, the numbers we deal with can become huge, 
as indicated in Table 2.2. As the number of instructions to be executed 
by a slow algorithm becomes truly huge, the time required to execute 
those instructions becomes infeasible, even for the fastest computers. 
Figure 2.1 gives conversion factors from large numbers of seconds to 
days, months, years, and so forth; Table 2.1 gives examples showing 
how fast algorithms are more likely than fast computers to be able to 
help us solve problems without facing outrageous running times. 

A few other functions do arise. For example, an algorithm with 
IV2 inputs that has a running time proportional to N3 is best thought 
of as an N 3/ 2 algorithm. Also, some algorithms have two stages of 
subproblem decomposition, which lead to running times proportional 
to IV log2 N. It is evident from Table 2.2 that both of these functions 
are much closer to N log N than to N 2 • 
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Table 2.2 Values of commonly encountered functions 

This table indicates the relative size of some of the functions that we 
encounter in the analysis of algorithms. The quadratic function clearly 
dominates, particularly for large N, and differences among smaller func
tions may not be as we might expect for small N. For example, N3/2 

should be greater than N Ig2 N for huge values of N, but N 192 N is 
greater for the smaller values of N that might occur in practice. A pre
cise characterization of the running time of an algorithm might involve 
linear combinations of these functions. We can easily separate fast algo
rithms from slow ones because of vast differences between, for example, 
19 Nand N or N an d N 2 , but distinguishing among fast algorithms 
involves careful study. 

IgN VN N NlgN N(lgN)2 N3/2 N 2 

3 3 10 33 110 32 100 

7 10 100 664 4414 1000 10000 

10 32 1000 9966 99317 31623 1000000 

13 100 10000 132877 1765633 1000000 100000000 

17 316 100000 1660964 27588016 31622777 10000000000 

20 1000 1000000 19931569 397267426 10000000001000000000000 

The logarithm function plays a special role in the design and 
analysis of algorithms, so it is worthwhile for us to consider it in 
detail. Because we often deal with analytic results only to within a 
constant factor, we use the notation "!ogN" without specifying the 
base. Changing the base from one constant to another changes the 
value of the logarithm by only a constant factor, but specific bases nor
mally suggest themselves in particular contexts. In mathematics, the 
natural logarithm (base e = 2.71828 ... J is so important that a special 
abbreviation is commonly used: loge N == In N. In computer science, 
the binary logarithm (base 2) is so important that the abbreviation 
log2 N 19 N is commonly used. 

Occasionally, we iterate the logarithm: We apply it successively 
to a huge number. For example, 19 19 2256 Ig256 8. As illus
trated by this example, we generally regard log log ]V as a constant, for 
practical purposes, because it is so small, even when N is huge. 



PRINCIPLES OF ALGORITHM ANALYSIS 

The smallest integer larger than 19 N is the number of bits re
quired to represent N in binary, in the same way that the smallest 
integer larger than lOglO N is the number of digits required to repre
sent N in decimaL The C statement 

for (lgN = 0; N > 0; 19N++, N /= 2) ; 

is a simple way to compute the smallest integer larger than 19 N. A 
similar method for computing this function is 

for (lgN = 0, t = 1; t < N; 19N++, t += t) ; 

This version emphasizes that 2" ::; N < 2n +1 when n is the smallest 
integer larger than 19 N. 

We also frequently encounter a number of special functions and 
mathematical notations from classical analysis that are useful in pro
viding concise descriptions of properties of programs. Table 2.3 sum
marizes the most familiar of these functions; we briefly discuss them 
and some of their most important properties in the following para
graphs. 

Our algorithms and analyses most often deal with discrete units, 
so we often have need for the following special functions to convert 
real numbers to integers: 

largest integer less than or equal to x 

smallest integer greater than or equal to x. 

For example, ITtJ and fe1 are both equal to 3, and flg(N + 1)1 is the 
number of bits in the binary representation of N. Another important 
use of these functions arises when we want to divide a set of N objects 
in half. We cannot do so exactly if N is odd, so, to be precise, we divide 
into one subset with LN/2J objects and another subset with fN/21 
objects. IfN is even, the two subsets are equal in size (IN/2J rN /21); 
if N is odd, they differ in size by 1 (LN/2J+ 1 rN /21). In C, we can 
compute these functions directly when we are operating on integers 
(for example, if N 2: 0, then N/2 is IN/2J and N (N/2) is rN/21), 
and we can use floor and ceil from math.h to compute them when 
we are operating on floating point numbers. 

A discretized version of the natural logarithm function called the 
harmonic numbers often arises in the analysis of algorithms. The Nth 
harmonic number is defined by the equation 

1 1 1 
HN = 1 + 2 + 3 + ... + N' 

4 J 
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N 

Figure 2.2 

Harmonic numbers 
The harmonic numbers are an ap
proximation to the area under the 
curve y = l/x. The constant At ac
counts for the difference between 
HN and InN = J: dxlx. 

Table 2.3 Special functions and constants 

This table summarizes the mathematical notation that we use for func
tions and constants that arise in formulas describing the performance of 
algorithms. The formulas for the approximate values extend to provide 
much more accuracy, if desired (see reference section). 

function name typical value approximation 
--- --_..._....__.-...._-_ ...._--_...._-

lxj floor function l3.14j = 3 x 


fxl ceiling function f3.141 4 x 


IgN binary logarithm Ig1024 10 1.44 InN 

FN Fibonacci numbers Flo = 55 ¢N/Vs 
HN harmonic numbers H lO ;:::;; 2.9 InN+/ 

N! factorial function 10! 3628800 (N/e)N 

Ig(N!) 19(100!) ;:::;; 520 NigN 1.44N 

e 2.71828 ... 
/ 0.57721 ... 
¢ = (1 + Vs)/2 1.61803 ... 

In 2 0.693147 ... 
Ige = 1/ In 2 1.44269 ... 

The natural logarithm In N is the area under the curve 1/x between 1 

and N; the harmonic number HN is the area under the step function 

that we define by evaluating 11x at the integers between 1 and N. This 

relationship is illustrated in Figure 2.2. The formula 


where / 0.57721 ... (this constant is known as Euler's constant) 
gives an excellent approximation to HN. By contrast with fig Nl and 
lig N j, it is better to use the library log function to compute HN than 
to do so directly from the definition. 

The sequence of numbers 

o1 1 2 3 5 8 13 21 34 55 89 144 233 377 ... 
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that are defined by the formula 

for N :2 2 with Fo = 0 and Fl 1 

are known as the Fibonacci numbers, and they have many interesting 
properties. For example, the ratio of two successive terms approaches 
the golden ratio </J (1 + J5)/2 ~ 1.61803 .... More detailed analysis 
shows that FN is ¢N / J5 rounded to the nearest integer. 

We also have occasion to manipulate the familiar factorial func
tion N!. Like the exponential function, the factorial arises in the 
brute-force solution to problems and grows much too fast for such 
solutions to be of practical interest. It also arises in the analysis of 
algorithms because it represents all the ways to arrange N objects. To 
approximate N!, we use Stirling's formula: 

19N! ~ NlgN - Nlge + 19J27rN. 

For example, Stirling's formula tells us that the number of bits in the 
binary representation of N! is about N 19 N. 

Most of the formulas that we consider in this book are expressed 
in terms of the few functions that we have described in this section. 
Many other special functions can arise in the analysis of algorithms. 
For example, the classical binomial distribution and related Poisson 
approximation play an important role in the design and analysis of 
some of the fundamental search algorithms that we consider in Chap
ters I4 and 15. We discuss functions not listed here when we encounter 
them. 

Exercises 

t> 2.5 For what values of N is ION 19 N > 2N2 ? 

t> 2.6 For what values of N is N'/2 between N(lg N)2/2 and 2N(lg N)2? 

2.7 For what values of N is 2NH N - N < N 19 N + 10N? 

02.8 What is the smallest value of N for which 10glO 10glO N > 8? 

02.9 	 Prove that Llg NJ + 1 is the number of bits required to represent N in 
binary. 

2.10 Add columns to Table 2.1 for N(lg N)2 and N 3j2. 

2.II Add rows to Table 2. I for 107 and 108 instructions per second. 

2.I2 Write a C function that computes HN, using the log function from the 
standard math library. 
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2.13 Write an efficient C function that computes pg 19 Nl. Do not use a 
library function. 

2.14 How many digits are there in the decimal representation of 1 million 
factorial? 

2.15 How many bits are there in the binary representation oflg(N!)? 

2.16 How many bits are there in the binary representation of liN? 

2.17 Give a simple expression for Llg FNJ. 
02.18 Give the smallest values of N for which ~lINJi for 1 :; 'i ::; 10. 

2.19 Give the largest value of N for which you can solve a problem that 
requires at least feN) instructions on a machine that can execute 109 in
structions per second, for the following functions feN): N 3/ 2, N5/4, 2NliN, 
NIgNlglg N, and N 2 IgN. 

2.4 Big-Oh Notation 

The mathematical artifact that allows us to suppress detail when we are 
analyzing algorithms is called the O-notation, or "big-Oh notation," 
which is defined as follows. 

Definition 2.I A function g(N) is said to be O(f(N)) if there exist 
constants Co and No such that g(N) < cof(N) for all N > No. 

We use the O-notation for three distinct purposes: 
• To bound the error that we make when we ignore small terms in 

mathematical formulas 
• To bound the error that we make when we ignore parts of a pro

gram that contribute a small amount to the total being analyzed 
• To allow us to classify algorithms according to upper bounds on 

their total running times 
We consider the third use in Section 2.7, and discuss briefly the other 
two here. 

The constants Co and No implicit in the O-notation often hide 
implementation details that are important in practice. Obviously, say
ing that an algorithm has running time O(f(N)) says nothing about 
the running time if N happens to be less than No, and Co might be 
hiding a large amount of overhead designed to avoid a bad worst case. 
We would prefer an algorithm using N2 nanoseconds over one using 
log N centuries, but we could not make this choice on the basis of the 
O-notation. 
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Often, the results of a mathematical analysis are not exact, but 
rather are approximate in a precise technical sense: The result might 
be an expression consisting nf a sequence of decreasing terms. Just as 
we are most concerned with the inner loop of a program, we are most 
concerned with the leading terms (the largest terms) of a mathematical 
expression. The O-notation allows us to keep track of the leading 
terms while ignoring smaller terms when manipulating approximate 
mathematical expressions, and ultimately allows us to make concise 
statements that give accurate approximations to the quantities that we 
analyze. 

Some of the basic manipulations that we use when working with 
expressions containing the O-notation are the subject of Exercises 2.20 

through 2.25. Many of these manipulations are intuitive, but mathe
matically inclined readers may be interested in working Exercise 2.21 

to prove the validity of the basic operations from the definition. Es
sentially, these exercises say that we can expand algebraic expressions 
using the O-notation as though the 0 were not there, then can drop 
all but the largest term. For example, if we expand the expression 

(N + 0(1))(N + O(logN) + 0(1)), 

we get six terms 

N 2 + O(N) + O(NlogN) + O(logN) + O(N) + 0(1), 

but can drop all but the largest O-term, leaving the approximation 

N 2 + O(NlogN). 

That is, N2 is a good approximation to this expression when N is 
large. These manipulations are intuitive, but the O-notation allows us 
to express them mathematically with rigor and precision. We refer to 
a formula with one O-term as an asymptotic expression. 

Fnr a more relevant example, suppose that (after some mathe
matical analysis) we determine that a particular algorithm has an inner 
loop that is iterated 2NHN times on the average, an outer section that 
is iterated N times, and some initialization code that is executed once. 
Suppose further that we determine (after careful scrutiny of the imple
mentation) that each iteration of the inner loop requires ao nanosec
onds, the outer section requires al nanoseconds, and the initialization 
part a2 nanoseconds. Then we know that the average running time of 



Figure 2.3 
Bounding a function with an 

O-approximation 

In this schematic diagram, the os
cillating curve represents a func
tion, g(N), which we are trying 
to approximate; the black smooth 
curve represents another function, 
f(N), which we are trying to use 
for the approximation; and the gray 
smooth curve represents cf(N) for 
some unspecified constant c. The 
vertical line represents a value No, 
indicating that the approximation is 
to hold for N > No. When we say 
that g(N) = O(f(N)), we expect 
only that the value of g(N) falls 
below some curve the shape of 
feN) to the right of some vertical 
line. The behavior of feN) could 
otherwise be erratic (for example, 
it need not even be continuous). 
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the program (in nanoseconds) is 

2aoNHN -r alN ..,.. a2· 

But it is also true that the running time is 

2aoN HN + O(N). 

This simpler form is significant because it says that, for large N, we may 
not need to find the values of al or a2 to approximate the running time. 
In general, there could well be many other terms in the mathematical 
expression for the exact running time, some of which may be difficult to 
analyze. The O-notation provides us with a way to get an approximate 
answer for large N without bothering with such terms. 

Continuing this example, we also can use the O-notation to ex
press running time in terms of a familiar function, In N. In terms 
of the O-notation, the approximation in Table 2.3 is expressed as 
HN = InN + 0(1). Thus, 2aoNInN -7- O(N) is an asymptotic ex
pression for the total running time of our algorithm. We expect the 
running time to be close to the easily computed value 2aoN In N for 
large N. The constant factor aa depends on the time taken by the 
instructions in the inner loop. 

Furthermore, we do not need to know the value of ao to predict 
that the running time for input of size 2N will be about twice the 
running time for input of size N for huge N because 

2aa(2N) In(2N) + 0(2N) 2 In(2N) + 0(1) 
2 -r 0

2aaNInN..,.. O(N) InN + 0(1) 

That is, the asymptotic formula allows us to make accurate predictions 
without concerning ourselves with details of either the implementation 
or the analysis. Note that such a prediction would not be possible if 
we were to have only an O-approximation for the leading term. 

The kind of reasoning just outlined allows us to focus on the 
leading term when comparing or trying to predict the running times 
of algorithms. We are so often in the position of counting the number 
of times that fixed-cos! operations are performed and wanting to use 
the leading term to estimate the result that we normally keep track of 
only the leading term, assuming implicitly that a precise analysis like 
the one just given could be performed, if necessary. 

When a function f(N) is asymptotically large compared to an
other function g(N} (that is, g(N}j feN) 0 as N ..-. 00), we some
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times use in this book the (decidedly nontechnical) terminology about 
feN) to mean feN) O(g(N)). What we seem to lose in mathematical 

precision we gain in clarity, for we are more interested in the perfor

mance of algorithms than in mathematical details. In such cases, we 

can rest assured that, for large N (if not for all N), the quantity in 

question will be close to feN). For example, even if we know that 

a quantity is N(N 1)/2, we may refer to it as being about 

This way of expressing the result is more quickly understood than the 

more detailed exact result, and, for example, deviates from the truth 

only by 0.1 percent for N = 1000. The precision lost in such cases 
pales by comparison with the precision lost in the more common usage 

O(f(N)). Our goal is to be both precise and concise when describing 

the performance of algorithms. 

In a similar vein, we sometimes say that the running time of an 

algorithm is proportional to f(N) when we can prove that it is equal to 

cf(N) +g(N) with g(N) asymptotically smaller than feN). When this 
kind of bound holds, we can project the running time for, say, 2N from 

our observed running time for N, as in the example just discussed. 

Figure 2. 5 gives the factors that we can use for such projection for 

functions that commonly arise in the analysis of algorithms. Coupled 
with empirical studies (see Section 2.I), this approach frees us from the 

task of determining implementation-dependent constants in detail. Or, 

working backward, we often can easily develop an hypothesis about 
the functional growth of the running time of a program by determining 

the effect of doubling N on running time. 

The distinctions among O-bounds, is proportional to, and about 
are illustrated in Figures 2.3 and 2.4. We use O-notation primarily to 
learn the fundamental asymptotic behavior of an algorithm; is propor
tional to when we want to predict performance by extrapolation from 

empirical studies; and about when we want to compare performance 
or to make absolute performance predictions. 

Exercises 

I> 2.20 Prove that 0(1) is the same as 0(2). 

Figure 2.4 
Functional approximations 

When we say that g(N) is propor
tional to f(N) (top), we expect 
that it eventually grows like f(N) 
does, but perhaps offset by an un
known constant. Given some value 
of g(N), this knowledge allows us 
to estimate it for larger N. When 
we say that g(N) is about feN) 
(bottom), we expect that we can 
eventually use f to estimate the 
value of 9 accurately. 



1 none 

19 N slight increase 

N double 

N 19 N slightly more than double 
2N 3/ factor of 


N 1 
 factor of 4 

N 3 factor of 8 


2N square 


Figure 2.5 
Effect of doubling problem 

size on running time 

Predicting the effect of doubling 
the problem size on the running 
time is a simple task when the run
ning time is proportional to certain 
simple functions, as indicated in 
this table. In theory, we cannot 
depend on this effect unless N is 
huge, but this method is surpris
ingly effective. Conversely; a quick 
method for determining the func
tional growth of the running time 
of a program is to run that program 
empirically; doubling the input size 
for N as large as possible, then 
work backward from this table. 
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2.2I Prove that we can make any of the following transformations in an 
expression that uses the O-notation: 

feN) -t O(f(N)), 

cO(f(N» -t O(f(N», 

O(cf(N)) -t O(f(N», 

feN) - g(N) O(h(N» -t feN) = g(N) + O(h(N», 

O(f(N»O(g(N» -t O(f(N)g(N», 

O(f(N» + O(g(N» -t O(g(N» if feN) O(g(N». 

02.22 Show that (N + l)(HN +0(1» = NlnN +O(N). 

2.23 ShowthatNlnN 0(N3
/

2
) • 

• 2.24 Show that NAt O(oJ'I) for any AI and any constant Q > l. 

• 2.25 Prove that 

2.26 Suppose that Hk = N. Give an approximate formula that expresses k 
as a function of N. 

.2.27 Suppose that 19(k!) = N. Give an approximate formula that expresses 
k as a function of N. 

02.28 	 You are given the information that the running time of one algorithm is 
O{N log N) and that the running time of another algorithm is 0(N3 

). What 
does this statement imply about the relative performance of the algorithms? 

02.29 	 You are given the information that the running time of one algorithm 
is always about N log N and that the running time of another algorithm is 
0(N3 

). What does this statement imply about the relative performance of the 
algorithms? 

02.30 	 You are given the information that the running time of one algorithm is 
always about N log N and that the running time of another algorithm is always 
about N 3 • What does this statement imply about the relative performance of 
the algorithms? 

02.3 I You are given the information that the running time of one algorithm is 
always proportional to N log N and that the running time of another algorithm 
is always proportional to N 3 • What does this statement imply about the 
relative performance of the algorithms? 

02.32 	 Derive the factors given in Figure 2.5: For each function feN) that 
appears on the left, find an asymptotic formula for f(2N)/ feN). 
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2.5 Basic Recurrences 

As we shall see throughout the book, a great many algorithms are 
based on the principle of recursively decomposing a large problem 
into one or more smaller ones, using solutions to the subproblems to 

solve the original problem. We discuss this topic in detail in Chapter 5, 
primarily from a practical point of view, concentrating on implemen
tations and applications. We also consider an example in detail in 
Section 2.6. In this section, we look at basic methods for analyzing 
such algorithms and derive solutions to a few standard formulas that 
arise in the analysis of many of the algorithms that we will be studying. 
Understanding the mathematical properties of the formulas in this sec
tion will give us insight into the performance properties of algorithms 
throughout the book. 

Formula 2.I This formula arises for a program that loops through 
the input to eliminate one item: 

= CN - 1 + lv, for N ? 2 with C1 1. 

Solution: CN is about N 2 /2. To find the value of CN, we telescope 
the equation by applying it to itself, as follows: 

CN CN-l +N 


CN-2 + (N - 1) + N 


= CN - 3 + (N - 2) + l)+N 


=C1 +2+· .. + -2)+(N l)+N 

1+2+ ... +(N-2)+ -l)+N 

NeN + 1) 

2 


Evaluating the sum 1 + 2 + ... + (N 2) + (N -1) + N is elementary: 
The given result follows when we add the sum to itself, but in reverse 
order, term by term. This result-twice the value sought-consists of 
N terms, each of which sums to N + 1. 

This simple example illustrates the basic scheme that we use in 
this section as we consider a number of formulas, which are all based 
on the principle that recursive decomposition in an algorithm is di
rectly reflected in its analysis. For example, the running time of such 
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N (Nh llgNJ + 1 

~-------~ 

1 1 1 

2 10 2 

3 11 2 

4 100 3 

5 101 3 

6 110 3 

7 111 3 

8 1000 4 

9 1001 4 


10 1010 4 

11 1011 4 

12 1100 4 

13 1101 4 

14 1110 4 

15 1111 4 


Figure 2.6 
Integer functions and binary 

representations 

Given the binary representation 
of a number N (centerlt we ob
tain LN /2J by removing the right
most bit. That is, the number of 
bits in the binary representation of 
N is 1 greater than the number of 
bits in the binary representation of 
LN/2J. Therefore, Llg + 11 the 
number of bits in the binary rep
resentation of N, is the solution to 
Formula 2.2 for the case that N /2 
is interpreted as 
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algorithms is determined by the size and number of the subproblems 
and the time required for the decomposition. Mathematically, the de
pendence of the running time of an algorithm for an input of size N 
on its running time for smaller inputs is captured easily with formu
las called recurrence relations. Such formulas describe precisely the 
performance of the corresponding algorithms: To derive the running 
time, we solve the recurrences. More rigorous arguments related to 
specific algorithms will come up when we get to the algorithms-here, 
we concentrate on the formulas themselves. 

Formula 2.2 This recurrence arises for a recursive program that 
halves the input in one step: 

CN = CN / 2 + L for N ~ 2 with C1 = L 

Solution: CN is about 19 N. As written, this equation is meaningless 
unless N is even or we assume that N/2 is an integer division. For the 
moment, we assume that N 2", so the recurrence is always well
defined. (Note that n 19 N.) But then the recurrence telescopes even 
more easily than our first recurrence: 

1 
 + 1 


+1+1 

+3 

+n 
n+ l. 

The precise solution for general N depends on the interpretation of 
N/2. In the case that N/2 represents IN/2J, we have a simple solu
tion: CN is the number of bits in the binary representation of N, and 
that number is llgN + I, by definition. This conclusion follows im
mediately from the fact that the operation of eliminating the rightmost 
bit of the binary representation of any integer N > 0 converts it into 
IN/2J (see Figure 2.6). 

Formula 2.3 This recurrence arises for a recursive program that 
halves the input, but perhaps must examine every item in the input. 

+N, for N ~ 2 with C1 o. 
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Solution: CN is about 2N. The recurrence telescopes to the sum 
N + N/2 + N/4 + N/8 + .... (Like Formula 2.2, the recurrence is 
precisely defined only when N is a power of 2). If the sequence is 
infinite, this simple geometric sum evaluates to exactly 2N. Because 
we use integer division and stop at 1, this value is an approximation 
to the exact answer. The precise solution involves properties of the 
binary representation of N. 

Formula 2.4 This recurrence arises for a recursive program that 
has to make a linear pass through the input, before, during, or after 
splitting that input into two halves: 

CN = 2CN/ 2 + N, for N .?: 2 with C1 = o. 

Solution: CN is about N 19 N. This solution is the most widely cited 
of those we are considering here, because the recurrence applies to a 
family of standard divide-and-conquer algorithms. 

+1+1 

n. 

We develop the solution very much as we did in Formula 2.2, but with 
the additional trick of dividing both sides of the recurrence by 2n at 
the second step to make the recurrence telescope. 

Formula 2.5 This recurrence arises for a recursive program that 
splits the input into two halves and then does a constant amount of 
other work (see Chapter 5). 

for N 2 with C1 = 1. 

Solution: CN is about 2N. We can derive this solution in the same 
manner as we did the solution to Formula 2-4. 

We can solve minor variants of these formulas, involving differ
ent initial conditions or slight differences in the additive term, using 
the same solution techniques, although we need to be aware that some 
recurrences that seem similar to these may actually be rather difficult 
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to solve. There is a variety of advanced general techniques for dealing 
with such equations with mathematical rigor (see reference section). 

We will encounter a few more complicated recurrences in later chap
ters, but we defer discussion of their solution until they arise. 

Exercises 

[> 2.33 Give a table of the values of CN in Formula 2.2 for 1 N < 32, 
interpreting N/2 to mean IN/2j. 

[>2.34 Answer Exercise 2.33, but interpret N/2 to mean 

[> 2.35 Answer Exercise 2.34 for Formula 2.3. 

02.36 Suppose that !Iv is proportional to a constant and that 

for N 2" t with 0::; CN < c for N < t, 

where c and t are both constants. Show that CI"i is proportional to 19 N . 

• 	2.37 State and prove generalized versions of Formulas 2.3 through 2.5 that 
are analogous to the generalized version of Formula 2.2 in Exercise 2.36. 

2.38 Give a table of the values of CN in Formula 2.4 for 1 ::; N 32, for 
the following three cases: (i) interpret to mean IN/2j; (ii) interpret N /2 
to mean [N/21; (iii) interpret 2CN / 2 to mean 

2.39 Solve Formula 2.4 for the case when N/2 is interpreted as IN/2j, by 
using a correspondence to the binary representation of N, as in the proof of 
Formula 2.2. Hint: Consider all the numbers less than N. 

2.40 Solve the recurrence 

CN + for N 2" 2 with C 1 0, 

when N is a power of 2. 

2041 Solve the recurrence 

CJV = C N / ex L for N 2" 2 with C1 0, 

when N is a power of a. 

02.42 Solve the recurrence 

CN aCN/ 2 , for N 2" 2 with C 1 1, 

when N is a power of 2. 

o 2.43 Solve the recurrence 

for N 2 with C1 = 1, 

when N is a power of 2. 
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• 2.44 Solve the recurrence 

for N 2:: 2 with C1 1, 

when N is a power of 2 . 

• 2.45 	 Consider the family of recurrences like Formula 2.1, where we allow 
N/2 to be interpreted as IN/2J or fN/2l, and we require only that the recur
rence hold for N > Co with CN = 0(1) for N :::; co. Prove that 19N + 0(1) 
is the solution to all such recurrences . 

•• 2.46 Develop generalized recurrences and solutions similar to Exercise 2.45 
for Formulas 2.2 through 2.5. 

2.6 Examples of Algorithm Analysis 

Armed with the tools outlined in the previous three sections, we now 
consider the analysis of sequential search and binary search, two basic 
algorithms for determining whether or not any of a sequence of objects 
appears among a set of previously stored objects. Our purpose is to 
illustrate the manner in which we will compare algorithms, rather than 
to describe these particular algorithms in detail. For simplicity, we 
assume here that the objects in question are integers. We will consider 
more general applications in great detail in Chapters 12 through 16. 

The simple versions of the algorithms that we consider here not only 
expose many aspects of the algorithm design and analysis problem, 
but also have many direct applications. 

For example, we might imagine a credit-card company that has 
N credit risks or stolen credit cards, and that wants to check whether 
any of IvI given transactions involves anyone of the N bad numbers. 
To be concrete, we might think of N being large (say on the order of 
103 to 106 ) and lvl being huge (say on the order of 106 to 109 ) for 
this application. The goal of the analysis is to be able to estimate the 
running times of the algorithms when the values of the parameters fall 
within these ranges. 

Program 2. I implements a straightforward solution to the search 
problem. It is packaged as a C function that operates on an array 
(see Chapter 3) for better compatibility with other code that we will 
examine for the same problem in Part 4, but it is not necessary to 
understand the details of the packaging to understand the algorithm: 
We store all the objects in an array; then, for each transaction, we look 
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through the array sequentially, from beginning to end, checking each 
to see whether it is the one that we seek. 

To analyze the algorithm, we note immediately that the running 
time depends on whether or not the object sought is in the array. We 
can determine that the search is unsuccessful only by examining each 
of the N objects, but a search could end successfully at the first, second, 
or anyone of the objects. 

Therefore, the running time depends on the data. If all the 
searches are for the number that happens to be in the first position in 
the array, then the algorithm will be fast; if they are for the number 
that happens to be in the last position in the array, it will be slow. We 
discuss in Section 2.7 the distinction between being able to guarantee 
performance and being able to predict performance. In this case, the 
best guarantee that we can provide is that no more that N numbers 
will be examined. 

To make a prediction, however, we need to make an assumption 
about the data. In this case, we might choose to assume that all the 
numbers are randomly chosen. This assumption implies, for example, 
that each number in the table is equally likely to be the object of a 
search. On reflection, we realize that it is that property of the search 
that is critical, because with randomly chosen numbers we would 
be unlikely to have a successful search at all (see Exercise 2.48). For 
some applications, the number of transactions that involve a successful 
search might be high; for other applications, it might be low. To avoid 
confusing the model with properties of the application, we separate 
the two cases (successful and unsuccessful) and analyze them inde
pendently. This example illustrates that a critical part of an effective 
analysis is the development of a reasonable model for the application 
at hand. Our analytic results will depend on the proportion of searches 
that are successful; indeed, it will give us information that we might 
need if we are to choose different algorithms for different applications 
based on this parameter. 

Property 2.I Sequential search examines N numbers for each 
unsuccessful search and about N /2 numbers for each successful search 
on the average. 

If each number in the table is equally likely to be the object of a search, 
then 

(1+2+ ... +N)/N (N+l)/2 
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Program 2.I Sequential search 

This function checks whether the number v is among a previously stored 
set of numbers in a [1], a [1+1], ... , a [r], by comparing against each 
number sequentially, starting at the beginning. If we reach the end with
out finding the number sought, then we return the value -1. Otherwise, 
we return the index of the array position containing the number. 

int search(int a[], int v, int 1, int r) 

{ int i; 


for (i = 1; i <= r; i++) 

if (v == a[i]) return i; 


return -1; 

} 


is the average cost of a search. _ 

Property 2. I implies that the running time of Program 2. I is propor
tional to N, subject to the implicit assumption that the average cost 
of comparing two numbers is constant. Thus, for example, we can 
expect that, if we double the number of objects, we double the amount 
of time required for a search. 

We can speed up sequential search for unsuccessful search by 
putting the numbers in the table in order. Sorting the numbers in 
the table is the subject of Chapters 6 through I1. A number of the 
algorithms that we will consider get that task done in time proportional 
to N log N, which is insignificant by comparison to the search costs 
when M is huge. In an ordered table, we can terminate the search 
immediately on reaching a number that is larger than the one that we 
seek. This change reduces the cost of sequential search to about N /2 
numbers examined for unsuccessful search, the same as for successful 
search. 

Property 2.2 Sequential search in an ordered table examines N num
bers for each search in the worst case and about N /2 numbers for each 
search on the average. 

We still need to specify a model for unsuccessful search. This result 
follows from assuming that the search is equally likely to terminate at 
anyone of the N + 1 intervals defined by the N numbers in the table, 
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Program 2.2 Binary search 

This program has the same functionality as Program 2.1, but it is much 
more efficient. 

int search(int a[], int v, int 1, int r) 

{ 


while (r )= 1) 
{ 	 int m = (1+r)/2; 

if (v == a[m]) return m; 
if (v < a[m]) r = m-1; else 1 m+1; 

} 

return -1; 

} 


which leads immediately to the expression 

(1+2+ ... +N+N)/N (N+3)/2. 

The cost of an unsuccessful search ending before or after the Nth entry 
in the table is the same: N .• 

Another way to state the result of Property 2.2 is to say that 
the running time of sequential search is proportional to M N for M 
transactions, on the average and in the worst case. If we double either 
the number of transactions or the number of objects in the table, we can 
expect the running time to double; if we double both, we can expect 
the running time to go up by a factor of 4. The result also tells us that 
the method is not suitable for huge tables. If it takes c microseconds to 

examine a single number, then, for 1\11 = 109 and N = 106
, the running 

time for all the transactions would be at least (c/2)109 seconds, or, by 
Figure 2.1, about 16c years, which is prohibitive. 

Program 2.2 is a classical solution to the search problem that is 
much more efficient than sequential search. It is based on the idea that, 
if the numbers in the table are in order, we can eliminate half of them 
from consideration by comparing the one that we seek with the one 
at the middle position in the table. If it is equal, we have a successful 
search. If it is less, we apply the same method to the left half of the 
table. If it is greater, we apply the same method to the right half of the 
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table. Figure 2.7 is an example of the operation of this method on a 
sample set of numbers. 

Property 2.3 Binary search never examines more than Llg NJ + 1 
numbers. 

The proof of this property illustrates the use of recurrence relations 
in the analysis of algorithms. If we let l~v represent the number of 
comparisons required for binary search in the worst case, then the 
way in which the algorithm reduces search in a table of size N to 
search in a table half the size immediately implies that 

+ 1, for N 2 with Tl = 1. 

To search in a table of size N, we examine the middle number, then 
search in a table of size no larger than LN/2J. The actual cost could be 
less than this value because the comparison might cause us to terminate 
a successful search, or because the table to be searched might be of size 
LN/2J - 1 (if N is even). As we did in the solution of Formula 2.2, we 

2ncan prove immediately that 1:"" S; n + 1 if N and then verify the 
general result by induction. _ 

Property 2.3 allows us to solve a huge search problem with up to 1 
million numbers with at most 20 comparisons per transaction, and that 
is likely to be less than the time it takes to read or write the number 
on many computers. The search problem is so important that several 
methods have been developed that are even faster than this one, as we 
shall see in Chapters 12 through 16. 

Note that we express Property 2.1 and Property 2.2 in terms of 
the operations that we perform most often on the data. As we noted in 
the commentary following Property 2.1, we expect that each operation 
should take a constant amount of time, and we can conclude that the 
running time of binary search is proportional to 19 N as compared 
to N for sequential search. As we double N, the running time of 
binary search hardly changes, but the running time of sequential search 
doubles. As N grows, the gap between the two methods becomes a 
chasm. 

We can verify the analytic evidence of Properties 2.1 and 2.2 

by implementing and testing the algorithms. For example, Table 2.4 
shows running times for binary search and sequential search for A1 
searches in a table of size N (including, for binary search, the cost of 

1488 1488 
1578 1578 
1973 1973 
3665 3665 
4426 4426 
4548 4548 
5435 5435 5435 5435 5435 
5446 5446 5446 5446 
6333 6333 6333 
6385 6385 6385 
6455 6455 6455 
6504 
6937 
6965 
7104 
7230 
8340 
8958 
9208 
9364 
9550 
9645 
9686 

Figure 2.7 
Binary search 

To see whether or not 5025 is in 
the table of numbers in the left 
column, we first compare it with 
6504; that leads us to consider 
the first half of the array. Then we 
compare against 4548 (the mid
dle of the first half); that leads us 
to the second half of the first half. 
We continue, always working on 
a subarray that would contain the 
number being sought, if it is in the 
table. Eventually. we get a subarray 
with just 1 element, which is not 
equal to 5025, so 5025 is not in 
the table. 
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Table 2.4 Empirical study of sequential and binary search 

These relative timings validate our analytic results that sequential search 
takes time proportional to ]',;1N and binary search takes time propor
tional to lv11g N for M searches in a table of N objects. When we 
increase N by a factor of 2, the time for sequential search increases by 
a factor of 2 as well, but the time for binary search hardly changes. Se
quential search is infeasible for huge M as N increases, but binary search 
is fast even for huge tables. 

M =1000 M =10000 .l'v[ =100000 
-.~--.~-.~---.~ ---.~-.-~--.~-.--

N S B S B S B 
--- ..~.- ~.- ~.-- ~.- ~.- ~.- ~ -~.- -..--.-~.-

125 1 13 2 130 20 

250 3 0 25 2 251 22 

500 5 0 49 3 492 23 

1250 13 0 128 3 1276 25 

2500 26 1 267 3 28 

5000 53 0 533 3 30 

12500 134 1337 3 33 

25000 268 1 3 35 

50000 537 0 4 39 

100000 1269 5 47 

Key: 
S sequential search (Program 2.1) 

B binary search (Program 2.2) 

sorting the table) for various values of "U and N. We will not consider 
the implementation of the program to run these experiments in detail 
here because it is similar to those that we consider in full detail in 
Chapters 6 and II, and because we consider the use of library and 
external functions and other details of putting together programs from 
constituent pieces, including the sort function, in Chapter 3. For the 
moment, we simply stress that doing empirical testing is an integral 
part of evaluating the efficiency of an algorithm. 

Table 2.4 validates our observation that the functional growth 
of the running time allows us to predict performance for huge cases 
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on the basis of empirical studies for small cases. The combination 
of mathematical analysis and empirical studies provides persuasive 
evidence that binary search is the preferred algorithm, by far. 

This example is a prototype of our general approach to compar
ing algorithms. We use mathematical analysis of the frequency with 
which algorithms perform critical abstract operations, then use those 
results to deduce the functional form of the running time, which allows 
us to verify and extend empirical studies. As we develop algorithmic 
solutions to computational problems that are more and more refined, 
and as we develop mathematical analyses to learn their performance 
characteristics that are more and more refined, we call on mathemat
ical studies from the literature, so as to keep our attention on the 
algorithms themselves in this book. We cannot do thorough math
ematical and empirical studies of every algorithm that we encounter, 
but we strive to identify essential performance characteristics, knowing 
that, in principle, we can develop a scientific basis for making informed 
choices among algorithms in critical applications. 

Exercises 

I> 2.47 Give the average number of comparisons used by Program 2.1 in the 
case that aN of the searches are successful, for 0 ~ a :; l. 

•• 2-48 Estimate the probability that at least one of ]'vI random lO-digit num
bers matches one of a set of N given values, for A1 10, 100, and 1000 and 
N 103

, 10\ 105
, and 106

• 

2.49 Write a driver program that generates A1 random integers and puts 
them in an array, then counts the number of N random integers that matches 
one of the numbers in the array, using sequential search. Run your program 
for M 10, 100, and 1000 and N = 10, 100, and 1000 . 

• 2.50 State and prove a property analogous to Property 2.3 for binary search. 

2.7 Guarantees, Predictions, and Limitations 

The running time of most algorithms depends on their input data. 
Typically, our goal in the analysis of algorithms is somehow to elim
inate that dependence: We want to be able to say something about 
the performance of our programs that depends on the input data to 
as little an extent as possible, because we generally do not know what 
the input data will be each time the program is invoked. The examples 
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in Section 2.6 illustrate the two major approaches that we use toward 
this end: worst-case analysis and average-case analysis. 

Studying the worst-case performance of algorithms is attractive 
because it allows us to make guarantees about the running time of 
programs. We say that the number of times certain abstract operations 
are executed is less than a certain function of the number of inputs, 
no matter what the input values are. For example, Property 2.3 is an 
example of such a guarantee for binary search, as is Property 1.3 for 

weighted quick union. If the guarantees are low, as is the case with 
binary search, then we are in a favorable situation, because we have 
eliminated cases for which our program might run slowly. Programs 
with good worst-case performance characteristics are a basic goal in 
algorithm design. 

There are several difficulties with worst-case analysis, however. 
For a given algorithm, there might be a significant gap between the 
time required for it to solve a worst-case instance of the input and 
the time required for it to solve the data that it might encounter in 
practice. For example, quick union requires time proportional to N in 
the worst case, but only log N for typical data. More important, we 
cannot always prove that there is an input for which the running time 
of an algorithm achieves a certain bound; we can prove only that it is 
guaranteed to be lower than the bound. Moreover, for some problems, 
algorithms with good worst-case performance are significantly more 
complicated than are other algorithms. We often find ourselves in the 
position of having an algorithm with good worst-case performance that 
is slower than simpler algorithms for the data that occur in practice, 
or that is not sufficiently faster that the extra effort required to achieve 
good worst-case performance is justified. For many applications, other 
considerations-such as portability or reliability-are more important 
than improved worst-case performance guarantees. For example, as 
we saw in Chapter I, weighted quick union with path compression 
provides provably better performance guarantees than weighted quick 
union, but the algorithms have about the same running time for typical 
practical data. 

Studying the average-case performance of algorithms is attractive 
because it allows us to make predictions about the running time of 
programs. In the simplest situation, we can characterize precisely 
the inputs to the algorithm; for example, a sorting algorithm might 
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operate on an array of N random integers, or a geometric algorithm 
might process a set of N random points in the plane with coordinates 
between 0 and 1. Then, we calculate the average number of times that 
each instruction is executed, and calculate the average running time 
of the program by multiplying each instruction frequency by the time 
required for the instruction and adding them all together. 

There are also several difficulties with average-case analysis, 
however. First, the input model may not accurately characterize the 
inputs encountered in practice, or there may be no natural input model 
at all. Few people would argue against the use of input models such 
as "randomly ordered file" for a sorting algorithm, or "random point 
set" for a geometric algorithm, and for such models it is possible to de
rive mathematical results that can predict accurately the performance 
of programs running on actual applications. But how should one char
acterize the input to a program that processes English-language text? 
Even for sorting algorithms, models other than randomly ordered in
puts are of interest in certain applications. Second, the analysis might 
require deep mathematical reasoning. For example, the average-case 
analysis of union-find algorithms is difficult. Although the derivation 
of such results is normally beyond the scope of this book, we will 
illustrate their nature with a number of classical examples, and we 
will cite relevant results when appropriate (fortunately, many of our 
best algorithms have been analyzed in the research literature). Third, 
knowing the average value of the running time might not be sufficient: 
we may need to know the standard deviation or other facts about the 
distribution of the running time, which may be even more difficult to 
derive. In particular, we are often interested in knowing the chance 
that the algorithm could be dramatically slower than expected. 

In many cases, we can answer the first objection listed in the 
previous paragraph by turning randomness to our advantage. For ex
ample, if we randomly scramble an array before attempting to sort it, 
then the assumption that the elements in the array are in random order 
is accurate. For such algorithms, which are called randomized algo
rithms, the average-case analysis leads to predictions of the expected 
running time in a strict probabilistic sense. Moreover, we are often 
able to prove that the probability that such an algorithm will be slow 
is negligibly small. Examples of such algorithms include quicksort 
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(see Chapter 9), randomized BSTs (see Chapter 13), and hashing (see 
Chapter 14)' 

The field of computational complexity is the branch of analysis 
of algorithms that helps us to understand the fundamental limitations 
that we can expect to encounter when designing algorithms. The 
overall goal is to determine the worst-case running time of the best 
algorithm to solve a given problem, to within a constant factor. This 
function is called the complexity of the problem. 

Worst-case analysis using the O-notation frees the analyst from 
considering the details of particular machine characteristics. The state
ment that the running time of an algorithm is O(f(N)) is independent 
of the input and is a useful way to categorize algorithms in a way that 
is independent of both inputs and implementation details, separating 
the analysis of an algorithm from any particular implementation. We 
ignore constant factors in the analysis; in most cases, if we want to 
know whether the running time of an algorithm is proportional to N 
or proportional to log N, it does not matter whether the algorithm is 
to be run on a nanocomputer or on a supercomputer, and it does not 
matter whether the inner loop has been implemented carefully with 
only a few instructions or badly implemented with many instructions. 

When we can prove that the worst-case running time of an algo
rithm to solve a certain problem is O(f(N)), we say that f(N) is an 
upper bound on the complexity of the problem. In other words, the 
running time of the best algorithm to solve a problem is no higher than 
the running time of any particular algorithm to solve the problem. 

We constantly strive to improve our algorithms, but we even
tually reach a point where no change seems to improve the running 
time. For every given problem, we are interested in knowing when 
to stop trying ro find improved algorithms, so we seek lower bounds 
on the complexity. For many problems, we can prove that any algo
rithm to solve the problem must use a certain number of fundamental 
operations. Proving lower bounds is a difficult matter of carefully 
constructing a machine model and then developing intricate theoreti
cal constructions of inputs that are difficult for any algorithm to solve. 
We rarely touch on the subject of proving lower bounds, but they rep
resent computational barriers that guide us in the design of algorithms, 
so we maintain awareness of them when they are relevant. 
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When complexity studies show that the upper bound of an algo
rithm matches the lower bound, then we have some confidence that it 
is fruitless to try to design an algorithm that is fundamentally faster 
than the best known, and we can start to concentrate on the imple
mentation. For example, binary search is optimal, in the sense that 
no algorithm that uses comparisons exclusively can use fewer compar
isons in the worst case than binary search. 

We also have matching upper and lower bounds for pointer-based 
union-find algorithms. Tarjan showed in 1975 that weighted quick 
union with path compression requires following less than O(lg~ V) 
pointers in the worst case, and that any pointer-based algorithm must 
follow more than a constant number of pointers in the worst case for 
some input. In other words, there is no point looking for some new 
improvement that will guarantee to solve the problem with a linear 
number of i = a [i] operations. In practical terms, this difference 
is hardly significant, because 19~ V is so small; still, finding a simple 
linear algorithm for this problem was a research goal for many years, 
and Tarjan's lower bound has allowed researchers to move on to other 
problems. Moreover, the story shows that there is no avoiding func
tions like the rather complicated log* function, because such functions 
are intrinsic to this problem. 

Many of the algorithms in this book have been subjected to de
tailed mathematical analyses and performance studies far too complex 
to be discussed here. Indeed, it is on the basis of such studies that we 
are able to recommend many of the algorithms that we discuss. 

Not all algorithms are worthy of such intense scrutiny; indeed, 
during the design process, it is preferable to work with approximate 
performance indicators to guide the design process without extrane
ous detail. As the design becomes more refined, so must the analysis, 
and more sophisticated mathematical tools need to be applied. Often, 
the design process leads to detailed complexity studies that lead to 
theoretical algorithms that are rather far from any particular appli
cation. It is a common mistake to assume that rough analyses from 
complexity studies will translate immediately into efficient practical 
algorithms; such assumptions can lead to unpleasant surprises. On the 
other hand, computational complexity is a powerful tool that tells us 
when we have reached performance limits in our design work and that 
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can suggest departures in design in pursuit of closing the gap between 
upper and lower bounds. 

In this book, we take the view that algorithm design, careful 
implementation, mathematical analysis, theoretical studies, and em
pirical analysis all contribute in important ways to the development 
of elegant and efficient programs. We want to gain information about 
the properties of our programs using any tools at our disposal, then to 
modify or develop new programs on the basis of that information. We 
will not be able to do exhaustive testing and analysis of every algorithm 
that we run in every programming environment on every machine, but 
we can use careful implementations of algorithms that we know to 
be efficient, then refine and compare them when peak performance is 
necessary. Throughout the book, when appropriate, we shall consider 
the most important methods in sufficient detail to appreciate why they 
perform well. 

Exercise 

02.51 	 You are given the information that the time complexity of one problem 
is N log N and that the time complexity of another problem is N 3 • What does 
this statement imply about the relative performance of specific algorithms that 
solve the problems? 
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CHAPTER THREE 


Elementary Data Structures 


O RGANIZING THE DATA for processing is an essential step in 
the development of a computer program. For many applica

tions, the choice of the proper data structure is the only major decision 
involved in the implementation: once the choice has been made, the 
necessary algorithms are simple. For the same data, some data struc
tures require more or less space than others; for the same operations on 
the data, some data structures lead to more or less efficient algorithms 
than others. The choices of algorithm and of data structure are closely 
intertwined, and we continually seek ways to save time or space by 
making the choice properly. 

A data structure is not a passive object: We also must consider 
the operations to be performed on it (and the algorithms used for these 
operations). This concept is formalized in the notion of a data type. 
In this chapter, our primary interest is in concrete implementations 
of the fundamental approaches that we use to structure data. We 
consider basic methods of organization and methods for manipulating 
data, work through a number of specific examples that illustrate the 
benefits of each, and discuss related issues such as storage management. 
In Chapter 4, we discuss abstract data types, where we separate the 
definitions of data types from implementations. 

We discuss properties of arrays, linked lists, and strings. These 
classical data structures have widespread applicability: with trees (see 
Chapter 5), they form the basis for virtually all the algorithms con
sidered in this book. We consider various primitive operations for 
manipulating these data structures, to develop a basic set of tools that 
we can use to develop sophisticated algorithms for difficult problems. 
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The study of storing data as variable-sized objects and in linked 
data structures requires an understanding of how the system manages 
the storage that it allocates to programs for their data. We do not 
cover this subject exhaustively because many of the important consid
erations are system and machine dependent. However, we do discuss 
approaches to storage management and several basic underlying mech
anisms. Also, we discuss the specific (stylized) manners in which we 
will be using C storage-allocation mechanisms in our programs. 

At the end of the chapter, we consider several examples of com
pound structures, such as arrays of linked lists and arrays of arrays. 
The notion of building abstract mechanisms of increasing complex
ity from lower-level ones is a recurring theme throughout this book. 
We consider a number of examples that serve as the basis for more 
advanced algorithms later in the book. 

The data structures that we consider in this chapter are important 
building blocks that we can use in a natural manner in C and many 
other programming languages. In Chapter 5, we consider another 
important data structure, the tree. Arrays, strings, linked lists, and 
trees are the basic elements underlying most of the algorithms that we 
consider in this book. In Chapter 4, we discuss the use of the concrete 
representations developed here in building basic abstract data types 
that can meet the needs of a variety of applications. In the rest of 
the book, we develop numerous variations of the basic tools discussed 
here, trees, and abstract data types, to create algorithms that can solve 
more difficult problems and that can serve us well as the basis for 
higher-level abstract data types in diverse applications. 

3.1 Building Blocks 

In this section, we review the primary low-level constructs that we use 
to store and process information in C. All the data that we process 
on a computer ultimately decompose into individual bits, but writing 
programs that exclusively process bits would be tiresome indeed. Types 
allow us to specify how we will use particular sets of bits and functions 
allow us to specify the operations that we will perform on the data. We 
use C structures to group together heterogeneous pieces of information, 
and we use pointers to refer to information indirectly. In this section, 
we consider these basic C mechanisms, in the context of presenting a 
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general approach to organizing our programs. Our primary goal is to 
lay the groundwork for the development, in the rest of the chapter and 
in Chapters 4 and 5, of the higher-level constructs that will serve as 
the basis for most of the algorithms that we consider in this book. 

We write programs that process information derived from math
ematical or natural-language descriptions of the world in which we 
live; accordingly, computing environments need to provide built-in 
support for the basic building blocks of such descriptions-numbers 
and characters. In C, our programs are all built from just a few basic 
types of data: 

• Integers (ints). 
• Floating-point numbers (floats). 
• Characters (chars). 

It is customary to refer to these basic types by their C names-int, 
float, and char-although we often use the generic terminology in
teger, floating-point number, and character, as welL Characters are 
most often used in higher-level abstractions-for example to make 
words and sentences-so we defer consideration of character data to 
Section 3.6 and look at numbers here. 

We use a fixed number of bits to represent numbers, so ints 
are by necessity integers that fall within a specific range that depends 
on the number of bits that we use to represent them. Floating-point 
numbers approximate real numbers, and the number of bits that we use 
to represent them affects the precision with which we can approximate 
a real number. In C, we trade space for accuracy by choosing from 
among the types int, long int, or short int for integers and from 
among float or double for floating-point numbers. On most systems, 
these types correspond to underlying hardware representations. The 
number of bits used for the representation, and therefore the range 
of values (in the case of ints) or precision (in the case of floats), 
is machine-dependent (see Exercise 3.1), although C provides certain 
guarantees. In this book, for clarity, we normally use int and float, 
except in cases where we want to emphasize that we are working with 
problems where big numbers are needed. 

In modern programming, we think of the type of the data more in 
terms of the needs of the program than the capabilities of the machine, 
primarily, in order to make programs portable. Thus, for example, 
we think of a short int as an object that can take on values between 
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-32,768 and 32,767, instead of as a 16-bit object. Moreover, our 
concept of an integer includes the operations that we perform on them: 
addition, multiplication, and so forth. 

Definition 3.1 A data type is a set of values and a collection of 
operations on those values. 

Operations are associated with types, not the other way around. When 
we perform an operation, we need to ensure that its operands and re
sult are of the correct type. Neglecting this responsibility is a common 
programming error. In some situations, C performs implicit type con
versions; in other situations, we use casts, or explicit type conversions. 
For example, if x and N are integers, the expression 

«float) x) / N 

includes both types of conversion: the (float) is a cast that converts 
the value of x to floating point; then an implicit conversion is performed 
for N to make both arguments of the divide operator floating point, 
according to C's rules for implicit type conversion. 

Many of the operations associated with standard data types (for 
example, the arithmetic operations) are built into the C language. 
Other operations are found in the form of functions that are defined in 
standard function libraries; still others take form in the C functions that 
we define in our programs (see Program 3.1). That is, the concept of 
a data type is relevant not just to integer, floating point, and character 
built-in types. We often define our own data types, as an effective 
way of organizing our software. When we define a simple function 
in C, we are effectively creating a new data type, with the operation 
implemented by that function added to the operations defined for the 
types of data represented by its arguments. Indeed, in a sense, each C 
program is a data type-a list of sets of values (built-in or other types) 
and associated operations (functions). This point of view is perhaps 
too broad to be useful, but we shall see that narrowing our focus to 
understand our programs in terms of data types is valuable. 

One goal that we have when writing programs is to organize them 
such that they apply to as broad a variety of situations as possible. The 
reason for adopting such a goal is that it might put us in the position 
of being able to reuse an old program to solve a new problem, perhaps 
completely unrelated to the problem that the program was originally 
intended to solve. First, by taking care to understand and to specify 
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Program 3. I Function definition 

The mechanism that we use in C to implement new operations on data 
is the function definition, illustrated here. 

All functions have a list of arguments and possibly a return value. 
The function 19 here has one argument and a return value, each of type 
into The function main has neither arguments nor return value. 

We declare the function by giving its name and the types of its 
return values. The first line of code here references a system file that 
contains declarations of system functions such as printf. The second 
line of code is a declaration for 19. The declaration is optional if the 
function is defined (see next paragraph) before it is used, as is the case 
with main. The declaration provides the information necessary for other 
functions to call or invoke the function, using arguments of the proper 
type. The calling function can use the function in an expression, in the 
same way as it uses variables of the return-value type. 

We define functions with C code. All C programs include a defi
nition of the function main, and this code also defines 19. In a function 
definition, we give names to the arguments (which we refer to as pa
rameters) and express the computation in terms of those names, as if 
they were local variables. When the function is invoked, these variables 
are initialized with the values of the arguments and the function code 
is executed. The return statement is the instruction to end execution 
of the function and provide the return value to the calling function. In 
principle, the calling function is not to be otherwise affected, though we 
shall see many exceptions to this principle. 

The separation of definition and declaration provides flexibility in 
organizing programs. For example, both could be in separate files (see 
text). Or, in a simple program like this one, we could put the definition 
of 19 before the definition of main and omit its declaration. 

#include <stdio.h> 
int 19(int); 
mainO 

{ int i, N; 
for (i = 1, N = 10; i <= 6; i++, N *= 10) 

printf("%7d %2d %9d\n", N, 19(N) , N*lg(N»; 
} 

int 19(int N) 
{ int i', 

for (i 0; N > 0; i++, N /= 2) 

return i', 
} 
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precisely which operations a program uses, we can easily extend it to 
any type of data for which we can support those operations. Second, by 
taking care to understand and to specify precisely what a program does, 
we can add the abstract operation that it performs to the operations 
at our disposal in solving new problems. 

Program 3.2 implements a simple computation on numbers using 
a simple data type defined with a typedef operation and a function 
(which itself is implemented with a library function). The main func
tion refers to the data type, not the built-in type of the number. By 
not specifying the type of the numbers that the program processes, 
we extend its potential utility. For example, this practice is likely to 
extend the useful lifetime of a program. When some new circumstance 
(a new application, or perhaps a new compiler or computer), presents 
us with a new type of number with which we would like to work, we 
can update our program just by changing the data type. 

This example does not represent a fully general solution to the 
problem of developing a type-independent program for computing 
averages and standard deviations-nor is it intended to do so. For 
example, the program depends on converting a number of type Number 
to a float to be included in the running average and variance, so we 
might add that conversion as an operation to the data type, rather than 
depend on the (float) cast, which only works for built-in types of 
numbers. 

If we were to try to do operations other than arithmetic opera
tions, we would soon find the need to add more operations to the data 
type. For example, we might want to print the numbers, which would 
require that we implement, say, a printNum function. Such a function 
would be less convenient than using the built-in format conversions in 
printf. Whenever we strive to develop a data type based on identi
fying the operations of importance in a program, we need to strike a 
balance between the level of generality tha t we choose and the ease of 
implementation and use that results. 

It is worthwhile to consider in detail how we might change the 
data type to make Program 3.2 work with other types of numbers, 
say floats, rather than with ints. There are a number of different 
mechanisms available in C that we could use to take advantage of the 
fact that we have localized references to the type of the data. For such 
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Program 3.2 Types of numbers 

This program computes the average J-l and standard deviation (j of a 
sequence Xl, X2, , .. ,XN of integers generated by the library procedure 
rand, following the mathematical definitions 

2 
J-l ~ L Xi and (j2 = 1 L (Xi - J-l)2 = 1 L J-L. 

lSi::;I'l 	 l:5i$N l:Si:5.lV 

Note that a direct implementation from the definition of (j2 requires one 
pass to compute the average and another to compute the sums of the 
squares of the differences between the members of the sequence and the 
average, but rearranging the formula makes it possible for us to compute 

in one pass through the data. 
We use the typedef declaration to localize reference to the fact 

that the type of the data is into For example, we could keep the typedef 
and the function randNum in a separate file (referenced by an include 
directive), and then we could use this program to test random numbers 
of a different type by changing that file (see text). 

Whatever the type of the data, the program uses ints for indices 
and floats to compute the average and standard deviation, and will be 
effective only if conversion functions from the data to float perform in 
a reasonable manner. 

#include <math.h> 

#include <stdlib.h> 

#include <stdio.h> 

typedef int Number; 

Number randNum () 


{ return rand(); } 

main(int argc, char *argv[]) 


{ 	int i, N = atoi(argv[l]); 

float ml = 0.0, m2 = 0.0; 

Number x; 

for (i = 0; i < N; i++) 


{ 


x = randNumO; 

ml += «float) x)/N; 

m2 += «float) x*x)/N; 


} 

printf(" Average: %f\n", ml); 
printf("Std. deviation: %f\n", sqrt(m2-ml*m1)); 

} 

http:l:Si:5.lV
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a small program, the simplest is to make a copy of the file, then to 
change the typedef to 

typedef float Number 

and the function randNum to 

return 1.0*rand()/RAND_MAX; 

(which will return random floating-point numbers between 0 and 1). 
Even for such a small program, this approach is inconvenient because 
it leaves us with two copies of the main program, and we will have 
to make sure that any later changes in that program are reflected in 
both copies. In C, an alternative approach is to put the typedef 
and randNum into a separate header tile--called, say, Num. h-replacing 
them with the directive 

#include "Num.h Ol 

in the code in Program 3.2. Then, we can make a second header file 
with different typedef and randNum, and, by renaming one of these 
files or the other Num.h, use the main program in Program 3.2 with 
either, without modifying it at all. 

A third alternative, which is recommended software engineering 
practice, is to split the program into three files: 

• An interface, which defines the data structure and declares the 
functions to be used to manipulate the data structure 

• An implementation of the functions declared in the interface 

• A client program that uses the functions declared in the interface 
to work at a higher level of abstraction 

With this arrangement, we can use the main program in Program 3.2 
with integers or floats, or extend it to work with other data types, just 
by compiling it together with the specific code for the data type of 
interest. Next, we shall consider the precise change that we need to 
convert Program 3.2 into a more flexible implementation, using this 
approach. 

We think of the interface as a definition of the data type. It is a 
contract between the client program and the implementation program. 
The client agrees to access the data only through the functions defined 
in the interface, and the implementation agrees to deliver the promised 
functions. 
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For the example in Program 3.2, the interface would consist of 
the declarations 

typedef int Number; 
Number randNum(); 

The first line specifies the type of the data to be processed, and the 
second specifies an operation associated with the type. This code 
might be kept, for example, in a file named Num. h. 

The implementation of the interface in Num. h is an implementa
tion of the randNum function, which might consist of the code 

#include <stdlib.h> 
#include !lNum.h!l 
Number randNum() 

{ return rand(); } 

The first line refers to the system-supplied interface that describes the 
rand () function; the second line refers to the interface that we are 
implementing (we include it as a check that the function we are im
plementing is the same type as the one that we declared), and the final 
two lines give the code for the function. This code might be kept, for 
example, in a file named int . c. The actual code for the rand function 
is kept in the standard C run-time library. 

A client program corresponding to Program 3.2 would begin 
with the include directives for interfaces that declare the functions that 
it uses, as follows: 

#include <stdio.h> 
#include <math.h> 
#include !lNum.hl! 

The function main from Program 3.2 then can follow these three lines. 
This code might be kept, for example, in a file named avg. c. 

Compiled together, the programs avg. c and int . c described in 
the previous paragraphs have the same functionality as Program 3.2, 
but they represent a more flexible implementation both because the 
code associated with the data type is encapsulated and can be used by 
other client programs and because avg. c can be used with other data 
types without being changed. 

There are many other ways to support data types besides the 
client-Interface-implementation scenario just described, but we will 
not dwell on distinctions among various alternatives because such 
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distinctions are best drawn in a systems-programming context, rather 
than in an algorithm-design context (see reference section). However, 
we do often make use of this basic design paradigm because it provides 
us with a natural way to substitute improved implementations for 
old ones, and therefore to compare different algorithms for the same 
applications problem. Chapter 4 is devoted to this topic. 

We often want to build data structures that allow us to handle 
collections of data. The data structures may be huge, or they may 
be used extensively, so we are interested in identifying the important 
operations that we will perform on the data and in knowing how to 
implement those operations efficiently. Doing these tasks is taking 
the first steps in the process of incrementally building lower-level ab
stractions into higher-level ones; that process allows us to conveniently 
develop ever more powerful programs. The simplest mechanisms for 
grouping data in an organized way in C are arrays, which we consider 
in Section 3.2, and structures, which we consider next. 

Structures are aggregate types that we use to define collections 
of data such that we can manipulate an entire collection as a unit, but 
can still refer to individual components of a given datum by name. 
Structures are not at the same level as built-in types such as int or 
float in C, because the only operations that are defined for them 
(beyond referring to their components) are copy and assignment. Thus, 
we can use a structure to define a new type of data, and can use it to 
name variables, and can pass those variables as arguments to functions, 
but we have specifically to define as functions any operations that we 
want to perform. 

For example, when processing geometric data we might want to 

work with the abstract notion of points in the plane. Accordingly, we 
can write 

struct point { float x; float y; }; 

to indicate that we will use type point to refer to pairs of floating-point 
numbers. For example, the statement 

struct point a, b; 

declares two variables of this type. We can refer to individual members 
of a structure by name. For example, the statements 

a.x = 1.0; a.y = 1.0; b.x = 4.0; b.y = 5.0; 

set a to represent the point (1,1) and b to represent the point (4,5). 
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Program 3.3 Point data type interface 

This interface defines a data type consisting of the set of values "pairs 
of floating-point numbers" and the operation consists of a function that 
computes the distance between two points. 

typedef struct { float x; float y; } point; 

float distance(point, point); 


We can also pass structures as arguments to functions. For ex
ample, the code 

float distance(struct point a, struct point b) 
{ float dx = a.x - b.x, dy = a.y b.y; 

return sqrt(dx*dx + dy*dy); 
} 

defines a function that computes the distance between two points in 
the plane. This example illustrates the natural way in which structures 
allow us to aggregate our data in typical applications. 

Program 3.3 is an interface that embodies the definition of a 
data type for points in the plane, uses a structure to represent the 
points, and includes an operation to compute the distance between 
two points. Program 3.4 is a function that implements the operation. 
We use interface-implementation arrangements like this to define data 
types whenever possible, because they encapsulate the definition (in the 
interface) and the implementation in a clear and direct manner. We 
make use of the data type in a client program by including the interface 
and by compiling the implementation with the client program (or by 
using appropriate separate-compilation facilities). Program 3.4 uses 
a typedef to define the point data type so that client programs can 
declare points as point instead of struct pOint, and do not have to 
make any assumptions about how the data types are represented. In 
Chapter 4, we shall see how to carry this separation between client 
and implementation one step further. 

We cannot use Program 3.2 to process items of type point be
cause arithmetic and type conversion operations are not defined for 
points. Modern languages such as c++ and Java have basic constructs 
that make it possible to use previously defined high-level abstract op
erations, even for newly defined types. With a sufficiently general 
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Program 3.4 Point data type implementation 

This implementation provides the definition for the distance function 
for points that is declared in Program 3.3. It makes use of a library 
function to compute the square root. 

#include <math.h> 
#include "Point.h" 
float distance(point a, point b) 

{ float dx = a.x - b.x, dy = a.y - b.y; 
return sqrt(dx*dx + dy*dy); 

interface, we could make these arrangements, even in C. In this book, 
however, although we strive to develop interfaces of general utility, we 
resist obscuring our algorithms or sacrificing good performance for 
that reason. Our primary goal is to make clear the effectiveness of the 
algorithmic ideas that we will be considering. Although we often stop 
short of a fully general solution, we do pay careful attention to the 
process of precisely defining the abstract operations that we want to 
perform, as well as the data structures and algorithms that will sup
port those operations, because doing so is at the heart of developing 
efficient and effective programs. We will return to this issue, in detail, 
in Chapter 4. 

The point structure example just given is a simple one that com
prises two items of the same type. In general, structures can mix 
different types of data. We shall be working extensively with such 
structures throughout the rest of this chapter. 

Beyond giving us the specific basic types int, float, and char, 
and the ability to build them into compound types with struct, C pro
vides us with the ability to manipulate our data indirectly. A pointer is 
a reference to an object in memory (usually implemented as a machine 
address). We declare a variable a to be a pointer to (for example) an 
integer by writing int *a, and we can refer to the integer itself as *a. 
We can declare pointers to any type of data. The unary operator & 

gives the machine address of an object, and is useful for initializing 
pointers. For example, *&a is the same as a. We restrict ourselves to 
using & for this purpose, as we prefer to work at a somewhat higher 
level of abstraction than machine addresses when possible. 



CHAPTER THREE 

objects in a fixed sequential fashion that is more suitable for access 
than for manipulation; or a list, where we organize objects in a logical 
sequential fashion that is more suitable for manipulation than for 
access. 

Exercises 

t> 3.I Find the largest and smallest numbers that you can represent with 
types int, long int, short int, float, and double in your programming 
environment. 

3.2 Test the random-number generator on your system by generating N 
random integers between 0 and r 1 with randO % r and computing the 
average and standard deviation for r = 10, 100, and 1000 and N 103 

, 10\ 
105

, and 106
• 

3.3 Test the random-number generator on your system by generating N 
random numbers of type double between 0 and 1, transforming them to 
integers between 0 and r - 1 by multiplying by r and truncating the result, 
and computing the average and standard deviation for r = 10, 100, and 1000 
and N = 103

, 104
, 105 , and 106 • 

03.4 Do Exercises 3.2 and 3.3 for r = 2,4, and 16. 

3.5 Implement the necessary functions to allow Program 3.2 to be used for 
random bits (numbers that can take only the values a or 1). 

3.6 Denne a struct suitable for representing a playing card. 

3.7 Write a client program that uses the data type in Programs 3.3 and 3.4 
for the following task: Read a sequence of points (pairs of floating-point 
numbers) from standard input, and nnd the one that is closest to the nrst. 

.3.8 Add a function to the point data type (Programs 3.3 and 3.4) that 
determines whether or not three points are collinear, to within a numerical 
tolerance of 10-4 

• Assume that the points are all in the unit square. 

3.9 Denne a data type for points in the plane that is based on using polar 
coordinates instead of Cartesian coordinates . 

• 	3.10 Denne a data type for triangles in the unit square, including a function 
that computes the area of a triangle. Then write a client program that generates 
random triples of pairs of floats between 0 and 1 and computes empirically 
the average area of the triangles generated. 

3.2 Arrays 

Perhaps the most fundamental data structure is the array, which is 
defined as a primitive in C and in most other programming languages. 
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We have already seen the use of an array as the basis for the develop
ment of an efficient algorithm, in the examples in Chapter I; we shall 
see many more examples in this section. 

An array is a fixed collection of same-type data that are stored 
contiguously and that are accessible by an index. We refer to the ith 
element of an array a as a [iJ. It is the responsibility of the program
mer to store something meaningful in an array position a [i] before 
referring to a [i]. In C, it is also the responsibility of the program
mer to use indices that are nonnegative and smaller than the array 
size. Neglecting these responsibilities are two of the more common 
programming mistakes. 

Arrays are fundamental data structures in that they have a direct 
correspondence with memory systems on virtually all computers. To 
retrieve the contents of a word from memory in machine language, 
we provide an address. Thus, we could think of the entire computer 
memory as an array, with the memory addresses corresponding to array 
indices. Most computer-language processors translate programs that 
involve arrays into efficient machine-language programs that access 
memory directly, and we are safe in assuming that an array access such 
as a [i] translates to just a few machine instructions. 

A simple example of the use of an array is given by Program 3.5, 
which prints out all prime numbers less than 10000. The method 
used, which dates back to the third century B.C., is called the sieve of 
Eratosthenes (see Figure 3.1). It is typical of algorithms that exploit 
the fact that we can access efficiently any item of an array, given 
that item's index. The implementation has four loops, three of which 
access the items of the array sequentially, from beginning to end; the 
fourth skips through the array, i items at a time. In some cases, 
sequential processing is essential; in other cases, sequential ordering is 
used because it is as good as any other. For example, we could change 
the first loop in Program 3.5 to 

for (a[l] = 0, i = N-l; i > 1; i--) a[i] = 1; 

without any effect on the computation. We could also reverse the 
order of the inner loop in a similar manner, or we could change the 
final loop to print out the primes in decreasing order, but we could not 
change the order of the outer loop in the main computation, because 
it depends on all the integers less than i being processed before a [i] 

is tested for being prime. 

i 2 3 5 a[i] 

2 1 1 
3 1 1 
4 1 0 
5 1 1 
6 1 0 
7 1 1 
8 1 0 
9 1 0 

10 1 0 
11 1 1 
12 1 0 0 
13 1 1 
14 1 0 
15 1 0 
16 1 0 
17 1 1 
18 1 0 0 
19 1 1 
20 1 0 
21 1 0 
22 1 0 
23 1 1 
24 1 0 0 
25 1 0 
26 1 0 
27 1 0 
28 1 0 
29 1 1 
30 1 0 o 0 
31 1 1 

Figure 3.1 
Sieve of Eratosthenes 

To compute the prime numbers 
less than 321 we initialize all the 
array entries to 1 (second column), 
to indicate that no numbers are 
known to be nonprime (a [0] and 
a [1] are not used and are not 
shown). Then, we set array en
tries whose indices are multiples 
of 2, J, and 5 to 01 since we know 
these multiples to be nonprime. In
dices corresponding to array entries 
that remain 1 are prime (rightmost 
column). 
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Program 3.5 Sieve of Eratosthenes 

The goal of this program is to set a[i] to 1 if i is prime, and to °if 
is not prime. First, it sets to 1 all array elements, to indicate that no 

numbers are known to be nonprime. Then it sets to °array elements 
corresponding to indices that are known to be nonprime (multiples of 
known primes). If a [i] is still 1 after all multiples of smaller primes 
have been set to 0, then we know it to be prime. 

Because the program uses an array consisting of the simplest type 
of elements, 0-1 values, it would be more space efficient if we explicitly 
used an array of bits, rather than one of integers. Also, some program
ming environments might require the array to be global if N is huge, or 
we could allocate it dynamically (see Program 3.6). 

#define N 10000 

mainO 


{ 	 int i, j, a[N] ; 

for (i 2', i < N; i++) a [i] 1 . , 

for (i 2', i < N; i++) 


if (a [i] ) 
for (j = i; i*j < N; j++) a[i*j] o·, 

for (i = 2; i < N; i++) 
if (a[i]) printf("%4d" i); 

printf("\n"); 
} 

We will not analyze the running time of Program 3.5 in detail 
because that would take us astray into number theory, but it is dear 
that the running time is proportional to 

N + N/2+ N/3+ N/5 + N/7 + N/ll + ... 

which is less than N + N/2 + N/3 + N/4 + ... = NHN 'V NinN. 
One of the distinctive features of C is that an array name gen

erates a pointer to the first element of the array (the one with in
dex 0). Moreover, simple pointer arithmetic is allowed: if p is a 
pointer to an object of a certain type, then we can write code that 
assumes that objects of that type are arranged sequentially, and can 
use *p to refer to the first object, * (p+1) to refer to the second object, 
* (p+2) 	to refer to the third object, and so forth. In other words, 

*(a+i) and a[i] are equivalent in C. 
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Program 3.6 Dynamic memory allocation for an array 

To change the value of the maximum prime computed in Program 3.5, 
we need to recompile the program. Instead, we can take the maximum 
desired number from the command line, and use it to allocate space 
for the array at execution time, using the library function malloe from 
stdlib. e. For example, if we compile this program and use 1000000 
as a command-line argument, then we get all the primes less than 1 
million (as long as our computer is big and fast enough to make the 
computation feasible); we can also debug with 100 (without using much 
time or space). We will use this idiom frequently, though, for brevity, 
we will omit the insufficient-memory test. 

#include <stdlib.h> 
main(int argc, char *argv[]) 

{ long int i, j, N = atoi(argv[l]); 
int *a = malloc(N*sizeof(int)); 
if (a == NULL) 

{ printf("Insufficient memory.\n"); return; } 

This equivalence provides an alternate mechanism for accessing ob
jects in arrays that is sometimes more convenient than indexing. This 
mechanism is most often used for arrays of characters (strings); we 
discuss it again in Section 3.6. 

Like structures, pointers to arrays are significant because they 
allow us to manipulate the arrays efficiently as higher-level objects. 
In particular, we can pass a pointer to an array as an argument to 
a function, thus enabling that function to access objects in the array 
without having to make a copy of the whole array. This capability 
is indispensable when we write programs to manipulate huge arrays. 
For example, the search functions that we examined in Section 2.6 use 
this feature. We shall see other examples in Section 3.7. 

The implementation in Program 3.5 assumes that the size of the 
array must be known beforehand: to run the program for a different 
value of N, we must change the constant N and recompile the program 
before executing it. Program 3.6 shows an alternate approach, where 
a user of the program can type in the value of N, and it will respond 
with the primes less than N. It uses two basic C mechanisms, both of 
which involve passing arrays as arguments to functions. The first is the 
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o 
1 
2 
3 
4 
5 
6 
7 
8 

19 ******* 
20 ****** 
21 *** 
22 ** 
23 * 

26 
27 
28 
29 
30 
31 
32 

Figure 3.2 
Coin-flipping simulation 

This table shows the result of run
ning Program 3.7 with N = 32 
and I'vi 1000, simulating 1000 
experiments of flipping a coin 32 
times. The number of heads that 
we should see is approximated by 
the normal distribution function! 
which is drawn over the data. 
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mechanism by which command-line arguments are passed to the main 
program, in an array argv of size arge. The array argv is a compound 
array made up of objects that are arrays (strings) themselves, so we 
shall defer discussing it in further detail until Section 3.7, and shall 
take on faith for the moment that the variable N gets the number that 
the user types when executing the program. 

The second basic mechanism that we use in Program 3.6 is 
malloe, a function that allocates the amount of memory that we need 
for our array at execution time, and returns, for our exclusive use, a 
pointer to the array. In some programming languages, it is difficult or 
impossible to allocate arrays dynamically; in some other programming 
languages, memory allocation is an automatic mechanism. Dynamic 
allocation is an essential tool in programs that manipulate multiple 
arrays, some of which might have to be huge. In this case, without 
memory allocation, we would have to predeclare an array as large as 
any value that the user is allowed to type. In a large program where we 
might use many arrays, it is not feasible to do so for each array. We will 
generally use code like Program 3.6 in this book because of the flexi
bility that it provides, although in specific applications when the array 
size is known, simpler versions like Program 3.5 are perfectly suitable. 
If the array size is fixed and huge, the array may need to be global in 
some systems. We discuss several of the mechanisms behind memory 
allocation in Section 3.5, and we look at a way to use malloe to sup
port an abstract dynamic growth facility for arrays in Section 14.5. As 
we shall see, however, such mechanisms have associated costs, so we 
generally regard arrays as having the characteristic property that, once 
allocated, their sizes are fixed, and cannot be changed. 

Not only do arrays closely reflect the low-level mechanisms for 
accessing data in memory on most computers, but also they find 
widespread use because they correspond directly to natural methods of 
organizing data for applications. For example, arrays also correspond 
directly to vectors, the mathematical term for indexed lists of objects. 

Program 3.7 is an example of a simulation program that uses 
an array. It simulates a sequence of Bernoulli trials, a familiar ab
stract concept from probability theory. If we flip a coin N times, the 
probability that we see k heads is 

N) 1 ;::::;; e-(k-NI2)2IN

(k J1fN/2 
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Program 3.7 Coin-flipping simulation 

If we flip a coin N times, we expect to get N /2 heads, but could get 
anywhere from 0 to N heads. This program runs the experiment AI 
times, taking both Nand M from the command line. It uses an array f 
to keep track ofthe frequency of occurrence of the outcome "i heads" for 
o :::; i :::; N, then prints out a histogram of the result of the experiments, 
with one asterisk for each 10 occurrences. 

The operation on which this program is based-indexing an array 
with a computed value-is critical to the efficiency of many computa
tional procedures. 

#include <stdlib.h> 

int headsO 


{ return rand() < RAND_MAX/2; } 

main(int argc, char *argv[]) 


{ 	int i, j, cnt; 
int N = atoi(argv[l]), M = atoi(argv[2]); 
int *f malloc«N+1)*sizeof(int»; 
for (j = 0; j <= N; j++) f[j] = OJ 

for (i = OJ i < M; i++, f[cnt]++) 
for (cnt = 0, j 0; j <= N; j++) 

if (heads(» cnt++; 
for (j = 0; j <= N; j++) 

{ 

printf("%2d n, j); 
for (i = 0; i < f[j] j i+=10) printf("*"); 
printf("\n")j 

} 

} 

The approximation is known as the normal approximation: the famil
iar bell-shaped curve. Figure 3.2 illustrates the output of Program 3.7 
for 1000 trials of the experiment of flipping a coin 32 times. Many 
more details on the Bernoulli distribution and the normal approxima
tion can be found in any text on probability, and we shall encounter 
these distributions again in Chapter 13. In the present context, our 
interest in the computation is that we use the numbers as indices into 
an array to count their frequency of occurrence. The ability of arrays 
to support this kind of operation is one of their prime virtues. 
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Program 3.8 Closest-point computation 

This program illustrates the use of an array of structures, and is rep
resentative of the typical situation where we save items in an array to 
process them later, during some computation. It counts the number of 
pairs of N randomly generated points in the unit square that can be 
connected by a straight line of length less than d, using the data type 
for points described in Section 3.1. The running time is O(N2), so this 
program cannot be used for huge N. Program 3.20 provides a faster 
solution. 

#include <math.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include "Point.h" 

float randFloat() 


{ return 1.0*rand()/RAND_MAX; } 

main(int argc, char *argv[]) 


{ 	float d = atof(argv[2]); 

int i, j, cnt = 0, N = atoi(argv[l]); 

point *a = malloc(N*(sizeof(*a))); 

for (i = 0; i < N; i++) 


{ a[i].x = randFloat(); a[i].y randFloat (); } 
for (i = 0; i < N; i++) 

for (j = i+l; j < N; j++) 
if (distance(a[i], a[j]) < d) cnt++; 

printf("%d edges shorter than %f\n", cnt, d); 
} 

Programs 3.5 and 3.7 both compute array indices from the data 
at hand. In a sense, when we use a computed value to access an array 
of size N, we are taking N possibilities into account with just a single 
operation. This gain in efficiency is compelling when we can realize 
it, and we shall be encountering algorithms throughout the book that 
make use of arrays in this way. 

We use arrays to organize all different manner of types of ob
jects, not just integers. In C, we can declare arrays of any built-in or 
user-defined type (i.e., compound objects declared as structures). Pro
gram 3.8 illustrates the use of an array of structures for points in the 
plane using the structure definition that we considered in Section 3.1. 
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This program also illustrates a common use of arrays: to save data 
away so that they can be quickly accessed in an organized manner in 
some computation. Incidentally, Program 3.8 is also interesting as a 
prototypical quadratic algorithm, which checks all pairs of a set of N 
data items, and therefore takes time proportional to N 2 • In this book, 
we look for improvements whenever we see such an algorithm, be
cause its use becomes infeasible as N grows. In this case, we shall see 
how to use a compound data structure to perform this computation in 
linear time, in Section 3.7. 

We can create compound types of arbitrary complexity in a sim
ilar manner: We can have not just arrays of structs, but also arrays of 
arrays, or structs containing arrays. We will consider these different 
options in detail in Section 3.7. Before doing so, however, we will 
examine linked lists, which serve as the primary alternative to arrays 
for organizing collections of objects. 

Exercises 

I> 3.II Suppose that a is declared as int a[99J. Give the contents of the array 
after the following two statements are executed: 


for (i = 0; i < 99; i++) a[iJ = 98-i; 

for (i = 0; i < 99; i++) a[iJ = a[a[iJJ; 


3.12 Modify our implementation of the sieve of Eratosthenes (Program 3.5) 
to use an array of (i) chars; and (ii) bits. Determine the effects of these changes 
on the amount of space and time used by the program. 

I> 3.13 Use the sieve of Eratosthenes to determine the number of primes less 
than N, for N 103

, 10\ 105
, and 106

• 

03.14 	 Use the sieve of Eratosthenes to draw a plot of N versus the number of 
primes less than IV for N between 1 and 1000. 

3.15 Empirically determine the effect of removing the test if (a [iJ) that 
guards the inner loop of Program 3.5, for IV 103

, 10\ lOS, and 106 
• 

• 3.16 Analyze Program 3.5 to explain the effect that you observed in Exer
cise 3.15. 

I> 3.17 Write a program that counts the number of different integers less than 
1000 that appear in an input stream. 

03.18 	 Write a program that determines empirically the number of random 
positive integers less than 1000 that you can expect to generate before getting 
a repeated value. 

03.19 	 Write a program that determines empirically the number of random 
positive integers less than 1000 that you can expect to generate before getting 
each value at least once. 
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3.20 Modify Program 3.7 to simulate a situation where the coin turns up 
heads with probability p. Run 1000 trials for an experiment with 32 flips with 
p = 1/6 to get output that you can compare with Figure 3.2. 

3.21 Modify Program 3.7 to simulate a situation where the coin turns up 
heads with probability )../ N. Run 1000 trials for an experiment with 32 flips 
to get OUtpUt that you can compare with Figure 3.2. This distribution is the 
classical Poisson distribution. 

03.22 	 Modify Program 3.8 to print out the coordinates of the closest pair of 
points . 

• 3.23 Modify Program 3.8 to perform the same computation in d dimensions. 

3.3 Linked Lists 

When our primary interest is to go through a collection of items se
quentially, one by one, we can organize the items as a linked list: a 
basic data structure where each item contains the information that we 
need to get to the next item. The primary advantage of linked lists 
over arrays is that the links provide us with the capability to rearrange 
the items efficiently. This flexibility is gained at the expense of quick 
access to any arbitrary item in the list, because the only way to get to 
an item in the list is to follow links, one node to the next. There are a 
number of ways to organize linked lists, all starting with the following 
basic definition. 

Definition 3.2 A linked list is a set of items where each item is part 
ofa node that also contains a link to a node. 

We define nodes in terms of references to nodes, so linked lists are 
sometimes referred to as self-referent structures. Moreover, although a 
node's link usually refers to a different node, it could refer to the node 
itself, so linked lists can also be cyclic structures. The implications of 
these two facts will become apparent as we begin to consider concrete 
representations and applications of linked lists. 

Normally, we think of linked lists as implementing a sequential 
arrangement of a set of items: Starting at a given node, we consider 
its item to be first in the sequence. Then, we follow its link to another 
node, which gives us an item that we consider to be second in the 
sequence, and so forth. In principle, the list could be cyclic and the 
sequence could seem infinite, but we most often work with lists that 
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correspond to a simple sequential arrangement of a finite set of items, 
adopting one of the following conventions for the link in the final 
node: 

• It is a null link that points to no node. 
• It refers to a dummy node that contains no item. 
• It refers back to the first node, making the list a circular list. 

In each case, following links from the first node to the final one defines 
a sequential arrangement of items. Arrays define a sequential ordering 
of items as well; in an array, however, the sequential organization is 
provided implicitly, by the position in the array. {Arrays also support 
arbitrary access by index, which lists do not.} 

We first consider nodes with precisely one link, and, in most ap
plications, we work with one-dimensional lists where all nodes except 
possibly the first one and the final one each have precisely one link 
referring to them. This corresponds to the simplest situation, which is 
also the one that interests us most, where linked lists correspond to fi
nite sequences of items. We will consider more complicated situations 
in due course. 

Linked lists are defined as a primitive in some programming 
environments, but not in C. However, the basic building blocks that 
we discussed in Section 3. I are well suited to implementing linked lists. 
Specifically, we use pointers for links and structures for nodes. The 
typedef declaration gives us a way to refer to links and nodes, as 
follows: 

typedef struct node *link; 
struct node { Item item; link next; }; 

which is nothing more than C code for Definition 3.2. Links are point
ers to nodes, and nodes consist of items and links. We assume that 
another part of the program uses typedef or some other mechanism 
to allow us to declare variables of type Item. We shall see more com
plicated representations in Chapter 4 that provide more flexibility and 
allow more efficient implementations of certain operations, but this 
simple representation will suffice for us to consider the fundamentals 
of list processing. We use similar conventions for linked structures 
throughout the book. 

Memory allocation is a central consideration in the effective use 
of linked lists. Although we have defined a single structure (struct 
node), it is important to remember that we will have many instances of 
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Figure 3.3 
Linked-list deletion 

To delete, or remove, the node 
following a given node x from a 
linked list, we set t to point to the 
node to be removed, then change 
x's link to point to t->next. The 
pointer t can be used to refer to 
the removed node (to return it to 
a free list, for example). Although 
its link still points into the list, we 
generally do not use such a link 
after removing the node from the 
list, except perhaps to inform the 
system, via free, that its memory 
can be reclaimed. 
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this structure, one for each node that we want to use. Generally, we do 
not know the number of nodes that we will need until our program is 
executing, and various parts of our programs might have similar calls 
on the available memory, so we make use of system programs to keep 
track of our memory usage. To begin, whenever we want to use a new 
node, we need to create an instance of a node structure and to reserve 
memory for it-for example, we typically write code such as 

link x = malloe(sizeof *x); 

to direct the malloe function from stdlib. h and the sizeof operator 
to reserve enough memory for a node and to return a pointer to it in 
x. (This line of code does not refer directly to node, but a link can 
only refer to a node, so sizeof and malloe have the information that 
they need.) In Section 3.5, we shall consider the memory-allocation 
process in more detail. For the moment, for simplicity, we regard this 
line of code as a C idiom for creating new nodes. Indeed, our use of 
malloe is structured in this way throughout this book. 

Now, once a list node is created, how do we refer to the infor
mation it comprises-its item and its link? We have already seen the 
basic operations that we need for this task: We simply dereference the 
pointer, then use the structure member names-the item in the node 
referenced by link x (which is of type Item) is (*x) . item and the link 
(which is of type link) is (*x) . link. These operations are so heavily 
used, however, that C provides the shorthand x->item and x->link, 
which are equivalent forms. Also, we so often need to use the phrase 
"the node referenced by link x" that we simply say "node x"-the link 
does name the node. 

The correspondence between links and C pointers is essential, 
but we must bear in mind that the former is an abstraction and the 
latter a concrete representation. For example, we can also represent 
links with array indices, as we shall see at the end of this section. 

Figures 3.3 and 3-4 show the two fundamental operations that 
we perform on linked lists. We can delete any item from a linked list, 
to make it shrink by 1 in length; and we can insert an item into a 
linked list at any point, to make it grow by 1 in length. For simplicity, 
we assume in these figures that the lists are circular and never become 
empty. We will consider null links, dummy nodes, and empty lists 
in Section 3+ As shown in the figures, insertion and deletion each 
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require just two statements in C. To delete the node following node x, 
we use the statements 

t = x->next; x->next t->next; 

or simply 

x->next = x->next->next; 

To insert node t into a list at a position following node x, we use the 
statements 

t->next = x->next; x->next = t; 

The simplicity of insertion and deletion is the raison d' etre of linked 
lists. The corresponding operations are unnatural and inconvenient in 
arrays, because they require moving all of the array's contents follow
ing the affected item. 

By contrast, linked lists are not well suited for the find the kth 
item (find an item given its index) operation that characterizes efficient 
access in arrays. In an array, we find the kth item simply by accessing 
a [k]; in a list, we have to traverse k links. Another operation that is 
unnatural on singly linked lists is "find the item before a given item." 

When we remove a node from a linked list using x->next 
x->next->next, we may never be able to access it again. For small 
programs such as the examples we consider at first, this is no special 
concern, but we generally regard it as good programming practice to 
use the function free, which is the counterpart to malloe, for any node 
that we no longer wish to use. Specifically, the sequence of instructions 

t = x->next; x->next = t->next; free(t); 

not only removes t from our list but also informs the system that the 
memory it occupies may be used for some other purpose. We pay 
particular attention to free when we have large list objects, or large 
numbers of them, but we will ignore it until Section 3.5, so that we 
may focus on appreciating the benefits of linked structures. 

We will see many examples of applications of these and other 
basic operations on linked lists in later chapters. Since the operations 
involve only a few statements, we often manipulate the lists directly 
rather than defining functions for inserting, deleting, and so forth. 
As an example, we consider next a program for solving the Josephus 
problem in the spirit of the sieve of Eratosthenes. 

t 

~ 

Figure 3.4 
Linked-list insertion 
To insert a given node t into a 
linked list at a position following 
another given node x (top), we set 
t->next to x->next (centert then 
set x->next to t (bottom). 
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Program 3.9 Circular list example (Josephus problem) 

To represent people arranged in a circle, we build a circular linked list, 
with a link from each person to the person on the left in the circle. The 
integer i represents the ith person in the circle. After building a one
node circular list for 1, we insert 2 through N after that node, resulting 
in a circle with 1 through N, leaving x pointing to N. Then, we skip 
M 1 nodes, beginning with 1, and set the link of the (M - l)st to skip 
the 2\lth, continuing until only one node is left. 

#include <stdlib.h> 

typedef struct node* link; 

struct node { int item; link next; }; 

main(int argc, char *argv[J) 


{ 	 int i, N = atoi(argv[lJ), M atoi(argv [2J ) ; 
link t = mallocCsizeof *t), x 
t->item = 1; t->next t; 
for (i = 2; i <= N; i++) 

{ 

x = (x->next = mallocCsizeof *x)); 
x->item = i; x->next = t; 

} 

while (x != x->next) 

{ 


for (i 1; i < M; i++) x = x->next; 
x->next = x->next->next; N--; 

} 

printf("%d\n", x->item); 

We imagine that N people have decided to elect a leader by ar
ranging themselves in a circle and eliminating every l'vIth person around 
the circle, closing ranks as each person drops out. The problem is to 
find out which person will be the last one remaining (a mathematically 
inclined potential leader will figure out ahead of time which position 
in the circle to take). The identity of the elected leader is a function of 
N and !vi that we refer to as the Josephus function. More generally, 
we may wish to know the order in which the people are eliminated. 
For example, as shown in Figure 3.5, if N = 9 and}vI 5, the people 
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are eliminated in the order 5 1 7 4 3 6 9 2, and 8 is the leader chosen. 
Program 3.9 reads in Nand l\lf and prints out this ordering. 

Program 3.9 uses a circular linked list to simulate the election 
process directly. First, we build the list for 1 to N: We build a circular 
list consisting of a single node for person 1, then insert the nodes for 
people 2 through N, in that order, following that node in the list, using 
the insertion code illustrated in Figure 3+ Then, we proceed through 
the list, counting through M - 1 items, deleting the next one using the 
code illustrated in Figure 3.3, and continuing until only one node is 
left (which then points to itself). 

The sieve of Eratosthenes and the Josephus problem clearly il
lustrate the distinction between using arrays and using linked lists to 
represent a sequentially organized collection of objects. Using a linked 
list instead of an array for the sieve of Eratosthenes would be costly 
because the algorithm's efficiency depends on being able to access any 
array position quickly, and using an array instead of a linked list for the 
Josephus problem would be costly because the algorithm's efficiency 
depends on the ability to delete items quickly. When we choose a data 
structure, we must be aware of the effects of that choice upon the 
efficiency of the algorithms that will process the data. This interplay 
between data structures and algorithms is at the heart of the design 
process and is a recurring theme throughout this book. 

In C, pointers provide a direct and convenient concrete realiza
tion of the abstract concept of a linked list, but the essential value 
of the abstraction does not depend on any particular implementation. 
For example, Figure 3.6 shows how we could use arrays of integers to 
implement the linked list for the Josephus problem. That is, we can 
implement linked lists using array indices, instead of pointers. Linked 
lists are thus useful even in the simplest of programming environments. 
Linked lists were useful well before pointer constructs were available 
in high-level languages such as C. Even in modern systems, simple 
array-based implementations are sometimes convenient. 

Exercises 

l> 3.24 Write a function that returns the number of nodes on a circular list, 
given a pointer to one of the nodes on the list. 

3.25 Write a code fragment that determines the number of nodes that are 
between the nodes referenced by two given pointers x and t to nodes on a 
circular list. 

0
21 
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6 8 


0
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329 

6 
1 8 
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Figure 3.5 
Example of Josephus election 

This diagram shows the result of 
a Josephus-style election, where 
the group stands in a circle, then 
counts around the circle, eliminat
ing every fifth person and closing 
the circle. 
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3.26 Write a code fragment that, given pointers x and t to two disjoint
0 1 	 :I 3 4 5 (; 7 8 circular lists, inserts the list pointed to by t into the list pointed to by x, at the

item 1123456~7--s--9 
:next 123456780 point following x. 

5 	 1 :I 3 4 5 (; 7 8 9 .3.27 Given pointers x and t to nodes on a circular list, write a code fragment 
1 	 2 3 5 5 Ii 7 8 0 that moves the node following t to the position following the node following 

x on the list. 
1 1 2 3 4 5 6 7 8 9 

1 2 3 5 5 Ii 7 8 1 3.28 When building the list, Program 3.9 sets twice as many link values as it 
needs to because it maintains a circular list after each node is inserted. Modify 

7 	 1 :I 3 4 5 Ii 7 8 9 
the program to build the circular list without doing this extra work. 1 2 	 3 5 5 7 7 8 1 

3.29 Give the running time of Program 3.9, within a constant factor, as a 4 	 1 2 3 4 !l 6 7 8 9 

1 2 5 5 I; 7 7 8 1 function of Iv1 and N. 


3 	 1 2 :3 Ii 7 8 9 3.30 Use Program 3.9 to determine the value of the Josephus function for " S 
1 5 5 5 5 7 7 8 1 	 At = 2, 3, 5, 10, and N 103

, 104
, 105

, and 106
• 

6 	 1 2 :3 4 5 6 7 8 9 3.31 Use Program 3.9 to plot the Josephus function versus N for M = 10 
1 7 5 5 5 7 7 8 1 and N from 2 to 1000. 

9 	 1 2 3 4 5 (; 7 8 9 03.32 Redo the table in Figure 3.6, beginning with item i initially at position 
1 7 5 5 5 7 7 1 1 N-i in the array. 

2 	 1 2 3 , I; 6 7 8 9, , 	7 
3.33 Develop a version of Program 3.9 that uses an array of indices to 

1 7 	 5 5 S 1 
implement the linked list (see Figure 3.6). 

Figure 3.6 
Array representation of a 3.4 Elementary List Processing linked list 

This sequence shows the linked list Linked lists bring us into a world of computing that is markedly dif
for the Josephus problem (see Fig

ferent from that of arrays and structures. With arrays and structures,ure 3.5), implemented with array 

indices instead of pointers. The inwe save an item in memory and later refer to it by name (or by index) 

dex of the item following the item in much the same manner as we might put a piece of information in a 

with index 0 in the list is next [0], 
 file drawer or an address book; with linked lists, the manner in which 
and 50 forth. Initially (top three we save information makes it more difficult to access but easier to rerows), the item for person i has in

dex 1-1, and we form a circular arrange. Working with data that are organized in linked lists is called 

list by setting next [1] to 1+1 for list processing. 

i from 0 to 8 and next [8] to O. 
 When we use arrays, we are susceptible to program bugs involv
To simulate the josephus-election ing out-of-bounds array accesses. The most common bug that we 
process, we change the links (next 

encounter when using linked lists is a similar bug where we reference array entries) but do not move the 
items. Each pair of lines show5 the an undefined pointer. Another common mistake is to use a pointer 
result of moving through the list that we have changed unknowingly. One reason that this problem 
four times with x = next [x], then arises is that we may have multiple pointers to the same node without 
deleting the fifth item (displayed 

necessarily realizing that that is the case. Program 3.9 avoids several at the left) by setting next [x] to 
next [next [x] J . such problems by using a circular list that is never empty, so that each 
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link always refers to a well-defined node, and each link can also be 
interpreted as referring to the list. 

Developing correct and efficient code for list-processing appli
cations is an acquired programming skill that requires practice and 
patience to develop. In this section, we consider examples and exer
cises that will increase our comfort with working with list-processing 
code. We shall see numerous other examples throughout the book, be
cause linked structures are at the heart of some of our most successful 
algorithms. 

As mentioned in Section 3.3, we use a number of different con
ventions for the first and final pointers in a list. We consider some of 
them in this section, even though we adopt the policy of reserving the 
term linked list to describe the simplest situation. 

Definition 3.3 A linked list is either a null link or a link to a node 
that contains an item and a link to a linked list. 

This definition is more restrictive than Definition 3.2, but it cor
responds more closely to the mental model that we have when we 
write list-processing code. Rather than exclude all the other various 
conventions by using only this definition, and rather than provide spe
cific definitions corresponding to each convention, we let both stand, 
with the understanding that it will be clear from the context which 
type of linked list we are using. 

One of the most common operations that we perform on lists is 
to traverse them: We scan through the items on the list sequentially, 
performing some operation on each. For example, if x is a pointer to 
the first node of a list, the final node has a null pointer, and visi t is a 
function that takes an item as an argument, then we might write 

for (t = x; t 1= NULL; t = t->next) visit(t->item); 

to traverse the list. This loop (or its equivalent while form) is as 
ubiquitous in list-processing programs as is the corresponding 

for (i = 0; i < N; i++) 

in array-processing programs. 
Program 3.10 is an implementation of a simple list-processing 

task, reversing the order of the nodes on a list. It takes a linked list 
as an argument, and returns a linked list comprising the same nodes, 
but with the order reversed. Figure 3.7 shows the change that the 
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Figure 3.7 
List reversal 

To reverse the order of a list, we 
maintain a pointer r to the por
tion of the list already processed, 
and a pointer y to the portion of 
the list not yet seen. This diagram 
shows how the pointers change 
for each node in the list. We save 
a pointer to the node following y 
in t, change y's link to point to r, 
and then move r to y and y to t. 

Program 3.10 List reversal 

This function reverses the links in a list, returning a pointer to the final 
node, which then points to the next-to-final node, and so forth, with the 
link in the first node of the original list set to NULL. To accomplish this 
task, we need to maintain links to three consecutive nodes in the list. 

link reverse(link x) 
{ link t, y = x, r = NULL; 

while (y! NULL) 
{ t = y->next; y->next r; r y; y t; } 

return r; 
} 

function makes for each node in its main loop. Such a diagram makes 
it easier for us to check each statement of the program to be sure 
that the code changes the links as intended, and programmers typi
cally use these diagrams to understand the operation of list-processing 
implementations. 

Program 3.II is an implementation of another list-processing 
task: rearranging the nodes of a list to put their items in sorted order. 
It generates N random integers, puts them into a list in the order that 
they were generated, rearranges the nodes to put their items in sorted 
order, and prints out the sorted sequence. As we discuss in Chapter 6, 
the expected running time of this program is proportional to N 2 , so the 
program is not useful for large N. Beyond this observation, we defer 
discussing the sort aspect of this program to Chapter 6, because we 
shall see a great many methods for sorting in Chapters 6 through 10. 

Our purpose now is to present the implementation as an example of a 
list-processing application. 

The lists in Program 3.II illustrate another commonly used con
vention: We maintain a dummy node called a head node at the begin
ning of each list. We ignore the item field in a list's head node, but 
maintain its link as the pointer to the node containing the first item 
in the list. The program uses two lists: one to collect the random 
input in the first loop, and the other to collect the sorted output in 
the second loop. Figure 3.8 diagrams the changes that Program 3.II 
makes during one iteration of its main loop. We take the next node 
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Program 3. I I List insertion sort 

This code generates N random integers between 0 and 999, builds a 
linked list with one number per node (first for loop), and then rearranges 
the nodes so that the numbers appear in order when we traverse the list 
(second for loop). To accomplish the sort, we maintain two lists, an 
input (unsorted) list and an output (sorted) list. On each iteration of 
the loop, we remove a node from the input and insert it into position 
in the output. The code is simplified by the use of head nodes for each 
list, that contain the links to the first nodes on the lists. For example, 
without the head node, the case where the node to be inserted into the 
output list goes at the beginning would involve extra code. 

struct node heada, headb; 
link t, u, x, a kheada, b; 
for (i = 0, t = a; i < N; i++) 

{ 

t->next malloc(sizeof *t); 
t 	 = t->next; t->next = NULL; 
t->item = rand() %1000; 

} 

b &headb; b->next = NULL; 
for et = a->next; t != NULL; t u) 

{ 

u 	= t->next; 
for ex = b; x->next != NULL; x = x->next) 

if (x->next->item > t->item) break; 
t->next = x->next; x->next = t; 

} 

off the input list, find where it belongs in the output list, and link it 
into position. 

The primary reason to use the head node at the beginning be
comes clear when we consider the process of adding the first node to 
the sorted list. This node is the one in the input list with the smallest 
item, and it could be anywhere on the list. We have three options: 

• 	 Duplicate the for loop that finds the smallest item and set up a 
one-node list in the same manner as in Program 3.9 . 

• 	 Test whether the output list is empty every time that we wish to 
insert a node. 
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Figure 3.8 
Linked-list sort 

This diagram depicts one step in 
transforming an unordered linked 
list (pointed to by a) into an or
dered one (pointed to by b), us
ing insertion sort. We take the first 
node of the unordered list, keep
ing a pointer to it in t (top). Then, 
we search through b to find the 
first node x with x->next->item 
> t->item (or x->next =NULL), 
and insert t into the list following 
x (center). These operations reduce 
the length of a by one node, and 
increase the length ofb by one 
node, keeping b in order (bottom). 
Iterating, we eventually exhaust a 
and have the nodes in order in b. 
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• Use a dummy head node whose link points to the first node on 
the list, as in the given implementation. 

The first option is inelegant and requires extra code; the second is also 
inelegant and requires extra time. 

The use of a head node does incur some cost (the extra node), 
and we can avoid the head node in many common applications. For 
example, we can also view Program 3.10 as having an input list (the 
original list) and an output list (the reversed list), but we do not need to 
use a head node in that program because all insertions into the output 
list are at the beginning. We shall see still other applications that are 
more simply coded when we use a dummy node, rather than a null link, 
at the tail of the list. There are no hard-and-fast rules about whether 
or not to use dummy nodes-the choice is a matter of style combined 
with an understanding of effects on performance. Good programmers 
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Table 3.I Head and tail conventions in linked lists 

This table gives implementations of basic list-processing operations with 
five commonly used conventions. This type of code is used in simple 
applications where the list-processing code is inline. 

Circular, never empty 

first insert: head->next = head; 

insert t after x: t->next = x->next; x->next t·. 

delete after x: x->next = x->next->next; 


traversal loop: t head; 

do { ... t = t->next; } while (t != head); 


test if one item: if (head->next == head) 


Head pointer, null tail 

initialize: head '"' NULL; 
insert t after x: if (x == NULL) { head = t; head->next = NULL; } 

else { t->next = x->next; x->next = t; } 
delete after x: t = x->next; x->next = t->next; 

traversal loop: for (t = head; t! NULL; t = t->next) 
test if empty: if (head == NULL) 

Dummy head node, null tail 

initialize: head = malloc(sizeof *head); 

head->next NULL; 


insert t after x: t->next = x->next; x->next = t; 

delete after x: t = x->next; x->next = t->next; 


traversal loop: for (t = head- >next; t != NULL; t t->next) 


test if empty: if (head->next == NULL) 


Dummy head and tail nodes 

initialize: 	head = malloc(sizeof *head); 

z = malloc(sizeof *z); 

head->next = z; z->next = Zj 


insert t after x: t->next = x->next; x->next = t; 

delete after x: x->next x->next->next; 


traversal loop: for (t = head->next; t != z; t = t->next) 

test if empty: if (head->next == z) 
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Program 3.I2 List-processing interface 

This code, which might be kept in an interface file list. h, specifies the 
types of nodes and links, and declares some of the operations that we 
might want to perform on them. We declare our own functions for 
allocating and freeing memory for list nodes. The function initNodes 
is for the convenience of the implementation. The typedef for Node and 
the functions Next and Item allow clients to use lists without dependence 
upon implementation details. 

typedef struct node* link; 

struct node { itemType item; link next; }; 

typedef link Node; 

void initNodes(int); 

link newNode(int); 

void freeNode(link); 

void insertNext(link, link) ; 

link deleteNext(link); 

link Next(link); 

int Item(link) ; 

L-_________..__.__________ ____~ 

enjoy the challenge of picking the convention that most simplifies the 
task at hand. We shall see several such tradeoffs throughout this book. 

For reference, a number of options for linked-list conventions 
are laid out in Table 3.I; others are discussed in the exercises. In all 
the cases in Table 3.I, we use a pointer head to refer to the list, and we 
maintain a consistent stance that our program manages links to nodes, 
using the given code for various operations. Allocating and freeing 
memory for nodes and filling them with information is the same for all 
the conventions. Robust functions implementing the same operations 
would have extra code to check for error conditions. The purpose of 
the table is to expose similarities and differences among the various 
options. 

Another important situation in which it is sometimes convenient 
to use head nodes occurs when we want to pass pointers to lists as 
arguments to functions that may modify the list, in the same way that 
we do for arrays. Using a head node allows the function to accept 
or return an empty list. If we do not have a head node, we need 
a mechanism for the function to inform the calling program when 
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Program 3.13 List allocation for the Josephus problem 

This program for the Josephus problem is an example of a client program 
utilizing the list-processing primitives declared in Program 3.12 and 
implemented in Program 3.14. 

#include "list.h" 

main(int argc, char *argv[]) 


{ 	 int i, N = atoi(argv[1]), M atoi(argv[2]); 
Node t, x; 
initNodes(N); 
for (i = 2, x = newNode(1); i <= N; i++) 

{ t = newNode(i); insertNext (x , t); x = t; } 
while (x != Next(x)) 

{ 

for (i = 1; i < M; i++) x Next(x); 
freeNode(deleteNext(x)); 

} 

printf("%d\n", Item(x)); 
} 

it leaves an empty list. One such mechanism-the one used for the 
function in Program 3.IO-is to have list-processing functions take 
pointers to input lists as arguments and return pointers to output lists. 
With this convention, we do not need to use head nodes. Furthermore, 
it is well suited to recursive list processing, which we use extensively 
throughout the book (see Section 5.1). 

Program 3.12 illustrates declarations for a set of black-box func
tions that implement the basic list operations, in case we choose not 
to repeat the code inline. Program 3.13 is our Josephus-election pro
gram (Program 3.9) recast as a client program that uses this interface. 
Identifying the important operations that we use in a computation 
and defining them in an interface gives us the flexibility to consider 
different concrete implementations of critical operations and to test 
their effectiveness. We consider one implementation for the opera
tions defined in Program 3.12 in Section 3.5 (see Program 3.14), but 
we could also try other alternatives without changing Program 3. I 3 
at all (see Exercise 3.52). This theme will recur throughout the book, 
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Figure 3.9 
Deletion in a doubly-linked 

list 

In a doubly-linked list, a pointer 
to a node is sufficient information 
for us to be able to remove it, as 
diagrammed here. Given t, we 
set t->next->prev to t->prev 
(center) and t->prev->next to 
t->next (bottom). 
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and we will consider mechanisms to make it easier to develop such 
implementations in Chapter 4. 

Some programmers prefer to encapsulate all operations on low
level data structures such as linked lists by defining functions for every 
low-level operation in interfaces like Program 3.12. Indeed, as we 
shall see in Chapter 4, the C class mechanism makes it easy to do 
so. However, that extra layer of abstraction sometimes masks the 
fact that just a few low-level operations are involved. In this book, 
when we are implementing higher-level interfaces, we usually write 
low-level operations on linked structures directly, to clearly expose the 
essential details of our algorithms and data structures. We shall see 
many examples in Chapter 4. 

By adding more links, we can add the capability to move back
ward through a linked list. For example, we can support the oper
ation "find the item before a given item" by using a doubly linked 
list in which we maintain two links for each node: one (prev) to 

the item before, and another (next) to the item after. With dummy 
nodes or a circular list, we can ensure that x, x->next->prev, and 
x->prev->next are the same for every node in a doubly linked list. 
Figures 3.9 and 3.10 show the basic link manipulations required to 
implement delete, insert after, and insert before, in a doubly linked 
list. Note that, for delete, we do not need extra information about 
the node before it (or the node after it) in the list, as we did for singly 
linked lists-that information is contained in the node itself. 

Indeed, the primary significance of doubly linked lists is that 
they allow us to delete a node when the only information that we have 
about that node is a link to it. Typical situations are when the link 
is passed as an argument in a function call, and when the node has 
other links and is also part of some other data structure. Providing 
this extra capability doubles the space needed for links in each node 
and doubles the number of link manipulations per basic operation, 
so doubly linked lists are not normally used unless specifically called 
for. We defer considering detailed implementations to a few specific 
situations where we have such a need-for example in Section 9.5. 

We use linked lists throughout this book, first for basic ADT 
implementations (see Chapter 4), then as components in more complex 
data structures. Linked lists are many programmers' first exposure 
to an abstract data structure that is under the programmers' direct 
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control. They represent an essential tool for our use in developing the 
high-level abstract data structures that we need for a host of important 
problems, as we shall see. 

Exercises 

C> 3.34 Write a function that moves the largest item on a given list to be the 
final node on the list. 

3.35 Write a function that moves the smallest item on a given list to be the 
first node on the list. 

3.36 Write a function that rearranges a linked list to put the nodes in even 
positions after the nodes in odd positions in the list, preserving the relative 
order of both the evens and the odds. 

3.37 Implement a code fragment for a linked list that exchanges the positions 
of the nodes after the nodes referenced by two given links t and u. 

03.38 	 Write a function that takes a link to a list as argument and returns a 
link to a copy of the list (a new list that contains the same items, in the same 
order). 

3.39 Write a function that takes two arguments-a link to a list and a func
tion that takes a link as argument-and removes all items on the given list for 
which the function returns a nonzero value. 

3.40 Solve Exercise 3.39, but make copies of the nodes that pass the test 
and return a link to a list containing those nodes, in the order that they appear 
in the original list. 

3.41 Implement a version of Program 3.10 that uses a head node. 

3.42 Implement a version of Program 3.1 I that does not use head nodes. 

3.43 Implement a version of Program 3.9 that uses a head node. 

3.44 Implement a function that exchanges two given nodes on a doubly 
linked list. 

03.45 	 Give an entry for Table 3.1 for a list that is never empty, is referred to 
with a pointer to the first node, and for which the final node has a pointer to 
itself. 

3.46 Give an entry for Table 3.1 for a circular list that has a dummy node, 
which serves as both head and taiL 

3.5 Memory Allocation for Lists 

An advantage of linked lists over arrays is that linked lists gracefully 
grow and shrink during their lifetime. In particular, their maximum 

t 

Figure 3.10 
Insertion in a doubly-linked 

list 

To insert a node into a doubly
linked list, we need to set four 
pointers. We can insert a new 
node after a given node (dia
grammed here) or before a given 
node. We insert a given node 
t after another given node x by 
setting t->next to x->next and 
x->next->prev to t(center), and 
then setting x->next to t and 
t->prev to x (bottom). 
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size does not need to be known in advance. One important practical 
ramification of this observation is that we can have several data struc
tures share the same space, without paying particular attention to their 
relative size at any time. 

The crux of the matter is to consider how the system function 
malloe might be implemented. For example, when we delete a node 

0 1 2 3 6 7 8 from a list, it is one thing for us to rearrange the links so that the node " 5 

it_~ 3 6 7 8 !I" 5 	 is no longer hooked into the list, but what does the system do with the next 1 2 3 6 7 8 0" 5 

space that the node occupied? And how does the system recycle space 
1 2 3 " Ii 6 7 8 !I such that it can always find space for a node when malloe is called1 2 3 5 6 7 8 0" 	 and more space is needed? The mechanisms behind these questions 
1. 2 3 " Ii 6 7 8 9 

0 3 5 6 7 8 1 provide another example of the utility of elementary list processing. 
" 2 

The system function free is the counterpart to malloe. When 
1 2 3 6 "I 8 !I" S 

I; .. 2 3 5 7 1:) 8 1 	 we are done using a chunk of allocated memory, we call free to inform 
the system that the chunk is available for later use. Dynamic memory

1 2 3 " 5 6 "I 8 !I 
3 .. 2 5 6 708 1 allocation is the process of managing memory and responding to calls 

., on malloe and free from client programs . 
1 2 3 Ii I; 8 9 

2 3 "II 7 1:) 8 1 When we are calling malloe directly in applications such as Pro" 5 

gram 3.9 or Program 3.II, all the calls request memory blocks of the 
1. 2 :I " Ii Il 7 8 9 

5 " 7 3 6' 2 0 8 1 	 same size. This case is typical, and an alternate method of keeping 

1. 2 :I $ ., 8 track of memory available for allocation immediately suggests itself: .. Il 1I 
8 " 7 3 .. 2. 1:) 1 5 Simply use a linked list! All nodes that are not on any list that is in 

use can be kept together on a single linked list. We refer to this list as .1 a :1 .. Ii & "I 8 9 
1 II: :I Il :a 1:) ., 5 the free list. When we need to allocate space for a node, we get it by " deleting it from the free list; when we remove a node from any of our 

Figure 3.II lists, we dispose of it by inserting it onto the free list. 
Array representation of Program 3.14 is an implementation of the interface defined ina linked list, with free list 

Program 3.12, including the memory-allocation functions. When com
This version of Figure 3.6 shows 

piled with Program 3.13, it produces the same result as the direct imthe result of maintaining a free list 
with the nodes deleted from the plementation with which we began in Program 3.9. Maintaining the 
circular list, with the index of first free list for fixed-size nodes is a trivial task, given the basic operations 
node on the free list given at the for inserting nodes onto and deleting nodes from a list. 
left. At the end of the process, the 

Figure 3.II illustrates how the free list grows as nodes are freed, free list is a linked list containing 
all the items that were deleted. for Program 3.13. For simplicity, the figure assumes a linked-list 
Following the links, starting at 1, implementation (no head node) based on array indices. 
we see the items in the order 2 9 Implementing a general-purpose memory allocator in a C en
6 3 4 7 1 5, which is the reverse 

vironment is much more .complex than is suggested by our simpleof the order in which they were 
deleted. examples, and the implementation of malloe in the standard library 
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Program 3.14 Implementation of list-processing interface 

This program gives implementations of the functions declared in Pro
gram 3.12, and illustrates a standard approach to allocating memory 
for fixed-size nodes. We build a free list that is initialized to the max
imum number of nodes that our program will use, all linked together. 
Then, when a client program allocates a node, we remove that node 
from the free list; when a client program frees a node, we link that node 
in to the free list. 

By convention, client programs do not refer to list nodes except 
through function calls, and nodes returned to client programs have self
links. These conventions provide some measure of protection against 
referencing undefined pointers. 

#include <stdlib.h> 

#include "list.h" 

link freelist; 

void initNodes(int N) 


{ 	 int i; 
freelist malloc«N+l)*(sizeof *freelist)); 
for (i 0; i < N+l; i++) 

freelist[i] .next &freelist[i+l]; 

freelist[N] .next = NULL; 


} 


link newNode(int i) 

{ 	link x = deleteNext(freelist); 


x->item = i; x->next = x; 

return x; 


} 

void freeNode(link x) 
{ insertNext(freelist, x); } 

void insertNext(link x, link t) 
{ t->next = x->next; x->next = t; } 

link deleteNext(link x) 
{ link t = x->next; x->next = t->next; return t; } 

link Next(link x) 
{ return x->next; } 

int Item(link x) 
{ return x->item; } 
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is certainly not as simple as is indicated by Program 3.14. One pri
mary difference between the two is that malloe has to handle storage
allocation requests for nodes of varying sizes, ranging from tiny to 
huge. Several clever algorithms have been developed for this purpose. 
Another approach that is used by some modern systems is to relieve the 
user of the need to free nodes explicitly by using garbage-collection 
algorithms to remove automatically any nodes not referenced by any 
link. Several clever storage management algorithms have also been de
veloped along these lines. We will not consider them in further detail 
because their performance characteristics are dependent on properties 
of specific systems and machines. 

Programs that can take advantage of specialized knowledge 
about an application often are more efficient than general-purpose 
programs for the same task. Memory allocation is no exception to this 
maxim. An algorithm that has to handle storage requests of varying 
sizes cannot know that we are always going to be making requests for 
blocks of one fixed size, and therefore cannot take advantage of that 
fact. Paradoxically, another reason to avoid general-purpose library 
functions is that doing so makes programs more portable-we can 
protect ourselves against unexpected performance changes when the 
library changes or when we move to a different system. Many pro
grammers have found that using a simple memory allocator like the 
one illustrated in Program 3.14 is an effective way to develop efficient 
and portable programs that use linked lists. This approach applies to a 
number of the algorithms that we will consider throughout this book, 
which make similar kinds of demands on the memory-management 
system. 

Exercises 

03.47 	 Write a program that frees (calls free with a pointer to) all the nodes 
on a given linked list. 

3.48 Write a program that frees the nodes in positions that are divisible by 
5 in a linked list (the fifth, tenth, fifteenth, and so forth). 

03.49 	 Write a program that frees the nodes in even positions in a linked list 
(the second, fourth, sixth, and so forth). 

3.50 Implement the interface in Program 3.12 using malloe and free di
rectly in alloeNode and freeNode, respectively. 

3.51 Run empirical studies comparing the running times of the memory
allocation functions in Program 3.14 with malloe and free (see Exer
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cise 3.50) for Program 3.13 with M = 2 and N 
106

• 

3.52 Implement the interface in Program 3.12 using array indices (and no 
head node) rather than pointers, in such a way that Figure 3.11 is a trace of 
the operation of your program. 

03.53 	 Suppose that you have a set of nodes with no null pointers (each node 
points to itself or to some other node in the set). Prove that you ultimately get 
into a cycle if you start at any given node and follow links . 

• 3.54 Under the conditions of Exercise 3.53, write a code fragment that, 
given a pointer to a node, finds the number of different nodes that it ultimately 
reaches by following links from that node, without modifying any nodes. Do 
not use more than a constant amount of extra memory space . 

•• 3.55 Under the conditions of Exercise 3.54, write a function that determines 
whether or not two given links, if followed, eventually end up on the same 
cycle. 

3.6 Strings 

We use the term string to refer to a variable-length array of characters, 
defined by a starting point and by a string-termination character mark
ing the end. Strings are valuable as low-level data structures, for two 
basic reasons. First, many computing applications involve processing 
textual data, which can be represented directly with strings. Second, 
many computer systems provide direct and efficient access to bytes of 
memory, which correspond directly to characters in strings. That is, 
in a great many situations, the string abstraction matches needs of the 
application to the capabilities of the machine. 

The abstract notion of a sequence of characters ending with a 
string-termination character could be implemented in many ways. For 
example, we could use a linked list, although that choice would exact 
a cost of one pointer per character. The concrete array-based imple
mentation that we consider in this section is the one that is built into 
C. We shall also examine other implementations in Chapter 4. 

The difference between a string and an array of characters re
volves around length. Both represent contiguous areas of memory, 
but the length of an array is set at the time that the array is created, 
whereas the length of a string may change during the execution of a 
program. This difference has interesting implications, which we shall 
explore shortly. 
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We need to reserve memory for a string, either at compile time, 
by declaring a fixed-length array of characters, or at execution time, by 
calling malloe. Once the array is allocated, we can fill it with charac
ters, starting at the beginning, and ending with the string-termination 
character. Without a string-termination character, a string is no more 
or no less than an array of characters; with the string-termination char
acter, we can work at a higher level of abstraction, and consider only 
the portion of the array from the beginning to the string-termination 
character to contain meaningful information. In C, the termination 
character is the one with value 0, also known as '\0'. 

For example, to find the length of a string, we count the num
ber of characters between the beginning and the string-termination 
character. Table 3.2 gives simple operations that we commonly per
form on strings. They all involve processing the strings by scanning 
through them from beginning to end. Many of these functions are 
available as library functions declared in <string.h>, although many 
programmers use slightly modified versions in inline code for sim
ple applications. Robust functions implementing the same operations 
would have extra code to check for error conditions. We include the 
code here not just to highlight its simplicity, but also to expose its 
performance characteristics plainly. 

One of the most important operations that we perform on strings 
is the compare operation, which tells us which of two strings would 
appear first in the dictionary. For purposes of discussion, we assume 
an idealized dictionary (since the actual rules for strings that contain 
punctuation, uppercase and lowercase letters, numbers, and so forth 
are rather complex), and compare strings character-by-character, from 
beginning to end. This ordering is called lexicographic order. We also 
use the compare function to tell whether strings are equal-by con
vention, the compare function returns a negative number if the first 
argument string appears before the second in the dictionary, returns 0 
if they are equal, and returns 1 if the first appears after the second in 
lexicographic order. It is critical to take note that doing equality testing 
is not the same as determining whether two string pointers are equal
if two string pointers are equal, then so are the referenced strings (they 
are the same string), but we also could have different string pointers 
that point to equal strings (identical sequences of characters). Numer
ous applications involve storing information as strings, then processing 

, , 
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Table 3.2 Elementary string-processing operations 

This table gives implementations of basic string-processing operations, 
using two different C language primitives. The pointer approach leads 
to more compact code, but the indexed-array approach is a more nat
ural way to express the algorithms and leads to code that is easier to 

understand. The pointer version of the concatenate operation is the 
same as the indexed array version, and the pointer version of prefixed 
compare is obtained from the normal compare in the same way as for 
the indexed array version and is omitted. The implementations all take 
time proportional to string lengths. 

Indexed array versions 
Compute string length (strlen(a)) 

for (i = 0; a[i] != 0; i++) return i; 

Copy (strcpy(a, b)} 

for (i = 0; (a[i] b[i]) != 0; i++) 

Compare (strcmp(a, b)) 

for (i 0; a[i] == b[i]; i++) 


if (a[i] == 0) return 0; 


return a[i] - b[i]; 


Compare (prefix) (strncmp(a, b, strlen(a))) 
for (i = 0; a[i] == b(i]; i++) 

if (a[i] == 0) return 0; 
if (a[i] == 0) return 0; 

return a[i] - b[i] ; 

Append(strcat(a, b)) 


strcpy(a+strlen(a), b) 


Equivalent pointer versions 
Compute string length (strlen(a)} 

b = a; while (*b++) ; return b-a-l; 

Copy (strcpy(a, b)) 


while (*a++ *b++) 


Compare (strcmp(a, b)) 


while C*a++ == *b++) 

if (*(a-l) == 0) return 0; 


return *(a-l) - *(b-l); 
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Program 3.I5 String search 

This program discovers all occurrences of a word from the command line 
in a (presumably much larger) text string. We declare the text string as a 
fixed-size character array (we could also use malloc, as in Program 3.6) 
and read it from standard input, using getchar O. Memory for the word 
from the command line-argument is allocated by the system before this 
program is invoked, and we find the string pointer in argv [1]. For each 
starting position i in a, we try matching the substring starting at that 
position with p, testing for equality character by character. Whenever 
we reach the end of p successfully, we print out the starting position i 
of the occurrence of the word in the text. 

#include <stdio.h> 
#define N 10000 
main(int argc, char *argv[]) 

{ int i, j, t; 
char a[N] , *P = argv[l]; 
for (i = 0; i < N-l; a[i] t, i++) 

if «t = getchar()) == EOF) break; 
a[i] = 0; 

for (i = 0; a[i] != 0; i++) 
{ 

for (j = 0; prj] != 0; j++) 
if (a[i+j] != prj]) break; 

if (p [j] == 0) printf ("%d i);II 

} 


printf("\n"); 


or accessing that information by comparing the strings, so the compare 
operation is a particularly critical one. We shall see a specific example 
in Section 3.7 and in numerous other places throughout the book. 

Program 3.I 5 is an implementation of a simple string-processing 
task, which prints out the places where a short pattern string appears 
within a long text string. Several sophisticated algorithms have been 
developed for this task, but this simple one illustrates several of the 
conventions that we use when processing strings in C. 

String processing provides a convincing example of the need to 
be knowledgeable about the performance of library functions. The 



ElEMENTARY DATA STRUCTURES 

problem is that a library function might take more time than we expect, 
intuitively. For example, determining the length of a string takes time 
proportional to the length of the string. Ignoring this fact can lead 
to severe performance problems. For example, after a quick look at 
the library, we might implement the pattern match in Program 3.15 as 
follows: 

for (i 0; i < strlen(a); i++) 
if (strncmp(&a[i]. p. strlen(p)) == 0) 

printf("%d H J i); 

Unfortunately, this code fragment takes time proportional to at least 
the square of the length of a, no matter what code is in the body 
of the loop, because it goes all the way through a to determine its 
length each time through the loop. This cost is considerable, even 
prohibitive: Running this program to check whether this book (which 
has more than 1 million characters) contains a certain word would 
require trillions of instructions. Problems such as this one are difficult 
to detect because the program might work fine when we are debugging 
it for small strings, but then slow down or even never finish when it 
goes into production. Moreover, we can avoid such problems only if 
we know about them! 

This kind of error is called a performance bug, because the code 
can be verified to be correct, but it does not perform as efficiently as 
we (implicitly) expect. Before we can even begin the study of efficient 
algorithms, we must be certain to have eliminated performance bugs 
of this type. Although standard libraries have many virtues, we must 
be wary of the dangers of using them for simple functions of this kind. 

One of the essential concepts that we return to time and again 
in this book is that different implementations of the same abstract 
notion can lead to widely different performance characteristics. For 
example, if we keep track of the length of the string, we can support a 
function that can return the length of a string in constant time, but for 
which other operations run more slowly. One implementation might 
be appropriate for one application; another implementation might be 
appropriate for another application. 

Library functions, all too often, cannot guarantee to provide 
the best performance for all applications. Even if (as in the case of 
strlen) the performance of a library function is well documented, we 
have no assurance that some future implementation might not involve 

II3 
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performance changes that will have adverse effects on our programs. 
This issue is critical in the design of algorithms and data structures, 
and thus is one that we must always bear in mind. We shall discuss 
other examples and further ramifications in Chapter 4. 

Strings are actually pointers to chars. In some cases, this real
ization can lead to compact code for string-processing functions. For 
example, to copy one string to another, we could write 

while (*a++ = *b++) ; 

instead of 

for (i = 0; a[i] != 0; i++) a[i] = b[i]; 

or the third option given in Table 3.2. These two ways of referring to 
strings are equivalent, but may lead to code with different performance 
properties on different machines. We generally use the array version 
for clarity and the pointer version for economy, reserving detailed 
study of which is best for particular pieces of frequently executed code 
in particular applications. 

Memory allocation for strings is more difficult than for linked 
lists because strings vary in size. Indeed, a fully general mechanism 
to reserve space for strings is neither more nor less than the system
provided malloc and free functions. As mentioned in Section 3.6, 
various algorithms have been developed for this problem, whose per
formance characteristics are system and machine dependent. Often, 
memory allocation is a less severe problem when we are working with 
strings than it might first appear, because we work with pointers to 
the strings, rather that with the characters themselves. Indeed, we do 
not normally assume in C code that all strings sit in individually allo
cated chunks of memory. We tend to assume that each string sits in 
memory of indeterminate allocation, just big enough for the string and 
its termination character. We must be very careful to ensure adequate 
allocation when we are performing operations that build or lengthen 
strings. As an example, we shall consider a program that reads strings 
and manipulates them in Section 3.7. 

Exercises 

[> 3.56 Write a program that takes a string as argument, and that prints Out a 
table giving, for each character that occurs in the string, the character and its 
frequency of occurrence. 
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t> 3.57 Write a program that checks whether a given string is a palindrome 
(reads the same backward or forward), ignoring blanks. For example, your 
program should report success for the string if i had a hifi. 

3.58 Suppose that memory for strings is individually allocated. Write ver
sions of strcpy and strcat that allocate memory and return a pointer to the 
new string for the result. 

3.59 Write a program that takes a string as argument and reads a sequence 
of words (sequences of characters separated by blank space) from standard 
input, printing out those that appear as substrings somewhere in the argument 
string. 

3.60 Write a program that replaces substrings of more than one blank in a 
given string by exactly one blank. 

3.6I Implement a pointer version of Program 3.15. 

03.62 	 Write an efficient program that finds the length of the longest sequence 
of blanks in a given string, examining as few characters in the string as possible. 
Hint: Your program should become faster as the length of the sequence of 
blanks increases. 

3.7 Compound Data Structures 

Arrays, linked lists, and strings all provide simple ways to structure 
data sequentially. They provide a first level of abstraction that we 
can use to group objects in ways amenable to processing the objects 
efficiently. Having settled on these abstractions, we can use them in 
a hierarchical fashion to build up more complex structures. We can 
contemplate arrays of arrays, arrays of lists, arrays of strings, and so 
forth. In this section, we consider examples of such structures. 

In the same way that one-dimensional arrays correspond to vec
tors, two-dimensional arrays, with two indices, correspond to matri
ces, and are widely used in mathematical computations. For example, 
we might use the following code to multiply two matrices a and b, 

leaving the result in a third matrix c. 

for (i = 0; i < N; i++) 


for (j = 0; j < N; j ++ ) 

for (k = 0, c[i] [j] = 0.0; k < N; k++) 


c [i] [j] += a[i] [k] *b [k] [j] ; 


We frequently encounter mathematical computations that are naturally 
expressed in terms of multidimensional arrays. 
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Program 3.I6 Two-dimensional array allocation 

This function dynamically allocates the memory for a two-dimensional 
array, as an array of arrays. We first allocate an array of pointers, then 
allocate memory for each row. With this function, the statement 

int **a = malloc2d(M, N); 

allocates an Al-by-N array of integers. 

int **malloc2d(int r, int c) 
{ 	 int i; 


int **t = malloc(r * sizeof(int *)); 

for (i = 0; i < r; i++) 


t[i] = malloc(c * sizeof(int)); 

return t; 


} 

Beyond mathematical applications, a familiar way to structure 
information is to use a table of numbers organized into rows and 
columns. A table of students' grades in a course might have one row 
for each student, and one column for each assignment. In C, such a 
table would be represented as a two-dimensional array with one index 
for the row and one for the column. If we were to have 100 students 
and 10 assignments, we would write grades [100] [10] to declare the 
array, and then refer to the ith student's grade on the jth assignment 
as grade [i] [j]. To compute the average grade on an assignment, we 
sum together the elements in a column and divide by the number of 
rows; to compute a particular student's average grade in the course, 
. we sum together the elements in a row and divide by the number of 
columns, and so forth. Two-dimensional arrays are widely used in 
applications of this type. On a computer, it is often convenient and 
straightforward to use more than two dimensions: An instructor might 
use a third index to keep student-grade tables for a sequence of years. 

Two-dimensional arrays are a notational convenience, as the 
numbers are ultimately stored in the computer memory, which is es
sentially a one-dimensional array. In many programming environ
ments, two-dimensional arrays are stored in row-major order in a one
dimensional array: In an array a [M] [N], the first N positions would 
be occupied by the first row (elements a[O] [0] through a[O] [N-l]), 



ELEMENTARY DATA STRUCTURES II7 

Program 3.17 Sorting an array of strings 

This program illustrates an an important string-processing function: 
rearranging a set of strings into sorted order. We read strings into a 
buffer large enough to hold them all, maintaining a pointer to each 
string in an array, then rearrange the pointers to put the pointer to the 
smallest string in the first position in the array, the pointer to the second 
smallest string in the second position in the array, and so forth. 

The qsort library function that actually does the sort takes four 
arguments: a pointer to the beginning of the array, the number of 
objects, the size of each object, and a comparison function. It achieves 
independence from the type of object being sorted by blindly rearranging 
the blocks of data that represent objects (in this case string pointers) and 
by using a comparison function that takes pointers to void as argument. 
This code casts these back to type pointer to pointer to char for strcmp. 
To actually access the first character in a string for a comparison, we 
dereference three pointers: one to get the index (which is a pointer) into 
our array, one to get the pointer to the string (using the index), and one 
to get the character (using the pointer). 

We use a different method to achieve type independence for our 
sorting and searching functions (see Chapters 4 and 6). 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#define Nmax 1000 
#define Mmax 10000 
char buf[Mmax]; int M = 0; 

int compare(void *i, void *j) 
{ return strcmp(*(char **)i, *(char **)j); } 

maine) 
{ int i, N; 

char* a [Nmax] ; 
for (N = 0; N < Nmax; N++) 

{ 

a[N] = &buf[M]; 

if (scanf("%s", a[N]) EOF) break; 

M += strlen(a[N])+l; 


} 

qsort(a, N, sizeof(char*), compare); 
for (i = 0; i < N; i++) printf("%s\n", a[i]); 

} 
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the second N positions by the second row (elements a[1] [0] through 
a[1] [N-1]), and so forth. With row-major order, the final line in the 
matrix-multiplication code in the beginning of this section is precisely 
equivalent to 

c[N*i+j] = a[N*i+k]*b[N*k+j] 

The same scheme generalizes to provide a facility for arrays with more 
dimensions. In C, multidimensional arrays may be implemented in 
a more general manner: we can define them to be compound data 
structures (arrays of arrays). This provides the flexibility, for example, 
to have an array of arrays that differ in size. 

We saw a method in Program 3.6 for dynamic allocation of ar
rays that allows us to use our programs for varying problem sizes 
without recompiling them, and would like to have a similar method 
for multidimensional arrays. How do we allocate memory for multi
dimensional arrays whose size we do not know at compile time? That 
is, we want to be able to refer to an array element such as a[iJ [j] 
in a program, but cannot declare it as int a [M] [N] (for example) be
cause we do not know the values of Mand N. For row-major order, a 
statement like 

int* a malloc(M*N*sizeof(int)); 

would be an effective way to allocate an 111-by-N array of integers, but 
this solution will not work in all C environments, because not all im
plementations use row-major order. Program 3.16 gives a solution for 
two-dimensional arrays, based on their definition as arrays of arrays. 

Program 3.17 illustrates the use of a similar compound structure: 
an array of strings. At first blush, since our abstract notion of a string 
is an array of characters, we might represent arrays of strings as ar
rays of arrays. However, the concrete representation that we use for 
a string in C is a pointer to the beginning of an array of characters, 
so an array of strings can also be an array of pointers. As illustrated 
in Figure 3.12, we then can get the effect of rearranging strings sim
ply by rearranging the pointers in the array. Program 3.17 uses the 
qsort library function-implementing such functions is the subject 
of Chapters 6 through 9 in general and of Chapter 7 in particular. 
This example illustrates a typical scenario for processing strings: we 
read the characters themselves into a huge one-dimensional array, save 
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pointers to individual strings (delimiting them with string-termination 
characters), then manipulate the pointers. 

We have already encountered another use of arrays of strings: 
the argv array that is used to pass argument strings to main in C 
programs. The system stores in a string buffer the command line 
typed by the user and passes to main a pointer to an array of pointers 
to strings in that buffer. We use conversion functions to calculate 
numbers corresponding to some arguments; we use other arguments 
as strings, directly. 

We can build compound data structures exclusively with links, as 
well. Figure 3.13 shows an example of a multilist, where nodes have 
multiple link fields and belong to independently maintained linked 
lists. In algorithm design, we often use more than one link to build 
up complex data structures, but in such a way that they are used to 
allow us to process them efficiently. For example, a doubly linked list 
is a multilist that satisfies the constraint that x->l->r and x->r->1 
are both equal to x. We shall examine a much more important data 
structure with two links per node in Chapter 5. 

Figure 3.12 

String sort 
When processing strings, we nor
mally work with pointers into a 
buffer that contains the strings 
(top), because the pointers are eas
ier to manipulate than the strings 
themselves, which val)' in length. 
For example, the result of a sort 
is to rearrange the pointers such 
that accessing them in order gives 
the strings in alphabetical (lexico
graphic) order. 
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Figure 3.13 
A multilist 

We can link together nodes with 
two link fields in two independent 
lists, one using one link field, the 
other using the other link field. 
Here, the right link field links to
gether nodes in one order (for ex
ample, this order could be the or
der in which the nodes were cre
ated) and the left link field links 
together nodes in a different order 
(for example, in this case, sorted 
order, perhaps the result of inser
tion sort using the left link field 
only), Following right links from 
a, we visit the nodes in the order 
created; following left links from b, 
we visit the nodes in sorted order. 
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Ifa multidimensional matrix is sparse (relatively few of the entries 
are nonzero), then we might use a multilist rather than a multidimen
sional array to represent it. We could use one node for each value in 
the matrix and one link for each dimension, with the link pointing to 
the next item in that dimension. This arrangement reduces the storage 
required from the product of the maximum indices in the dimensions 
to be proportional to the number of nonzero entries, but increases the 
time required for many algorithms, because they have to traverse links 
to access individual elements. 

To see more examples of compound data structures and to high
light the distinction between indexed and linked data structures, we 
next consider data structures for representing graphs. A graph is a 
fundamental combinatorial object that is defined simply as a set of 
objects (called vertices) and a set of connections among the vertices 
(called edges). We have already encountered graphs, in the connectiv
ity problem of Chapter I. 

We assume that a graph with V vertices and E edges is defined by 
a set of E pairs of integers between 0 and V-1. That is, we assume that 
the vertices are labeled with the integers 0, i, ,. " V-i, and that the 
edges are specified as pairs of vertices. As in Chapter I we take the 
pair i-j as defining a connection between i and j and thus having the 
same meaning as the pair j -i. Graphs that comprise such edges are 
called undirected graphs. We shall consider other types of graphs in 
Part 7. 

One straightforward method for representing a graph is to use a 
two-dimensional array, called an adjacency matrix. With an adjacency 
matrix, we can determine immediately whether or not there is an edge 
from vertexi to vertex j, just by checking whether row i and column 
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Program 3.18 Adjacency-matrix graph representation 

This program reads a set of edges that define an undirected graph and 
builds an adjacency-matrix representation for the graph, setting a [i) [j] 
and a[j] [i) to 1 if there is an edge from i to j or j to i in the graph, 
or to 0 if there is no such edge. The program assumes that the number 
of vertices V is a compile-time constant. Otherwise, it would need to 
dynamically allocate the array that represents the adjacency matrix (see 
Exercise 3.72). 

#include <stdio.h> 

#include <stdlib.h> 

mainO 


{ int i, j, adj[V] [V] j 


for (i = 0; i < V; i++) 

for (j = OJ j < V; j++) 


adj [i] [j] 0; 

for (i = 0; i < V; i++) adj[i] [i] = 1; 
while (scanf("%d%d\n", &i, &j) == 2) 

{ adj [i] [j] = 1; adj [j] [i] = 1; } 
} 

j of the matrix is nonzero. For the undirected graphs that we are 
considering, if there is an entry in row i and column.1, then there also 
must be an entry in row .1 and column i, so the matrix is symmetric. 
Figure 3. I4 shows an example of an adjacency matrix for an undirected 
graph; Program 3.18 shows how we can create an adjacency matrix, 
given a sequence of edges as input. 

Another straightforward method for representing a graph is to 
use an array of linked lists, called adjacency lists. We keep a linked 
list for each vertex, with a node for each vertex connected to that 
vertex. For the undirected graphs that we are considering, if there 
is a node for j in i's list, then there must be a node for i in is list. 
Figure 3.15 shows an example of the adjacency-lists representation 
of an undirected graph; Program 3.19 shows how we can create an 
adjacency-lists representation of a graph, given a sequence of edges as 
input. 

Both graph representations are arrays of simpler data structures
one for each vertex describing the edges incident on that vertex. For 

0 1 2 3 4 5 6 7 

0 1 1 1 0 0 1 1 1 

1 1 1 0 0 0 0 0 1 

2 1 0 1 0 0 0 0 1 

3 0 0 1 1 1 0 0 0 

4 0 0 0 1 1 1 1 0 

5 1 0 0 1 1 1 0 0 

6 1 0 0 0 1 0 1 0 

7 1 1 1 0 1 0 0 1 

Figure 3.14 
Graph with adjacency matrix 

representation 

A graph is a set of vertices and a 
set of edges connecting the ver
tices. For simplicity, we assign in
dices (nonnegative integers, con
secutively, starting at 0) to the ver
tices. An adjacency matrix is a 
two-dimensional array where we 
represent a graph by putting a 1 bit 
in row i and column j if and only 
if there is an edge from vertexi to 
vertex j. The array is symmetric 
about the diagonal. By convention, 
we assign 1 bits on the diagonal 
(each vertex is connected to itself). 
For example, the sixth row (and the 
sixth column) says that vertex 6 is 
connected to vertices 0, 4, and 6. 



I22 

Figure 3.15 
Adjacency-lists representation 

of a graph 

This representation of the graph in 
Figure 3.14 uses an array of lists. 
The space required is proportional 
to the number of nodes plus the 
number of edges. To find the in
dices of the vertices connected to 
a given vertex i, we look at the ith 
position in an array, which con
tains a pointer to a linked list con
taining one node for each vertex 
connected to i. 
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an adjacency matrix, the simpler data structure is implemented as an 
indexed array; for an adjacency list, it is implemented as a linked list. 

Thus, we face straightforward space tradeoffs when we repre
sent a graph. The adjacency matrix uses space proportional to V2; the 
adjacency lists use space proportional to V + E. If there are few edges 
(such a graph is said to be sparse), then the adjacency-lists representa
tion uses far less space; if most pairs of vertices are connected by edges 
(such a graph is said to be dense), the adjacency-matrix representation 
might be preferable, because it involves no links. Some algorithms will 
be more efficient with the adjacency-matrix representation, because 
it allows the question "is there an edge between vertex i and vertex 
j?" to be answered in constant time; other algorithms will be more 
efficient with the adjacency-lists representation, because it allows us to 
process all the edges in a graph in time proportional to V + rather 
than to V2. We see a specific example of this tradeoff in Section 5.8. 

Both the adjacency-matrix and the adjacency-lists graph repre
sentations can be extended straightforwardly to handle other types 
of graphs (see, for example, Exercise 3.7I). They serve as the basis 
for most of the graph-processing algorithms that we shall consider in 
Part 7. 

To conclude this chapter, we consider an example that shows the 
use of compound data structures to provide an efficient solution to the 
simple geometric problem that we considered in Section 3.2. Given 
d, we want to know how many pairs from a set of N points in the 
unit square can be connected by a straight line of length less than d. 
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Program 3.19 Adjacency-lists graph representation 

This program reads a set of edges that define a graph and builds an 
adjacency-matrix representation for the graph. An adjacency list for a 
graph is an array of lists, one for each vertex, where the jth list contains 
a linked list of the nodes connected to the jth vertex. 

#include <stdio.h> 

#include <stdlib.h> 

typedef struct node *link; 

struct node 


{ int v; link next; }; 

link NEW(int v, link next) 


{ 	 link x malloc(sizeof *x); 

x->v = v; x->next next; 

return x; 


} 

mainO 
{ 	 int i, j; link adj[V]; 


for (i = 0; i < V; i++) adj[i] = NULL; 

while (scanf("%d %d\n", &i, &j) == 2) 


{ 

adj [j] NEW(i, adj [j]) ; 
adj [i] NEW(j, adj[i]); 

} 

} 

Program 3.20 uses a two-dimensional array of linked lists to improve 
the running time of Program 3.8 by a factor of about 1/d2 when N is 
sufficiently large. It divides the unit square up into a grid of equal-sized 
smaller squares. Then, for each square, it builds a linked list of all the 
points that fall into that square. The two-dimensional array provides 
the capability to access immediately the set of points close to a given 
point; the linked lists provide the flexibility to store the points where 
they may fall without our having to know ahead of time how many 
points fall into each grid square. 

The space used by Program 3.20 is proportional to 1/d2 + N, 
but the running time is O(d2 N 2 ), which is a substantial improvement 
over the brute-force algorithm of Program 3.8 for small d. For exam
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Program 3.20 A two-dimensional array of lists 

This program illustrates the effectiveness of proper data-structure 
choice, for the geometric computation of Program 3.8. It divides the 
unit square into a grid, and maintains a two-dimensional array of linked 
lists, with one list corresponding to each grid square. The grid is chosen 
to be sufficiently fine that all points within distance d of any given point 
are either in the same grid square or an adjacent one. The function 
malloc2d is like the one in Program 3. I 6, but for objects of type link 
instead of into 

#inelude <math.h> 

#inelude <stdio.h> 

#inelude <stdlib.h> 

#inelude ~Point.h" 


typedef struet node* link; 

struet node { point p; link next; }; 

link **grid; int G; float d; int ent = 0; 

gridinsert(float x, float y) 


{ 	 int i, j; link s; 

int X = x*G +1; int Y = y*G+1; 

link t malloe(sizeof *t); 

t->p.x = x; t->p.y = y; 

for (i = X-1; i <= X+1; 


for (j = Y-1; j <= Y+l; j++) 
for (s = grid[i] [j]; s != NULL; s = s->next) 

if (distanee(s->p, t->p) < d) ent++; 
t->next = grid[X] [Y]; grid [X] [Y] = t; 

} 

main(int arge, char *argv[]) 
{ 	 int i, j, N = atoi(argv[l]); 


d = atof(argv[2]); G = lid; 

grid = malloe2d(G+2, G+2); 

for (i = 0; i < G+2; i++) 


for (j = 0; j < G+2; j++) 
grid[i] [j] = NULL; 

for (i = 0; i < N; i++) 
gridinsert(randFloat(), randFloat(»; 

printf("%d edges shorter than %f\n", ent, d); 
} 
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pie, with N = 106 and d 0.001, we can solve the problem in time 
and space that is effectively linear, whereas the brute-force algorithm 
would require a prohibitive amount of time. We can use this data 
structure as the basis for solving many other geometric problems, as 
well. For example, combined with a union-find algorithm from Chap
ter I, it gives a near-linear algorithm for determining whether a set of 
N random points in the plane can be connected together with lines of 
length d-a fundamental problem of interest in networking and circuit 
design. 

As suggested by the examples that we have seen in this section, 
there is no end to the level of complexity that we can build up from the 
basic abstract constructs that we can use to structure data of differing 
types into objects and sequence the objects into compound objects, 
either implicitly or with explicit links. These examples still leave us 
one step away from full generality in structuring data, as we shall see 
in Chapter 5. Before taking that step, however, we shall consider the 
important abstract data structures that we can build with linked lists 
and arrays-basic tools that will help us in developing the next level 
of generality. 

Exercises 

3.63 Write a version of Program 3.16 that handles three-dimensional arrays. 

3.64 Modify Program 3.17 to process input strings individually (allocate 
memory for each string after reading it from the input). You can assume that 
all strings have less than 100 characters. 

3.65 Write a program to fill in a two-dimensional array of 0-1 values by 
setting a [i] [j] to 1 if the greatest common divisor of i and j is 1, and to a 
othenvise. 

3.66 Use Program 3.20 in conjunction with Program 1.4 to develop an effi
cient program that can determine whether a set of N points can be connected 
with edges of length less than d. 

3.67 Write a program to convert a sparse matrix from a two-dimensional 
array to a multilist with nodes for only nonzero values . 

• 3.68 Implement matrix multiplication for matrices represented with multi
lists. 

f> 3.69 Show the adjacency matrix that is built by Program 3.18 given the 
input pairs 0-2,1-4,2-5,3-6,0-4,6-0, and 1-3. 

f> 3.70 Show the adjacency lists that are built by Program 3.19 given the input 
pairs 0-2, 1-4, 2-5, 3-6, 0-4, 6-0, and 1-3. 
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03.71 	 A directed graph is one where vertex connections have orientations: 
edges go from one vertex to another. Do Exercises 3.69 and 3.70 under the 
assumption that the input pairs represent a directed graph, with i - j signifying 
that there is an edge from i to j. Also, draw the graph, using arrows to 
indicate edge orientations. 

3.72 Modify Program 3.18 to take the number of vertices as a command-line 
argument, then dynamically allocate the adjacency matrix. 

3.73 Modify Program 3.19 to take the number of vertices as a command-line 
argument, then dynamically allocate the array of lists. 

03.74 	 Write a function that uses the adjacency matrix of a graph to calculate, 
given vertices a and b, the number of vertices c with the property that there is 
an edge from a to c and from c to b. 

o 3.75 Answer Exercise 3.74, but use adjacency lists. 
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Abstract Data Types 

D EVELOPING ABSTRACT MODELS for our data and for the 
ways in which our programs process those data is an essential 

ingredient in the process of solving problems with a computer. We see 
examples of this principle at a low level in everyday programming (for 
example when we use arrays and linked lists, as discussed in Chap
ter 3) and at a high level in problem-solving (as we saw in Chapter I, 

when we used union-find forests to solve the connectivity problem). 
In this chapter, we consider abstract data types (ADTs), which allow 
us to build programs that use high-level abstractions. With abstract 
data types, we can separate the conceptual transformations that our 
programs perform on our data from any particular data-structure rep
resentation and algorithm implementation. 

All computer systems are based on layers of abstraction: We 
adopt the abstract model of a bit that can take on a binary 0-1 value 
from certain physical properties of silicon and other materials; then, 
we adopt the abstract model of a machine from dynamic properties of 
the values of a certain set of bits; then, we adopt the abstract model 
of a programming language that we realize by controlling the machine 
with a machine-language program; then, we adopt the abstract notion 
of an algorithm implemented as a C language program. Abstract data 
types allow us to take this process further, to develop abstract mecha
nisms for certain computational tasks at a higher level than provided 
by the C system, to develop application-specific abstract mechanisms 
that are suitable for solving problems in numerous applications ar
eas, and to build higher-level abstract mechanisms that use these basic 
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mechanisms. Abstract data types give us an ever-expanding set of tools 
that we can use to attack new problems. 

On the one hand, our use of abstract mechanisms frees us from 
detailed concern about how they are implemented; on the other hand, 
when performance matters in a program, we need to be cognizant of 
the costs of basic operations. We use many basic abstractions that are 
built into the computer hardware and provide the basis for machine 
instructions; we implement others in software; and we use still others 
that are provided in previously written systems software. Often, we 
build higher-level abstract mechanisms in terms of more primitive ones. 
The same basic principle holds at all levels: We want to identify the 
critical operations in our programs and the critical characteristics of 
our data, to define both precisely at an abstract level, and to develop 
efficient concrete mechanisms to support them. We consider many 
examples of this principle in this chapter. 

To develop a new layer of abstraction, we need to define the 
abstract objects that we want to manipulate and the operations that we 
perform on them; we need to represent the data in some data structure 
and to implement the operations; and (the point of the exercise) we 
want to ensure that the objects are convenient to use to solve an 
applications problem. These comments apply to simple data types 
as well, and the basic mechanisms that we discussed in Chapter 3 
to support data types will serve our purposes, with one significant 
extension. 

Definition 4.1 An abstract data type (ADT) is a data type (a set of 
values and a collection of operations on those values) that is accessed 
only through an interface. We refer to a program that uses an ADT as a 
client, and a program that specifies the data type as an implementation. 

The key distinction that makes a data type abstract is drawn by the 
word only: with an ADT, client programs do not access any data values 
except through the operations provided in the interface. The represen
tation of the data and the functions that implement the operations are 
in the implementation, and are completely separated from the client, 
by the interface. We say that the interface is opaque: the client cannot 
see the implementation through the interface. 

For example, the interface for the data type for points (Pro
gram 3.3) in Section 3. I explicitly declares that points are represented 
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as structures with pairs of floats, with members named x and y. In
deed, this use of data types is common in large software systems: we 
develop a set of conventions for how data is to be represented (and 
define a number of associated operations) and make those conventions 
available in an interface for use by client programs that comprise a 
large system. The data type ensures that all parts of the system are in 
agreement on the representation of core system-wide data structures. 
While valuable, this strategy has a flaw: if we need to change the 
data representation, then we need to change all the client programs. 
Program 3.3 again provides a simple example: one reason for devel
oping the data type is to make it convenient for client programs to 
manipulate points, and we expect that clients will access the individ
ual coordinates when needed. But we cannot change to a different 
representation (polar coordinates, say, or three dimensions, or even 
different data types for the individual coordinates) without changing 
all the client programs. 

OUf implementation of a simple list-processing interface in Sec
tion 3.4 (Program 3.12) is an example of a first step towards an ADT. In 
the client program that we considered (Program 3.13), we adopted the 
convention that we would access the data only through the operations 
defined in the interface, and were therefore able to consider chang
ing the representation without changing the client (see Exercise 3.52). 
Adopting such a convention amounts to using the data type as though 
it was abstract, but leaves us exposed to subtle bugs, because the data 
representation remains available to clients, in the interface, and we 
would have to be vigilant to ensure that they do not depend upon it, 
even if accidentally. With true ADTs, we provide no information to 
clients about data representation, and are thus free to change it. 

Definition 4.1 does not specify what an interface is or how the 
data type and the operations are to be described. This imprecision 
is necessary because specifying such information in full generality re
quires a formal mathematical language and eventually leads to difficult 
mathematical questions. This question is central in programming lan
guage design. We shall discuss the specification problem further after 
we consider examples of ADTs. 

ADTs have emerged as an effective mechanism for organizing 
large modern software systems. They provide a way to limit the size 
and complexity of the interface between (potentially complicated) al
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gorithms and associated data structures and (a potentially large num
ber of) programs that use the algorithms and data structures. This 
arrangement makes it easier to understand a large applications pro
gram as a whole. Moreover, unlike simple data types, ADTs provide 
the flexibility necessary to make it convenient to change or improve 
the fundamental data structures and algorithms in the system. Most 
important, the ADT interface defines a contract between users and 
implementors that provides a precise means of communicating what 
each can expect of the other. 

We examine ADTs in detail in this chapter because they also play 
an important role in the study of data structures and algorithms. In
deed, the essential motivation behind the development of nearly all the 
algorithms that we consider in this book is to provide efficient imple
mentations of the basic operations for certain fundamental ADTs that 
playa critical role in many computational tasks. Designing an ADT is 
only the first step in meeting the needs of applications programs-we 
also need to develop viable implementations of the associated opera
tions and underlying data structures that enable them. Those tasks are 
the topic of this book. Moreover, we use abstract models directly to 
develop and to compare the performance characteristics of algorithms 
and data structures, as in the example in Chapter I: Typically, we de
velop an applications program that uses an ADT to solve a problem, 
then develop multiple implementations of the ADT and compare their 
effectiveness. In this chapter, we consider this general process in detail, 
with numerous examples. 

C programmers use data types and ADTs regularly. At a low 
level, when we process integers using only the operations provided by 
C for integers, we are essentially using a system-defined abstraction 
for integers. The integers could be represented and the operations 
implemented some other way on some new machine, but a program 
that uses only the operations specified for integers will work properly 
on the new machine. In this case, the various C operations for integers 
constitute the interface, our programs are the clients, and the system 
hardware and software provide the implementation. Often, the data 
types are sufficiently abstract that we can move to a new machine with, 
say, different representations for integers or floating point numbers, 
without having to change programs (though this ideal is not achieved 
as often as we would like). 
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At a higher level, as we have seen, C programmers often define 
interfaces in the form of .h files that describe a set of operations on 
some data structure, with implementations in some independent . c 
file. This arrangement provides a contract between user and imple
mentor, and is the basis for the standard libraries that are found in C 
programming environments. However, many such libraries comprise 
operations on a particular data structure, and therefore constitute data 
types, but not abstract data types. For example, the C string library is 
not an ADT because programs that use strings know how strings are 
represented (arrays of characters) and typically access them directly 
via array indexing or pointer arithmetic. We could not switch, for 
example, to a linked-list representation of strings without changing 
the client programs. The memory-allocation interface and implemen
tation for linked lists that we considered in Sections 3.4 and 3.5 has 
this same property. By contrast, ADTs allow us to develop implemen
tations that not only use different implementations of the operations, 
but also involve different underlying data structures. Again, the key 
distinction that characterizes ADTs is the requirement that the data 
type be accessed only through the interface. 

We shall see many examples of data types that are abstract 
throughout this chapter. After we have developed a feel for the con
cept, we shall return to a discussion of philosophical and practical 
implications, at the end of the chapter. 

4.1 Abstract Objects and Collections of Objects 

The data structures that we use in applications often contain a great 
deal of information of various types, and certain pieces of information 
may belong to multiple independent data structures. For example, a 
file of personnel data may contain records with names, addresses, and 
various other pieces of information about employees; and each record 
may need to belong to one data structure for searching for particular 
employees, to another data structure for answering statistical queries, 
and so forth. 

Despite this diversity and complexity, a large class of computing 
applications involve generic manipulation of data objects, and need 
access to the information associated with them for a limited number 
of specific reasons. Many of the manipulations that are required are 
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a natural outgrowth of basic computational procedures, so they are 
needed in a broad variety of applications. Many of the fundamental 
algorithms that we consider in this book can be applied effectively 
to the task of building a layer of abstraction that can provide client 
programs with the ability to perform such manipulations efficiently. 
Thus, we shall consider in detail numerous ADTs that are associated 
with such manipulations. They define various operations on collec
tions of abstract objects, independent of the type of tbe object. 

We have discussed the use of simple data types in order to write 
code that does not depend on object types, in Chapter 3, where we 
used typedef to specify the type of our data items. This approach 
allows us to use the same code for, say, integers and floating-point 
numbers, just by changing the typedef. With pointers, the object 
types can be arbitrarily complex. When we use this approach, we are 
making implicit assumptions about the operations that we perform on 
the objects, and we are not hiding the data representation from our 
client programs. ADTs provide a way for us to make explicit any 
assumptions about the operations that we perform on data objects. 

We will consider a general mechanism for the purpose of building 
ADTs for generic data objects in detail in Section 4.8. It is based on 
having the interface defined in a file named Item. h, which provides us 
with the ability to declare variables of type Item, and to use these vari
ables in assignment statements, as function arguments, and as function 
return values. In the interface, we explicitly define any operations that 
our algorithms need to perform on generic objects. The mechanism 
that we shall consider allows us to do all this without providing any 
information about the data representation to client programs, thus 
giving us a true ADT. 

For many applications, however, the different types of generic 
objects that we want to consider are simple and similar, and it is 
essential that the implementations be as efficient as possible, so we 
often use simple data types, not true ADTs. Specifically, we often 
use Item. h files that describe the objects themselves, not an interface. 
Most often, this description consists of a typedef to define the data 
type and a few macros to define the operations. For example, for 
an application where the only operation that we perform on the data 
(beyond the generic ones enabled by tbe typedef) is eq (test whether 
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two items are the same), we would use an Item. h file comprising the 
two lines of code: 

typedef int Item 
#define eq(A, B) (A == B) . 

Any client program with the line #include Item. h can use eq to test 
whether two items are equal (as well as using items in declarations, 
assignment statements, and function arguments and return values) in 
the code implementing some algorithm. Then we could use that same 
client program for strings, for example, by changing Item.h to 

typedef char* Item; 
#define eq(A, B) (strcmp(A, B) == 0) . 

This arrangement does not constitute the use of an ADT because the 
particular data representation is freely available to any program that 
includes Item. h. We typically would add macros or function calls 
for other simple operations on items (for example to print them, read 
them, or set them to random values). We adopt the convention in our 
client programs that we use items as though they were defined in an 
ADT, to allow us to leave the types of our basic objects unspecified 
in our code without any performance penalty. To use a true ADT for 
such a purpose would be overkill for many applications, but we shall 
discuss the possibility of doing so in Section 4.8, after we have seen 
many other examples. In principle, we can apply the technique for 
arbitrarily complicated data types, although the more complicated the 
type, the more likely we are to consider the use of a true ADT. 

Having settled on some method for implementing data types for 
generic objects, we can move on to consider collections of objects. 
Many of the data structures and algorithms that we consider in this 
book are used to implement fundamental ADTs comprising collections 
of abstract objects, built up from the following two operations: 

• insert a new object into the collection. 

• delete an object from the collection. 

We refer to such ADTs as generalized queues. For convenience, we 
also typically include explicit operations to initialize the data structure 
and to count the number of items in the data structure (or just to test 
whether it is empty). Alternatively, we could encompass these oper
ations within insert and delete by defining appropriate return values. 

I33 
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We also might wish to destroy the data structure or to copy it; we shall 
discuss such operations in Section 4.8. 

When we insert an object, our intent is clear, but which object 
do we get when we delete an object from the collection? Different 
ADTs for collections of objects are characterized by different criteria 
for deciding which object to remove for the delete operation and by 
different conventions associated with the various criteria. Moreover, 
we shall encounter a number of other natural operations beyond in
sert and delete. Many of the algorithms and data structures that we 
consider in this book were designed to support efficient implementa
tion of various subsets of these operations, for various different delete 
criteria and other conventions. These ADTs are conceptually simple, 
used widely, and lie at the core of a great many computational tasks, 
so they deserve the careful attention that we pay them. 

We consider several of these fundamental data structures, their 
properties, and examples of their application while at the same time us
ing them as examples to illustrate the basic mechanisms that we use to 
develop ADTs. In Section 4.2, we consider the pushdown stack, where 
the rule for removing an object is to remove the one that was most 
recently inserted. We consider applications of stacks in Section 4.3, 
and implementations in Section 4.4, including a specific approach to 
keeping the applications and implementations separate. Following our 
discussion of stacks, we step back to consider the process of creating 
a new ADT, in the context of the union-find abstraction for the con
nectivity problem that we considered in Chapter L Following that, 
we return to collections of abstract objects, to consider FIFO queues 
and generalized queues (which differ from stacks on the abstract level 
only in that they involve using a different rule to remove items) and 
generalized queues where we disallow duplicate items. 

As we saw in Chapter 3, arrays and linked lists provide basic 
mechanisms that allow us to insert and delete specified items. Indeed, 
linked lists and arrays are the underlying data structures for several 
of the implementations of generalized queues that we consider. As we 
know, the cost of insertion and deletion is dependent on the specific 
structure that we use and the specific item being inserted or deleted. 
For a given ADT, our challenge is to choose a data structure that allows 
us to perform the required operations efficiently, In this chapter, we 
examine in detail several examples of ADTs for which linked lists and 
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arrays provide appropriate solutions. ADTs that support more power
ful operations require more sophisticated implementations, which are 
the prime impetus for many of the algorithms that we consider in this 
book. 

Data types comprising collections of abstract objects (generalized 
queues) are a central object of study in computer science because they 
directly support a fundamental paradigm of computation. For a great 
many computations, we find ourselves in the position of having many 
objects with which to work, but being able to process only one object at 
a time. Therefore, we need to save the others while processing that one. 
This processing might involve examining some of the objects already 
saved away or adding more to the collection, but operations of saving 
the objects away and retrieving them according to some criterion are 
the basis of the computation. Many classical data structures and 
algorithms fit this mold, as we shall see. 

Exercises 

I> 4.1 Give a definition for Item and eq that might be used for floating-point 
numbers, where two floating-point numbers are considered to be equal if the 
absolute value of their difference divided by the larger (in absolute value) of 
the two numbers is less than 10-6 

• 

I> 4.2. Give a definition for Item and eq that might be used for points in the 
plane (see Section 3.1). 

4.3 Add a macro ITEMshow to the generic object type definitions for integers 
and strings described in the text. Your macro should print the value of the 
item on standard output. 

1>4.4 Give definitions for Item and ITEMshow (see Exercise 4.3) that might 
be used in programs that process playing cards. 

4.5 Rewrite Program 3.1 to use a generic object type in a file Item. h. Your 
object type should include ITEMshow (see Exercise 4.3) and ITEMrand, so that 
the program can be used for any type of number for which + and / are defined. 

4.2 Pushdown Stack ADT 

Of the data types that support insert and delete for collections of 
objects, the most important is called the pushdown stack. 

A stack operates somewhat like a busy professor's "in" box: 
work piles up in a stack, and whenever the professor has a chance to 
get some work done, it comes off the top. A student's paper might 
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well get stuck at the bottom of the stack for a day or two, but a 
conscientious professor might manage to get the stack emptied at the 
end of the week. As we shall see, computer programs are naturally 
organized in this way. They frequently postpone some tasks while 
doing others; moreover, they frequently need to return to the most 
recently postponed task first. Thus, pushdown stacks appear as the 
fundamental data structure for many algorithms. 

Definition 4.2 A pushdown stack is an ADT that comprises two 
basic operations: insert (push) a new item, and delete (pop) the item 
that was most recently inserted. 

That is, when we speak of a pushdown stack ADT, we are referring to 
a description of the push and pop operations that is sufficiently well 
specified that a client program can make use of them, and to some 
implementation of the operations enforcing the rule that characterizes 
a pushdown stack: items are removed according to a last-in, first-out 
(LIFO) discipline. In the simplest case, which we use most often, both 
client and implementation refer to just a single stack (that is, the "set 
of values" in the data type is just that one stack); in Section 4.8, we 
shall see how to build an ADT that supports multiple stacks. 

Figure 4.1 shows how a sample stack evolves through a series of 
push and pop operations. Each push increases the size of the stack by 
1 and each pop decreases the size of the stack by 1. In the figure, the 
items in the stack are listed in the order that they are put on the stack, 
so that it is clear that the rightmost item in the list is the one at the top 
of the stack-the item that is to be returned if the next operation is 
pop. In an implementation, we are free to organize the items any way 
that we want, as long as we allow clients to maintain the illusion that 
the items are organized in this way. 

To write programs that use the pushdown stack abstraction, we 
need first to define the interface. In C, one way to do so is to declare 
the four operations that client programs may use, as illustrated in 
Program 4.1. We keep these declarations in a file STACK. h that is 
referenced as an include file in client programs and implementations. 

Furthermore, we expect that there is no other connection be
tween client programs and implementations. We have already seen, in 
Chapter I, the valut of identifying the abstract operations on which 
a computation is based. We are now considering a mechanism that 
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Program 4. I Pushdown-stack ADT interface 

This interface defines the basic operations that define a pushdown stack. 
We assume that the four declarations here are in a file STACK. h, which is 
referenced as an include file by client programs that use these functions 
and implementations that provide their code; and that both clients and 
implementations define Item, perhaps by including an Item. h file (which 
may have a typedef or which may define a more general interface). The 
argument to STACKinit specifies the maximum number of elements 
expected on the stack. 

void STACKinit(int); 

int STACKempty(); 


void STACKpush(Item); 


allows us to write programs that use these abstract operations. To 
enforce the abstraction, we hide the data structure and the implemen
tation from the client. In Section 4.3, we consider examples of client 
programs that use the stack abstraction; in Section 4.4, we consider 
implementations. 

In an ADT, the purpose of the interface is to serve as a contract 
between client and implementation. The function declarations ensure 
that the calls in the client program and the function definitions in 
the implementation match, but the interface otherwise contains no 
information about how the functions are to be implemented, or even 
how they are to behave. How can we explain what a stack is to a 
client program? For simple structures like stacks, one possibility is to 
exhibit the code, but this solution is clearly not effective in general. 
Most often, programmers resort to English-language descriptions, in 
documentation that accompanies the code. 

A rigorous treatment of this situation requires a full descrip
tion, in some formal mathematical notation, of how the functions are 
supposed to behave. Such a description is sometimes called a specifica
tion. Developing a specification is generally a challenging task. It has 
to describe any program that implements the functions in a mathemat
ical metalanguage, whereas we are used to specifying the behavior of 
functions with code written in a programming language. In practice, 
we describe behavior in English-language descriptions. Before getting 
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drawn further into epistemological issues, we move on. In this book, 
we give detailed examples, English-language descriptions, and multiple 
implementations for most of the ADTs that we consider. 

To emphasize that our specification of the pushdown stack ADT 
is sufficient information for us to write meaningful client programs, 
we consider, in Section 4.3, two client programs that use pushdown 
stacks, before considering any implementation. 

Exercises 

I> 4.6 A letter means push and an asterisk means pop in the sequence 

E AS' Y • QUE' * * S T * * * 10* N * * *. 

Give the sequence of values returned by the pop operations. 

4.7 Using the conventions of Exercise 4.6, give a way to insert asterisks 
in the sequence E A S Y so that the sequence of values returned by the pop 
operations is (i) E A S Y ; (ii) Y S A E ; (iii) A S Y E ; (iv) AYE S ; or, in each 
instance, prove that no such sequence exists . 

•• 4.8 Given two sequences, give an algorithm for determining whether or not 
asterisks can be added to make the first produce the second, when interpreted 
as a sequence of stack operations in the sense of Exercise 4.7. 

4.3 Examples of Stack ADT Clients 

We shall see a great many applications of stacks in the chapters that 
follow. As an introductory example, we now consider the use of stacks 
for evaluating arithmetic expressions. For example, suppose that we 
need to find the value of a simple arithmetic expression involving 
multiplication and addition of integers, such as 

5 * ( ( ( 9 + 8 ) * ( 4 * 6 ) ) + 7 ) 

The calculation involves saving intermediate results: For example, if 
we calculate 9 + 8 first, then we have to save the result 17 while, say, 
we compute 4 * 6. A pushdown stack is the ideal mechanism for 
saving intermediate results in such a calculation. 

We begin by considering a simpler problem, where the expres
sion that we need to evaluate is in a form where each operator appears 
after its two arguments, rather than between them. As we shall see, 
any arithmetic expression can be arranged in this form, which is called 
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postfix, by contrast with infix, the customary way of writing arith
metic expressions. The postfix representation of the expression in the 
previous paragraph is 

5 9 8 + 4 6 * * 7 + * 
The reverse of postfix is called prefix, or Polish notation (because it 
was invented by the Polish logician Lukasiewicz). 

In infix, we need parentheses to distinguish, for example, 

5 * ( ( ( 9 + 8 ) * ( 4 * 6 ) ) + 7 ) 

from 

( 5 * 9 ) + 8 ) * ( ( 4 * 6 ) + 7 ) 

but parentheses are unnecessary in postfix (or prefix). To see why, we 
can consider the following process for converting a postfix expression 
to an infix expression: We replace all occurrences of two operands 
followed by an operator by their infix equivalent, with parentheses, 
to indicate that the result can be considered to be an operand. That 
is, we replace any occurrence of a b * and a b + by (a * b) and 
(a + b), respectively. Then, we perform the same transformation on 
the resulting expression, continuing until all the operators have been 
processed. For our example, the transformation happens as follows: 

5 9 8 + 46* * 7 + * 
5 ( 9 + 8 ) ( 4 * 6 ) * 7 + * 
5 ( ( 9 + 8 ) * ( 4 * 6 ) ) 7 + * 
5 ( ( ( 9 + 8 * ( 4 * 6 ) ) + 7 ) * 
(5*«(9+ 8 ) * ( 4 * 6 ) ) + 7 ) ) 

We can determine the operands associated with any operator in the 
postfix expression in this way, so no parentheses are necessary. 

Alternatively, with the aid of a stack, we can actually perform 
the operations and evaluate any postfix expression, as illustrated in 
Figure 4.2. Moving from left to right, we interpret each operand as 
the command to "push the operand onto the stack," and each operator 
as the commands to "pop the two operands from the stack, perform the 
operation, and push the result." Program 4.2 is a C implementation 
of this process. 

Postfix notation and an associated pushdown stack give us a 
natural way to organize a series of computational procedures. Some 
calculators and some computing languages explicitly base their method 
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Program 4.2 Postfix-expression evaluation 

This pushdown-stack client reads any postfix expression involving mul
tiplication and addition of integers, then evaluates the expression and 
prints the computed result. 

When we encounter operands, we push them on the stack; when 
we encounter operators, we pop the top two entries from the stack and 
push the result of applying the operator to them. The order in which 
the two STACKpopO operations are performed in the expressions in this 
code is unspecified in C, so the code for noncommutative operators such 
as subtraction or division would be slightly more complicated. 

The program assumes that at least one blank follows each integer, 
but otherwise does not check the legality of the input at all. The final 
if statement and the while loop perform a calculation similar to the 
C atoi function, which converts integers from ASCII strings to inte
gers for calculation. When we encounter a new digit, we multiply the 
accumulated result by 10 and add the digit. 

The stack contains integers-that is, we assume that Item is de
fined to be int in Item.h, and that Item.h is also included in the stack 
implementation (see, for example, Program 4.4). 

#include <stdio.h> 
#include <string.h> 
#include "Item.h" 
#include "STACK.h" 
main(int argc, char *argv[]) 

{ char *a = argv[1]; int i, N strlen(a); 
STACKinit (N) j 
for (i = OJ i < N; i++) 

{ 

if (a[i] == '+') 
STACKpush(STACKpop()+STACKpop())j 

if (a[i] == '*') 
STACKpush(STACKpop()*STACKpop()); 

if «a[i] >= '0') && (a[i] <= '9')) 
STACKpush(O); 

while «a[i] >= '0') && (a[i] <= '9')) 
STACKpush(10*STACKpop() + (a[i++]-'O'))j 

} 

printf("%d \n", STACKpopO); 
} 
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of calculation on postfix and stack operations--every operation pops 
its arguments from the stack and returns its results to the stack. 

One example of such a language is the PostScript language, which 
is used to print this book. It is a complete programming language 
where programs are written in postfix and are interpreted with the 
aid of an internal stack, precisely as in Program 4.2. Although we 
cannot cover all the aspects of the language here (see reference section), 
it is sufficiently simple that we can study some actual programs, to 
appreciate the utility of the postfix notation and the pushdown-stack 
abstraction. For example, the string 

5 9 8 add 4 6 mul mul 7 add mul 

is a PostScript program! Programs in PostScript consist of operators 
(such as add and mull and operands (such as integers). As we did in 
Program 4.2 we interpret a program by reading it from left to right: If 
we encounter an operand, we push it onto the stack; if we encounter 
an operator, we pop its operands (if any) from the stack and push the 
result (if any). Thus, the execution of this program is fully described 
by Figure 4.2: The program leaves the value 2075 on the stack. 

PostScript has a number of primitive functions that serve as in
structions to an abstract plotting device; we can also define our own 
functions. These functions are invoked with arguments on the stack in 
the same way as any other function. For example, the PostScript code 

o 0 moveto 144 hill 0 72 moveto 72 hill stroke 

corresponds to the sequence of actions "call moveto with arguments 
o and 0, then call hill with argument 144," and so forth. Some 
operators refer directly to the stack itself. For example the operator 
dup duplicates the entry at the top of the stack so, for example, the 
PostScript code 

144 dup 0 rlineto 60 rotate dup 0 rlineto 

corresponds to the sequence of actions "call rlineto with arguments 
144 and 0, then call rotate with argument 60, then call rlineto 
with arguments 144 and 0," and so forth. The PostScript program in 
Figure +3 defines and uses the function hill. Functions in PostScript 
are like macros: The sequence /hill { A } def makes the name hill 
equivalent to the operator sequence inside the braces. Figure 4.3 is an 
example of a PostScript program that defines a function and draws a 
simple diagram. 

/hill { 
dup 0 rlineto 
60 rotate 
dup 0 rlineto 
-120 rotate 
dup 0 rlineto 
60 rotate 
dup 0 rlineto 
pop 

} def 

00 moveto 

144 hill 

072 moveto 

72 hill 

stroke 


Figure 4.3 
Sample PostScript program 

The diagram at the top was drawn 
by the PostScript program below 
it. The program is a postfix expres
sion that uses the built-in func
tions moveto, rlineto, rotate, 
stroke and dup; and the user
defined function hill (see text). 
The graphics commands are in
structions to a plotting device: 
moveto instructs that device to go 
to the specified pOSition on the 
page (coordinates are in pOints, 
which are 1172 inch); rlineto 
instructs it to move to the speci
fied position in coordinates relative 
to its current position, adding the 
line it makes to its current path; 
rotate instructs it to turn left the 
specified number of degrees; and 
stroke instructs it to draw the 
path that it has traced. 
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sion to postfix 
This sequence shows the use of a 
stack to convert the infix expres
sion (5* « (9+8) * (4*6) )+7)) to 
its postfix form 5 9 8 + 4 6 * * 7 
+ * . We proceed from left to right 
through the expression: If we en
counter a number; we write it to 
the output; if we encounter a left 
parenthesis, we ignore it; if we en
counter an operator; we push it on 
the stack; and if we encounter a 
right parenthesis, we write the op
erator at the top of the stack to the 
output. 

In the present context, our interest in PostScript is that this widely 
used programming language is based on the pushdown-stack abstrac
tion. Indeed, many computers implement basic stack operations in 
hardware because they naturally implement a function-call mecha
nism: Save the current environment on entry to a function by pushing 
information onto a stack; restore the environment on exit by using in
formation popped from the stack. As we see in Chapter 5, this connec
tion between pushdown stacks and programs organized as functions 
that call functions is an essential paradigm of computation. 

Returning to our original problem, we can also use a pushdown 
stack to convert fully parenthesized arithmetic expressions from infix 
to postfix, as illustrated in Figure 4.4. For this computation, we push 
the operators onto a stack, and simply pass the operands through to 
the output. Then, each right parenthesis indicates that both arguments 
for the last operator have been output, so the operator itself can be 
popped and output . 

Program 4.3 is an implementation of this process. Note that 
arguments appear in the postfix expression in the same order as in the 
infix expression. It is also amusing to note that the left parentheses 
are not needed in the infix expression. The left parentheses would 
be required, however, if we could have operators that take differing 
numbers of operands (see Exercise 4.II). 

In addition to providing two different examples of the use of 
the pushdown-stack abstraction, the entire algorithm that we have 
developed in this section for evaluating infix expressions is itself an 
exercise in abstraction. First, we convert the input to an intermedi
ate representation (postfix). Second, we simulate the operation of an 
abstract stack-based machine to interpret and evaluate the expression. 
This same schema is followed by many modern programming-language 
translators, for efficiency and portability: The problem of compiling a 
C program for a particular computer is broken into two tasks centered 
around an intermediate representation, so that the problem of trans
lating the program is separated from the problem of executing that 
program, just as we have done in this section. We shall see a related, 
but different, intermediate representation in Section 5.7. 

This application also illustrates that ADTs do have their limita
tions. For example, the conventions that we have discussed do not 
provide an easy way to combine Programs 4.2 and 4.3 into a single 
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Program 4.3 Infix-to-postfix conversion 

This program is another example of a pushdown-stack client. In this 
case, the stack contains characters-we assume that Item is defined to 
be char (that is, we use a different Item.h file than for Program 4.2). 
To convert (A+B) to the postfix form AB+, we ignore the left parenthesis, 
convert A to postfix, save the + on the stack, convert B to postfix, then, 
on encountering the right parenthesis, pop the stack and output the +. 

#include <stdio.h> 
#include .h> 
#include "Item.h" 
#include "STACK.h" 
main(int argc, char *argv[]) 

{ char *a = argv[1]; int i, N strlen(a); 
STACKinit(N); 
for (i = 0; i < N; i++) 

{ 

if (a [i] == ,),) 

printf("%c ", STACKpopO); 
if «a[i] '+') II Ca[i] '*')) 

STACKpush(a ); 
if CCa[i] >= '0') && Ca[i] <= '9')) 

printf("%c ", a[i]); 
} 

printfC"\n"); 
} 

program, using the same pushdown-stack ADT for both. ~ot only do 
we need two different stacks, but also one of the stacks holds single 
characters (operators), whereas the other holds numbers. To better ap
preciate the problem, suppose that the numbers are, say, floating-point 
numbers, rather than integers. Using a general mechanism to allow 
sharing the same implementation between both stacks (an extension of 
the approach that we consider in Section 4.8) is likely to be more trou
ble than simply using two different stacks (see Exercise 4.16). In fact, 
as we shall see, this solution might be the approach of choice, because 
different implementations may have different performance character
istics, so we might not wish to decide a priori that one ADT will serve 
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both purposes. Indeed, our main focus is on the implementations and 
their performance, and we turn now to those topics for pushdown 
stacks. 

Exercises 

I> 4.9 Convert to postfix the expression 

( 5 * ( ( 9 * 8 ) + ( 7 * ( 4 + 6 ) ) ) ) 

I> 4.10 Give, in the same manner as Figure 4.2, the contents of the stack as the 
following expression is evaluated by Program 4.2 

59* 8 7 46+ * 2 1 3 * + * + * . 

I> 4.1 I Extend Programs 4.2 and 4.3 to include the - (subtract) and / (divide) 
operations. 

4.12 Extend your solution to Exercise 4.1 I to include the unary operators 
- (negation) and $ (square root). Also, modify the abstract stack machine in 
Program 4.2 to use floating point. For example, given the expression 

(-(-1) + $«-1) * (-1)-(4 * (-1»)))/2 

your program should print the value 1.618034. 

4.13 Write a PostScript program that draws this figure: 

.4.14 Prove by induction that Program 4.2 correctly evaluates any postfix 
expression. 

04.15 	 Write a program that converts a postfix expression to infix, using a 
pushdown stack. 

.4.16 Combine Program 4.2 and Program 4.3 into a single module that uses 
two different stack ADTs: a stack of integers and a stack of operators . 

•• 4.17 Implement a compiler and interpreter for a programming language 
where each program consists of a single arithmetic expression preceded by 
a sequence of assignment statements with arithmetic expressions involving 
integers and variables named with single lower-case characters. For example, 
given the input 

(x = 1) 

(y '" (x + 1)) 

«(x + y) * 3) + (4 * x) 


your program should print the value 13. 

4.4 Stack ADT Implementations 

In this section, we consider two implementations of the stack ADT: 
one using arrays and one using linked lists. The implementations are 
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both straightforward applications of the basic tools that we covered 
in Chapter 3. They differ only, we expect, in their performance char
acteris tics. 

If we use an array to represent the stack, each of the functions de
clared in Program 4.1 is trivial to implement, as shown in Program 4.4. 
We put the items in the array precisely as diagrammed in Figure 4- I, 

keeping track of the index of the top of the stack. Doing the push 
operation amounts to storing the item in the array position indicated 
by the top-of-stack index, then incrementing the index; doing the pop 
operation amounts to decrementing the index, then returning the item 
that it designates. The initialize operation involves allocating an array 
of the indicated size, and the test if empty operation involves check
ing whether the index is O. Compiled together with a client program 
such as Program 4.2 or Program 4.3, this implementation provides an 
efficient and effective pushdown stack. 

We know one potential drawback to using an array represen
tation: As is usual with data structures based on arrays, we need to 
know the maximum size of the array before using it, so that we can 
allocate memory for it. In this implementation, we make that infor
mation an argument to the function that implements initialize. This 
constraint is an artifact of our choice to use an array implementation; 
it is not an essential part of the stack ADT. We may have no easy way 
to estimate the maximum number of elements that our program will 
be putting on the stack: If we choose an arbitrarily high value, this 
implementation will make inefficient use of space, and that may be 
undesirable in an application where space is a precious resource. If we 
choose too small a value, our program might not work at all. By using 
an ADT, we make it possible to consider other alternatives, in other 
implementations, without changing any client program. 

For example, to allow the stack to grow and shrink gracefully, 
we may wish to consider using a linked list, as in the implementation 
in Program 4.5. In this program, we keep the stack in reverse order 
from the array implementation, from most recently inserted element 
to least recently inserted element, to make the basic stack operations 
easier to implement, as illustrated in Figure 4-5. To pop, we remove 
the node from the front of the list and return its item; to push, we 
create a new node and add it to the front of the list. Because all linked
list operations are at the beginning of the list, we do not need to use a 
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Program 4.4 Array implementation of a pushdown stack 

When there are N items in the stack, this implementation keeps them in 
s [0], ... , s [N-1]; in order from least recently inserted to most recently 
inserted. The top of the stack (the position where the next item to 
be pushed will go) is s nn. The client program passes the maximum 
number of items expected on the stack as the argument to STACKinit, 
which allocates an array of that size, but this code does not check for 
errors such as pushing onto a full stack (or popping an empty one). 

#include <stdlib.h> 
#include "Item.h" 
#include "STACK.h" 
static Item *s; 
static int N; 
void STACKinit(int maxN) 

{ s = malloc(maxN*sizeof(Item»; N O;} 
int STACKemptyO 

{ return N == 0; } 
void STACKpush(Item item) 

{ s[N++] = item; } 
Item STACKpopO 

{ return s[--N]; } 

head node. This implementation does not need to use the argument to 
STACKinit. 

Programs 4.4 and 4.5 are two different implementations for the 
same ADT. We can substitute one for the other without making any 
changes in client programs such as the ones that we examined in Sec
tion 4.3. They differ in only their performance characteristics-the 
time and space that they use. For example, the list implementation 
uses more time for push and pop operations, to allocate memory for 
each push and deallocate memory for each pop. If we have an appli
cation where we perform these operations a huge number of times, we 
might prefer the array implementation. On the other hand, the array 
implementation uses the amount of space necessary to hold the maxi
mum number of items expected throughout the computation, while the 
list implementation uses space proportional to the number of items, 
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Program 4.5 Linked-list implementation of a pushdown stack 

This code implements the stack ADT as illustrated in 4.5. It uses 
an auxiliary function NEW to allocate the memory for a node, set its fields 
from the function arguments, and return a link to the node. 

#include <stdlib.h> 

#include "Item.h" 

typedef struct STACKnode* linkj 

struct STACKnode { Item itemj link next; }; 

static link head; 

link NEW (Item item, link next) 


{ 	 link x = malloc(sizeof *x); 

x->item = itemj x->next = next; 

return x; 


} 

void STACKinit(int maxN) 

{ head = NULLj } 


int STACKempty() 

{ return head == NULL; } 


STACKpush(Item item) 

{head NEW(item, head); } 


Item STACKpop () 

{ 	 Item item = head->itemj 


link t head->nextj 

free(head); head t; 

return itemj 


} 

head 

~ 
head U ~ 

~ 
head U ~ 
~- ~ 

~ 


head 

~ 

~lLP~ 

u~ 

head 

~ u~ 
but alwa ys uses extra space for on link per item. Ifwe need a huge stack 
that is usually nearly full, we might prefer the array implementation; 
if we have a stack whose size varies dramatically and other data struc
tures that could make use of the space not being used when the stack 
has only a few items in it, we might prefer the list implementation. 

These same considerations about space usage hold for many ADT 
implementations, as we shall see throughout the book. We often are in 
the position of choosing between the ability to access any item quickly 
but having to predict the maximum number of items needed ahead of 
time (in an array implementation) and the flexibility of always using 

Figure 4.5 
Linked-list pushdown stack 

The stack is represented by a 
pointer head, which points to the 
first (most recently inserted) item. 
To pop the stack (top)' we remove 
the item at the front of the list, by 
setting head from its link. To push 
a new item onto the stack (bot
tom), we link it in at the beginning 
by setting its link field to head, 
then setting head to point to it. 
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space proportional to the number of items in use while giving up the 
ability to access every item quickly (in a linked-list implementation). 

Beyond basic space-usage considerations, we normally are most 
interested in performance differences among ADT implementations 
that relate to running time. In this case, there is little difference between 
the two implementations that we have considered. 

Property 4.I We can implement the push and pop operations for the 
pushdown stack ADT in constant time, using either arrays or linked 
lists. 

This fact follows immediately from inspection of Programs 4.4 and 4.5 . 

• 
That the stack items are kept in different orders in the array and the 
linked-list implementations is of no concern to the client program. The 
implementations are free to use any data structure whatever, as long 
as they maintain the illusion of an abstract pushdown stack. In both 
cases, the implementations are able to create the illusion of an efficient 
abstract entity that can perform the requisite operations with just a few 
machine instructions. Throughout this book, our goal is to find data 
structures and efficient implementations for other important ADTs. 

The linked-list implementation supports the illusion of a stack 
that can grow without bound. Such a stack is impossible in practical 
terms: at some point, malloe will return NULL when the request for 
more memory cannot be satisfied. It is also possible to arrange for 
an array-based stack to grow dynamically, by doubling the size of the 
array when the stack becomes half full, and halving the size of the 
array when the stack becomes half empty. We leave the details of this 
implementation as an exercise in Chapter I4, where we consider the 
process in detail for a more advanced application. 

Exercises 

i> 4. I8 Give the contents of 5 [0], ... , 5 [4] after the execution of the opera
tions illustrated in Figure 4. I, using Program 4.4. 

o 4.I9 Suppose that you change the pushdown-stack interface to replace test 
if empty by count, which should return the number of items currently in the 
data structure. Provide implementations for count for the array representation 
(Program 4.4) and the linked-list representation (Program 4· 5). 

4.20 Modify the array-based pushdown-stack implementation in the text 
(Program 4.4) to call a function STACKerror if the client attempts to pop 
when the stack is empty or to push when the stack is full. 
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4.2I Modify the linked-list-based pushdown-stack implementation in the 
text (Program 4.5) to call a function STACKerror if the client attempts to pop 
when the stack is empty or if there is no memory available from malloc for a 
push. 

4.22 Modify the linked-list-based pushdown-stack implementation in the 
text (Program 4.5) to use an array of indices to implement the list (see 
ure 3.4). 

4.23 Write a linked-list-based pushdown-stack implementation that keeps 
items on the list in order from least recently inserted to most recently inserted. 
You will need to use a doubly linked list . 

• 4.24 	 Develop an ADT that provides clients with two different pushdown 
stacks. Use an array implementation. Keep one stack at the beginning of the 
array and the other at the end. (If the client program is such that one stack 
grows while the other one shrinks, this implementation uses less space than 
other alternatives.) 

.4.25 Implement an infix-expression-evaluation function for integers that in
cludes Programs 4.2 and 4.3, using your ADT from Exercise 4.24. -

4.5 Creation of a New ADT 

Sections 4.2 through 4.4 present a complete example of C code that 
captures one of our most important abstractions: the pushdown stack. 
The interface in Section 4.2 defines the basic operations; client pro
grams such as those in Section 4.3 can use those operations without 
dependence on how the operations are implemented; and implemen
tations such as those in Section 4.4 provide the necessary concrete 
representation and program code to realize the abstraction. 

To design a new ADT, we often enter into the following process. 
Starting with the task of developing a client program to solve an ap
plications problem, we identify operations that seem crucial: What 
would we like to be able to do with our data? Then, we define an 
interface and write client code to test the hypothesis that the existence 
of the ADT would make it easier for us to implement the client pro
gram. Next, we consider the idea of whether or not we can implement 
the operations in the ADT with reasonable efficiency. If we cannot, 
we perhaps can seek to understand the source of the inefficiency and 
to modify the interface to include operations that are better suited to 
efficient implementation. These modifications affect the client pro
gram, and we modify it accordingly. After a few iterations, we have a 
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Program 4.6 Equivalence-relations ADT interface 

The ADT interface mechanism makes it convenient for us to encode 
precisely our decision to consider the connectivity algorithm in terms 
of three abstract operations: initialize, find whether two nodes are con
nected, and perform a union operation to consider them connected 
henceforth. 

void UFinit(int); 

int UFfind(int, int); 


void UFunion(int, int); 


working client program and a working implementation, so we freeze 
the interface: We adopt a policy of not changing it. At this moment, 
the development of client programs and the development of imple
mentations are separable: We can write other client programs that use 
the same ADT (perhaps we write some driver programs that allow us 
to test the ADT), we can write other implementations, and we can 
compare the performance of multiple implementations. 

In other situations, we might define the ADT first. This approach 
might involve asking questions such as these: What basic operations 
would client programs want to perform on the data at hand? Which 
operations do we know how to implement efficiently? After we de
velop an implementation, we might test its efficacy on client programs. 
We might modify the interface and do more tests, before eventually 
freezing the interface. 

In Chapter I, we considered a detailed example where thinking 
on an abstract level helped us to find an efficient algorithm for solving 
a complex problem. We consider next the use of the general approach 
that we are discussing in this chapter to encapsulate the specific abstract 
operations that we exploited in Chapter I. 

Program +6 defines the interface, in terms of two operations 
(in addition to initialize) that seem to characterize the algorithms that 
we considered in Chapter I for connectivity, at a high abstract level. 
Whatever the underlying algorithms and data structures, we want to 

be able to check whether or not two nodes are known to be connected, 
and to declare that two nodes are connected. 

Program 4.7 is a client program that uses the ADT defined in the 
interface of Program +6 to solve the connectivity problem. One benefit 
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Program 4.7 Equivalence-relations ADT client 

The ADT of Program 4.6 separates the connectivity algorithm from the 
union-find implementation, making that algorithm more accessible. 

#include <stdio.h> 
#include "UF.hl! 
main(int argc, char *argv[]) 

{ int p, q, N = atoi(argv[l]); 
UFinit(N); 
while (scanf (lI%d %d". &p. &q) 2) 

if (!UFfind(p. q)) 
{ UFunion(p. q); printf(" %d %d\n". p. q); } 

} 

of using the ADT is that this program is easy to understand, because 
it is written in terms of abstractions that allow the computation to be 
expressed in a natural way. 

Program 4.8 is an implementation of the union-find interface 
defined in Program 4.6 that uses a forest of trees represented by two 
arrays as the underlying representation of the known connectivity in
formation, as described in Section 1.3. The different algorithms that 
we considered in Chapter I represent different implementations of 
this ADT, and we can test them as such without changing the client 
program at all. 

This ADT leads to programs that are slightly less efficient than 
those in Chapter I for the connectivity application, because it does 
not take advantage of the property of that client that every union op
eration is immediately preceded by a find operation. We sometimes 
incur extra costs of this kind as the price of moving to a more abstract 
representation. In this case, there are numerous ways to remove the 
inefficiency, perhaps at the cost of making the interface or the imple
mentation more complicated (see Exercise 4.27}. In practice, the paths 
are extremely short (particularly if we use path compression}, so the 
extra cost is likely to be negligible in this case. 

The combination of Programs 4.6 through 4.8 is operationally 
equivalent to Program 1.3, but splitting the program into three parts 
is a more effective approach because it 
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Program 4.8 Equivalence-relations ADT implementation 

This implementation of the weighted-quick-unioncode from Chapter I, 

together with the interface of Program 4.6, packages the code in a form 
that makes it convenient for use in other applications. The implemen
tation uses a local function find. 

#include <stdlib.h> 

#include "UF.h" 

static int *id, *sz; 

void UFinit(int N) 


{ 	 int i; 

id = malloc(N*sizeof(int»; 

sz = malloc(N*sizeof(int»; 

for (i = 0; i < N; i++) 


{ id[i] = i; sz[i] = 1; } 

} 


static int find(int x) 


{ int i = x; 

while (i != id[i]) i = id[i]; return i; } 


int UFfind(int p, int q) 

{ return (find(p) == find(q»; } 


void UFunion(int p, int q) 

{ 	int i = find(p), j = find(q); 


if (i == j) return; 

if (sz[i] < sz[j]) 


{ id [i] j; sz [j] += sz [i]; } 

else { id[j] = i; sz[i] += sz[j]; } 
} 

• 	 Separates the task of solving the high-level (connectivity) prob
lem from the task of solving the low-level (union-find) problem, 
allowing us to work on the two problems independently 

• 	 Gives us a natural way to compare different algorithms and data 
structures for solving the problem 

• 	 Gives us an abstraction that we can use to build other algorithms 

• 	 Defines, through the interface, a way to check that the software 
is operating as expected 



153 ABSTRACT DATA TYPES 

• 	 Provides a mechanism that allows us to upgrade to new represen
tations (new data structures or new algorithms) without changing 
the client program at all 

These benefits are widely applicable to many tasks that we face when 
developing computer programs, so the basic tenets underlying ADTs 
are widely used. 

Exercises 

4.26 Modify Program 4.8 to use path compression by halving. 

4.27 Remove the inefficiency mentioned in the text by adding an operation 
to Program 4.6 that combines union and find, providing an implementation 
in Program 4.8, and modifying Program 4-7 accordingly. 

04.28 	 Modify the interface (Program 4.6) and implementation (Program 4.8) 
to provide a function that will return the number of nodes known to be 
connected to a given node. 

4.29 Modify Program 4.8 to use an array of structures instead of parallel 
arrays for the underlying data structure. 

4.6 FIFO Queues and Generalized Queues 

The first-in, first-out (FIFO) queue is another fundamental ADT that 
is similar to the pushdown stack, but that uses the opposite rule to 
decide which element to remove for delete. Rather than removing the 
most recently inserted element, we remove the element that has been 
in the queue the longest. 

Perhaps our busy professor's "in" box should operate like a FIFO 
queue, since the first-in, first-out order seems to be an intuitively fair 
way to decide what to do next. However, that professor might not ever 
answer the phone or get to class on time! In a stack, a memorandum 
can get buried at the bottom, but emergencies are handled when they 
arise; in a FIFO queue, we work methodically through the tasks, but 
each has to wait its turn. 

FIFO queues are abundant in everyday life. When we wait in line 
to see a movie or to buy groceries, we are being processed according to 
a FIFO discipline. Similarly, FIFO queues are frequently used within 
computer systems to hold tasks that are yet to be accomplished when 
we want to provide services on a first-come, first-served basis. Another 
example, which illustrates the distinction between stacks and FIFO 
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Figure 4.6 
FIFO queue example 

This list shows the result of the se
quence of operations in the left 
column (top to bottom), where a 
letter denotes put and an asterisk 
denotes gel. Each line displays the 
operation, the letter returned for 
get operations, and the contents 
of the queue in order from least 
recently inserted to most recently 
inserted, left to right. 

Program 4.9 FIFO queue ADT interface 

This interface is identical to the pushdown stack interface of Pro
gram 4.I, except for the names of the structure. The two ADTs differ 
only in the specification, which is not reflected in the code. 

void QUEUEinit(int); 
int QUEUEempty(); 


void QUEUEput(Item); 

Item QUEUEget 0 ; 


queues, is a grocery store's inventory of a perishable product. If the 
grocer puts new items on the front of the shelf and customers take items 
from the front, then we have a stack discipline, which is a problem for 
the grocer because items at the back of the shelf may stay there for a 
very long time and therefore spoil. By putting new items at the back 
of the shelf, the grocer ensures that the length of time any item has 
to stay on the shelf is limited by the length of time it takes customers 
to purchase the maximum number of items that fit on the shelf. This 
same basic principle applies to numerous similar situations. 

Definition 4.3 A FIFO queue is an ADT that comprises two basic 
operations: insert (put) a new item, and delete (get) the item that was 
least recently inserted. 

Program 4.9 is the interface for a FIFO queue ADT. This interface 
differs from the stack interface that we considered in Section 4.2 only 
in the nomenclature: to a compiler, say, the two interfaces are identical! 
This observation underscores the fact that the abstraction itself, which 
programmers normally do not define formally, is the essential compo
nent of an ADT. For large applications, which may involve scores of 
ADTs, the problem of defining them precisely is critical. In this book, 
we work with ADTs that capture essential concepts that we define in 
the text, but not in any formal language, other than via specific im
plementations. To discern the nature of ADTs, we need to consider 
examples of their use and to examine specific implementations. 

Figure 4.6 shows how a sample FIFO queue evolves through a 
series of get and put operations. Each get decreases the size of the 
queue by 1 and each put increases the size of the queue by 1. In the 
figure, the items in the queue are listed in the order that they are put on 
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the queue, so that it is clear that the first item in the list is the one that 
is to be returned by the get operation. Again, in an implementation, 
we are free to organize the items any way that we want, as long as we 
maintain the illusion that the items are organized in this way. 

To implement the FIFO queue ADT using a linked list, we keep 
the items in the list in order from least recently inserted to most recently 
inserted, as diagrammed in Figure 4.6. This order is the reverse of 
the order that we used for the stack implementation, but allows us 
to develop efficient implementations of the queue operations. We 
maintain two pointers into the list: one to the beginning (so that we 
can get the first element), and one to the end (so that we can put 
a new element onto the queue), as shown in Figure 4.7 and in the 
implementation in Program 4.10. 

We can also use an array to implement a FIFO queue, although 
we have to exercise care to keep the running time constant for both the 
put and get operations. That performance goal dictates that we can 
not move the elements of the queue within the array, unlike what might 
be suggested by a literal interpretation of Figure 4.6. Accordingly, as 
we did with the linked-list implementation, we maintain two indices 
into the array: one to the beginning of the queue and one to the 
end of the queue. We consider the contents of the queue to be the 
elements between the indices. To get an element, we remove it from 
the beginning (head) of the queue and increment the head index; to 
put an element, we add it to the end (tail) of the queue and increment 
the tail index. A sequence of put and get operations causes the queue 
to appear to move through the array, as illustrated in Figure 4.8. 
When it hits the end of the array, we arrange for it to wrap around 
to the beginning. The details of this computation are in the code in 
Program 4.1 I. 

Property 4.2 We can implement the get and put operations for the 
FIFO queue ADT in constant time, using either arrays or linked lists. 

This fact is immediately clear when we inspect the code in Pro
grams 4.10 and 4.11. • 

The same considerations that we discussed in Section 4.4 apply 
to space resources used by FIFO queues. The array representation 
requires that we reserve enough space for the maximum number of 
items expected throughout the computation, whereas the linked-list 
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Figure 4.7 

Linked-list queue 


In this linked-list representation 
of a queue, we insert new items 
at the end, so the items in the 
linked list are in order from least 
recently inserted to most recently 
inserted, from beginning to end. 
The queue is represented by two 
pointers head and tail which 
point to the first and final item, re
spectively. To get an item from the 
queue, we remove the item at the 
front of the list, in the same way as 
we did for stacks (see Figure 4.5). 
To put a new item onto the queue, 
we set the link field of the node 
referenced by tail to point to it 
(center), then update tail (bot
tom). 
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Program 4.IO FIFO queue linked-list implementation 

The difference between a FIFO queue and a pushdown stack (Pro
gram 4.5) is that new items are inserted at the end, rather than the 
beginning. 

Accordingly, this program keeps a pointer tail to the last node of 
the list, so that the function QUEUEput can add a new node by linking that 
node to the node referenced by tail and then updating tail to point 
to the new node. The functions QUEUEget, QUEUEinit, and QUEUEempty 
are all identical to their counterparts for the linked-list pushdown-stack 
implementation of Program 4· 5. 

#include <stdlib.h> 

#include "Item.h" 

#include "QUEUE.h" 

typedef struct QUEUEnode* link; 

struct QUEUEnode { Item item; link next; }; 

static link head, tail; 

link NEW (Item item, link next) 


{ 	 link x malloc(sizeof *x); 

x->item = item; x->next = next; 

return x; 


} 


void QUEUEinit(int maxN) 

{ head = NULL; } 


int QUEUEempty 0 

{ return head == NULL; } 


QUEUEput(Item item) 

{ 

if (head == NULL) 
{ head = (tail NEW(item, head)); return; } 

tail->next = NEW(item, tail->next); 
tail = tail->next; 

} 


Item QUEUEget () 

{ 	 Item item = head->item; 


link t = head->next; 

free(head); head = t; 

return item; 


} 



157 ABSTRACT DATA TYPES 

Program 4.II FIFO queue array implementation 

The contents of the queue are all the elements in the array between head 
and tail, taking into account the wraparound back to 0 when the end of 
the array is encountered. If head and tail are equal, then we consider 
the queue to be empty; but if put would make them equal, then we 
consider it to be full. As usual, we do not check such error conditions, 
but we make the size of the array 1 greater than the maximum number 
of elements that the client expects to see in the queue, so that we could 
augment this program to make such checks. 

#include <stdlib.h> 
#include "Item.h" 
static Item *q; 
static int N, head, tail; 
void QUEUEinit(int maxN) 

{ q = malloc«maxN+l)*sizeof(Item»; 
N = maxN+l; head = N; tail = 0; } 

int QUEUEemptyO 
{ return head %N == tail; } 

void QUEUEput(Item item) 
{ q[tail++] = item; tail = tail % N; } 

Item QUEUEget 0 
{ head = head %N; return q[head++]; } 
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representation uses space proportional to the number of elements in 
the data structure, at the cost of extra space for the links and extra 
time to allocate and deallocate memory for each operation. 

Although we encounter stacks more often than we encounter 
FIFO queues, because of the fundamental relationship between stacks 
and recursive programs (see Chapter 5), we shall also encounter algo
rithms for which the queue is the natural underlying data structure. 
As we have already noted, one of the most frequent uses of queues 
and stacks in computational applications is to postpone computation. 
Although many applications that involve a queue of pending work 
operate correctly no matter what rule is used for delete, the overall 
running time or other resource usage may be dependent on the rule. 
When such applications involve a large number of insert and delete 
operations on data structures with a large number of items on them, 

Figure 4.8 
Fn:O queue ex~mple, array 

l1Ilplementatlon 

This sequence shows the data ma
nipulation underlying the abstract 
representation in Figure 4.6 when 
we implement the queue by stor
ing the items in an array, keeping 
indices to the beginning and end 
of the queue, and wrapping the in
dices back to the beginning of the 
array when they reach the end of 
the array. In this example, the tail 
index wraps back to the beginning 
when the second T is inserted, and 
the head index wraps when the 
second S is removed. 
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performance differences are paramount. Accordingly, we devote a 
great deal of attention in this book to such ADTs. If we ignored per
formance, we could formulate a single ADT that encompassed insert 
and delete; since we do not ignore performance, each rule, in essence, 
constitutes a different ADT. To evaluate the effectiveness of a partic
ular ADT, we need to consider two costs: the implementation cost, 
which depends on our choice of algorithm and data structure for the 
implementation; and the cost of the particular decision-making rule 
in terms of effect on the performance of the client. To conclude this 
section, we will describe a number of such ADTs, which we will be 
considering in detail throughout the book. 

Specifically, pushdown stacks and FIFO queues are special in
stances of a more general ADT: the generalized queue. Instances of 
generalized queues differ in only the rule used when items are re
moved. For stacks, the rule is "remove the item that was most recently 
inserted"; for FIFO queues, the rule is "remove the item that was least 
recently inserted"; and there are many other possibilities, a few of 
which we now consider. 

A simple but powerful alternative is the random queue, where 
the rule is to "remove a random item," and the client can expect to 

get any of the items on the queue with equal probability. We can 
implement the operations of a random queue in constant time using 
an array representation (see Exercise 4-42). As do stacks and FIFO 
queues, the array representation requires that we reserve space ahead of 
time. The linked-list alternative is less attractive than it was for stacks 
and FIFO queues, however, because implementing both insertion and 
deletion efficiently is a challenging task (see Exercise 4.43). We can use 
random queues as the basis for randomized algorithms, to avoid, with 
high probability, worst-case performance scenarios (see Section 2.7). 

We have described stacks and FIFO queues by identifying items 
according to the time that they were inserted into the queue. Alterna
tively, we can describe these abstract concepts in terms of a sequential 
listing of the items in order, and refer to the basic operations of insert
ing and deleting items from the beginning and the end of the list. If we 
insert at the end and delete at the end, we get a stack (precisely as in 
our array implementation); if we insert at the beginning and delete at 
the beginning, we also get a stack (precisely as in our linked-list imple
mentation); if we insert at the end and delete at the beginning, we get a 
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FIFO queue (precisely as in our linked-list implementation); and if we 
insert at the beginning and delete at the end, we also get a FIFO queue 
(this option does not correspond to any of our implementations-we 
could switch our array implementation to implement it precisely, but 
the linked-list implementation is not suitable because of the need to 
back up the pointer to the end when we remove the item at the end of 
the list). Building on this point of view, we are led to the deque ADT, 
where we allow either insertion or deletion at either end. We leave 

the implementations for exercises (see Exercises 4.37 through 4.41), 
noting that the array-based implementation is a straightforward exten
sion of Program 4.11, and that the linked-list implementation requires 
a doubly linked list, unless we restrict the de que to allow deletion at 
only one end. 

In Chapter 9, we consider priority queues, where the items have 
keys and the rule for deletion is "remove the item with the smallest 
key." The priority-queue ADT is useful in a variety of applications, 
and the problem of finding efficient implementations for this ADT has 
been a research goal in computer science for many years. Identifying 
and using the ADT in applications has been an important factor in 
this research: we can get an immediate indication whether or not a 

new algorithm is correct by substituting its implementation for an old 
implementation in a huge, complex application and checking that we 
get the same result. Moreover, we get an immediate indication whether 
a new algorithm is more efficient than an old one by noting the extent 
to which substituting the new implementation improves the overall 
running time. The data structures and algorithms that we consider 
in Chapter 9 for solving this problem are interesting, ingenious, and 

effective. 

In Chapters 12 through 16, we consider symbol tables, which are 
generalized queues where the items have keys and the rule for deletion 
is "remove an item whose key is equal to a given key, if there is one." 
This ADT is perhaps the most important one that we consider, and we 
shall examine dozens of implementations. 

Each of these ADTs also give rise to a number of related, but 
different, ADTs that suggest themselves as an outgrowth of careful 
examination of client programs and the performance of implementa

tions. In Sections 4.7 and 4.8, we consider numerous examples of 
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changes in the specification of generalized queues that lead to yet more 
different ADTs, which we shall consider later in this book. 

Exercises 

1>4.30 Give the contents of q[o], ... , q[4] after the execution of the opera
tions illustrated in Figure 4.6, using Program 4. I 1. Assume that maxN is 10, 
as in Figure 4.8. 

I> 4.3 1 A letter means put and an asterisk means get in the sequence 

E AS' Y' QUE" • ST' * * 10' N * * *. 

Give the sequence of values returned by the get operations when this sequence 
of operations is performed on an initially empty FIFO queue. 

4.32 Modify the array-based FIFO queue implementation in the text (Pro
gram 4.II) to call a function QUEUEerror if the client attempts to get when 
the queue is empty or to put when the queue is full. 

4.33 Modify the linked-list-based FIFO queue implementation in the text 
(Program 4.IO) to call a function QUEUEerror if the client attempts to get 
when the queue is empty or if there is no memory available from malloc for 
a put. 

I> 4.34 An uppercase letter means put at the beginning, a lowercase letter means 
put at the end, a plus sign means get from the beginning, and an asterisk means 
get from the end in the sequence 

E As + Y + QUE" + S t + * + 10' n + + *. 

Give the sequence of values returned by the get operations when this sequence 
of operations is performed on an initially empty deque. 

I> 4.35 Using the conventions of Exercise 4.34, give a way to insert plus signs 
and asterisks in the sequence E a s Y so that the sequence of values returned 
by the get operations is (i) E saY ; (ii) Y as E ; (iii) a Y s E ; (iv) as Y E ; or, 
in each instance, prove that no such sequence exists . 

• 4.36 Given two sequences, give an algorithm for determining whether or 
not it is possible to add plus signs and asterisks to make the first produce the 
second when interpreted as a sequence of deque operations in the sense of 
Exercise 4.35. 

1>4.37 Write an interface for the deque ADT. 

4.38 Provide an implementation for your deque interface (Exercise 4.37) 
that uses an array for the underlying data structure. 

4.39 Provide an implementation for your deque interface (Exercise 4.37) 
that uses a doubly linked list for the underlying data structure. 

4.40 Provide an implementation for the FIFO queue interface in the text 
(Program 4.9) that uses a circular list for the underlying data structure. 
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4.41 Write a client that tests your deque ADTs (Exercise 4.37) by reading, as 
the Iirst argument on the command line, a string of commands like those given 
in Exercise 4.34 then performing the indicated operations. Add a function 
DQdump to the interface and implementations, and print out the contents of the 
deque after each operation, in the style of Figure 4.6. 

04.42 	 Build a random-queue ADT by writing an interface and an implemen
tation that uses an array as the underlying data structure. Make sure that each 
operation takes constant time . 

•• 4.43 Build a random-queue ADT by writing an interface and an implemen
tation that uses a linked list as the underlying data structure. Provide imple
mentations for insert and delete that are as efficient as you can make them, 
and analyze their worst-case cost. 

f> 4.44 Write a client that picks numbers for a lottery by putting the numbers 
1 through 99 on a random queue, then prints the result of removing five of 
them. 

4.45 Write a client that takes an integer N from the Iirst argument on the 
command line, then prints out N poker hands, by putting N items on a random 
queue (see Exercise 4.4), then printing out the result of picking live cards at a 
time from the queue. 

.4.46 Write a program that solves the connectivity problem by inserting all 
the pairs on a random queue and then taking them from the queue, using the 
quick-lind-weighted algorithm (Program 1.3). 

4.7 Duplicate and Index Items 

For many applications, the abstract items that we process are unique, 
a quality that leads us to consider modifying our idea of how stacks, 
FIFO queues, and other generalized ADTs should operate. Specifically, 
in this section, we consider the effect of changing the specifications of 
stacks, FIFO queues, and generalized queues to disallow duplicate 
items in the data structure. 

For example, a company that maintains a mailing list of cus
tomers might want to try to grow the list by performing insert op
erations from other lists gathered ftom many sources, but would not 
want the list to grow for an insert operation that refers to a customer 
already on the list. We shall see that the same principle applies in a 
variety of applications. For another example, consider the problem of 
routing a message through a complex communications network. We 
might try going through several paths simultaneously in the network, 
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but there is only one message, so any particular node in the network 
would want to have only one copy in its internal data structures. 

One approach to handling this situation is to leave up to the 
clients the task of ensuring that duplicate items are not presented to 
the ADT, a task that clients presumably might carry out using some 
different ADT. But since the purpose of an ADT is to provide clients 
with clean solutions to applications problems, we might decide that 
detecting and resolving duplicates is a part of the problem that the 
ADT should help to solve. 

The policy of disallowing duplicate items is a change in the ab
straction: the interface, names of the operations, and so forth for such 
an ADT are the same as those for the corresponding ADT without 
the policy, but the behavior of the implementation changes in a fun
damental way. In general, whenever we modify the specification of an 
ADT, we get a completely new ADT-one that has completely different 
properties. This situation also demonstrates the precarious nature of 
ADT specification: Being sure that clients and implementations adhere 
to the specifications in an interface is difficult enough, but enforcing a 
high-level policy such as this one is another matter entirely. Still, we 
are interested in algorithms that do so because clients can exploit such 
properties to solve problems in new ways, and implementations can 
take advantage of such restrictions to provide more efficient solutions. 

Figure 4.9 shows how a modified no-duplicates stack ADT would 
operate for the example corresponding to Figure 4.1; Figure 4.10 

shows the effect of the change for FIFO queues. 
In general, we have a policy decision to make when a client 

makes an insert request for an item that is already in the data structure. 
Should we proceed as though the request never happened, or should 
we proceed as though the client had performed a delete followed by 
an insert? This decision affects the order in which items are ultimately 
processed for ADTs such as stacks and FIFO queues (see Figure 4.II), 
and the distinction is significant for client programs. For example, the 
company using such an ADT for a mailing list might prefer to use the 
new item (perhaps assuming that it has more up-to-date information 
about the customer), and the switching mechanism using such an ADT 
might prefer to ignore the new item (perhaps it has already taken steps 
to send along the message). Furthermore, this policy choice affects 
the implementations: the forget-the-old-item policy is generally more 
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difficult to implement than the ignore-the-new-item policy, because it 
requires that we modify the data structure. 

To implement generalized queues with no duplicate items, we 
assume that we have an abstract operation for testing item equality, as 
discussed in Section 4.L Given such an operation, we still need to be 
able to determine whether a new item to be inserted is already in the 
data structure. This general case amounts to implementing the symbol 
table ADT, so we shall consider it in the context of the implementations 
given in Chapters I2 through I 5. 

F F 
There is an important special case for which we have a straight I F I 

R F I Rforward solution, which is illustrated for the pushdown stack ADT in 
S F I R S 

Program 4.I2. This implementation assumes that the items are inte F I R S 
T I R S Tgers in the range 0 to 1v! 1. Then, it uses a second array, indexed by 

R S T 

the item itself, to determine whether that item is in the stack. When R S T I 

N R S T I Nwe insert item i, we set the ith entry in the second array to 1; when we 
R S T I N 

delete item i, we set the ith entry in the array to O. Otherwise, we use S T I N 
T I Nthe same code as before to insert and delete items, with one additional 

F I N F 

test: Before inserting an item, we can test to see whether it is already in N F I 
N F Ithe stack. If it is, we ignore the push. This solution does not depend on R F I R 

whether we use an array or linked-list (or some other) representation S F I R S 
F I R Sfor the stack. Implementing an ignore-the-old-item policy involves R S 

more work (see Exercise 4.5I). R S 
T S T

In summary, one way to implement a stack with no duplicates S T 

0 T 0using an ignore-the-new-item policy is to maintain two data structures: 
U T 0 U

the first contains the items in the stack, as before, to keep track of the T OUT 

0 U Torder in which the items in the stack were inserted; the second is an 
U T 

array that allows us to keep track of which items are in the stack, by T 

using the item as an index. Using an array in this way is a special case 
of a symbol-table implementation, which is discussed in Section I2.2. 	 Figure 4.II 

FIFO queue with no dupliWe can apply the same technique to any generalized queue ADT, when 
cates, forget-the-old-item 

we know the items to be integers in the range 0 to AI - 1. policy 
This special case arises frequently. The most important example This sequence shows the result 

is when the items in the data structure are themselves array indices, of the same operations as in Fig
ure 4.10, but using the (more diffiso we refer to such items as index items. Typically, we have a set of 
cult to implement) policy by which

Iv! objects, kept in yet another array, that we need to pass through a we always add a new item at the 
generalized queue structure as a part of a more complex algorithm. end of the queue. If there is a du
Objects are put on the queue by index and processed when they are 	 plicate/ we remove it. 
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Program 4.I2 Stack with index items and no duplicates 

This pushdown-stack implementation assumes that all items are integers 
between 0 and maxN-1, so that it can maintain an array t that has 
a nonzero value corresponding to each item in the stack. The array 
enables STACKpush to test quickly whether its argument is already on 
the stack, and to take no action if the test succeeds. We use only one bit 
per entry in t, so we could save space by using characters or bits instead 
of integers, if desired (see Exercise 12.12). 

#include <stdlib.h> 
static int *s, *t; 
static int N; 
void STACKinit(int maxN) 

{ int i; 
s = malloc(maxN*sizeof(int»; 
t = malloc(maxN*sizeof(int»; 
for (i = 0; i < maxN; i++) t[i] 0; 
N = 0; 


} 


int STACKemptyO 

{ return !N; } 


void STACKpush(int item) 

{ 

if (t[item] == 1) return; 
s[N++] = item; t[item] = 1; 

} 

int STACKpopO 

{ N--; t[s[N]] 0; return s[N]; } 


removed, and each object is to be processed precisely once. Using array 
indices in a queue with no duplicates accomplishes this goal directly. 

Each of these choices (disallow duplicates, or do not; and use 
the new item, or do not) leads to a new ADT. The differences may 
seem minor, but they obviously affect the dynamic behavior of the 
ADT as seen by client programs, and affect our choice of algorithm 
and data structure to implement the various operations, so we have 
no alternative but to treat all the ADTs as different. Furthermore, we 
have other options to consider: For example, we might wish to modify 
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the interface to inform the client program when it attempts to insert a 
duplicate item, or to give the client the option whether to ignore the 
new item or to forget the old one. 

When we informally use a term such as pushdown stack, FIFO 
queue, deque, priority queue, or symbol table, we are potentially refer
ring to a family of ADTs, each with different sets of defined operations 
and different sets of conventions about the meanings of the opera
tions, each requiring different and, in some cases, more sophisticated 
implementations to be able to support those operations efficiently. 

Exercises 

I> 4.47 Draw a figure corresponding to Figure 4.9 for the stack ADT that 
disallows duplicates using a forget-the-old-item policy. 

4.48 Modify the standard array-based stack implementation in Section 4.4 
(Program 4.4) to disallow duplicates with an ignore-the-new-item policy. Use 
a brute-force approach that involves scanning through the whole stack. 

4.49 Modify the standard array-based stack implementation in Section 4.4 
(Program 4.4) to disallow duplicates with a forget-the-old-item policy. Use a 
brute-force approach that involves scanning through, and possibly rearrang
ing, the whole stack . 

• 4.50 	 Do Exercises 4.48 and 4.49 for the linked-list-based stack implemen
tation in Section 4.4 (Program 4.5). 

04.5 I Develop a pushdown-stack implementation that disallows duplicates, 
using a forget-the-old-item policy for integer items between 0 and M - 1, and 
that uses constant time for both push and pop. Hint: Use a doubly linked 
list representation for the stack and keep pointers to nodes, rather than 0-1 
values, in an item-indexed array. 

4.52 Do Exercises 4.48 and 4.49 for the FIFO queue ADT. 

4-53 Do Exercise 4.50 for the FIFO queue ADT. 

4.54 Do Exercise 4. 5I for the FIFO queue AD'I'. 

4.55 Do Exercises 4.48 and 4.49 for the randomized-queue ADT. 

4.56 Write a client program for your ADT from Exercise 4.55, which exer
cises a randomized queue with no duplicates. 

4.8 First-Class ADTs 

Our interfaces and implementations of stack and FIFO queue ADTs 
in Sections 4.2 through 4.7 provide clients with the capability to use 
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a single instance of a particular generalized stack or queue, and to 
achieve the important objective of hiding from the client the particular 
data structure used in the implementation. Such ADTs are widely 
useful, and will serve as the basis for many of the implementations 
that we consider in this book. 

These objects are disarmingly simple when considered as ADTs 
themselves, however, because there is only one object in a given pro
gram. The situation is analogous to having a program, for example, 
that manipulates only one integer. We could perhaps increment, decre
ment, and test the value of the integer, but could not declare variables 
or use it as an argument or return value in a function, or even multiply 
it by another integer. In this section, we consider how to construct 
ADTs that we can manipulate in the same way that we manipulate 
built-in types in client programs, while still achieving the objective of 
hiding the implementation from the client. 

Definition 4.4 A first-class data type is one for which we can have 
potentially many different instances> and which we can assign to vari
ables which we can declare to hold the instances. 

For example, we could use first-class data types as arguments and 
return values to functions. 

The method that we will use to implement first-class data types 
applies to any data type: in particular, it applies to generalized queues, 
so it provides us with the capability to write programs that manipulate 
stacks and FIFO queues in much the same way that we manipulate 
other types of data in C. This capability is important in the study of 
algorithms because it provides us with a natural way to express high
level operations involving such ADTs. For example, we can speak of 
operations to join two queues-to combine them into one. We shall 
consider algorithms that implement such operations for the priority 
queue ADT (Chapter 9) and for the symbol table ADT (Chapter 12). 

Some modern languages provide specific mechanisms for building 
first-class ADTs, but the idea transcends specific mechanisms. Being 
able to manipulate instances of ADTs in much the same way that we 
manipulate built-in data types such as int or float is an important 
goal in the design of many high-level programming languages, because 
it allows any applications program to be written such that the program 
manipulates the objects of central concern to the application; it allows 
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many programmers to work simultaneously on large systems, all using 
a precisely defined set of abstract operations; and it provides for those 
abstract operations to be implemented in many different ways without 
any changes to the applications code-for example for new machines 
and programming environments. Some languages even allow operator 
overloading, which allows us to use basic symbols such as + or * to 
define operators. C does not provide specific support for building first
class data types, but it does provide primitive operations that we can 
use to achieve that goal. There are a number of ways to proceed in 
C. To keep our focus on algorithms and data structures, as opposed 
to programming-language design issues, we do not consider all the 
alternatives; rather, we describe and adopt just one convention that we 
can use throughout the book. 

To illustrate the basic approach, we begin by considering, as 
an example, a first-class data type and then a first-class ADT for the 
complex-number abstraction. Our goal is to be able to write programs 
like Program 4.13, which performs algebraic operations on complex 
numbers using operations defined in the ADT. We implement the add 
and multiply operations as standard C functions, since C does not 
support operator overloading. 

Program 4.13 uses few properties of complex numbers; we now 
digress to consider these properties briefly. In one sense, we are not 
digressing at all, because it is interesting to contemplate the relationship 
between complex numbers themselves as a mathematical abstraction 
and this abstract representation of them in a computer program. 

The numberi is an imaginary number. Although A 
is meaningless as a real number, we name it i, and perform algebraic 
manipulations with i, replacing i 2 with -1 whenever it appears. A 
complex number consists of two parts, real and imaginary-complex 
numbers can be written in the form a + bi, where a and bare reals. 
To multiply complex numbers, we apply the usual algebraic rules, 
replacing i 2 with 1 whenever it appears. For example, 

(a + bi)(c + di) ac + bci + adi + bdi2 = (ac bd) + (ad + bc)i. 

The real or imaginary parts might cancel out (have the value 0) when 
we perform a complex multiplication. For example, 

(1 -i)(l i) = 1 - i - i + i 2 = -2i, 

(1 + i)4 = 
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Program 4.13 Complex numbers driver (roots of unity) 

This client program performs a computation on complex numbers us
ing an ADT that allows it to compute directly with the abstraction of 
interest by declaring variables of type Complex and using them as argu
ments and return values of functions. This program checks the ADT 
implementation by computing the powers of the roots of unity. It prints 
the table shown in Figure 4.12. 

#include <stdio.h> 

#include <math.h> 

#include "COMPLEX.h" 

#define PI 3.141592625 

main(int argc, char *argv[]) 


{ 	 int i, j, N = atoi(argv[1]); 
Complex t, x; 
printf("%dth complex roots of unity\n" , N); 
for (i = 0; i < N; i++) 

{ 	float r = 2.0*PI*i!N; 
t = COMPLEXinit(cos(r), siner»~; 
printf("%2d %6.3f %6.3f ", i, Re(t) , Im(t»; 
for (x = t, j = 0; j < N-1; j++) 

x = COMPLEXmult(t, x); 
printf("%6.3f %6.3f\n", Re(x), Im(x»; 

} 

(1 + i)8 = 16. 

Scaling the preceding equation by dividing through by 16 = (J2)8, 
we find that 

In general, there are many complex numbers that evaluate to 1 when 
raised to a power. These are the complex roots of unity. Indeed, for 
each N, there are exactly N complex numbers z with zN 1. The 
numbers 

21rk 21rk 
cos(-y ) -+- i sin ( ~ ) , 

N h 

http:printf("%6.3f
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Program 4.I4 First-class data type for complex numbers 

This interface for complex numbers includes a typedef that allows 
implementations to declare variables of type Complex and to use these 
variables as function arguments and return values. However, the data 
type is not abstract, because this representation is not hidden from 
clients. 

typedef struct { float Re; float 1m; } Complex; 
Complex COMPLEXinit(float, float); 

float Re(Complex); 
float Im(Complex); 

Complex COMPLEXmult(Complex, Complex); 

for k = 0, 1, ... , N 1 are easily shown to have this property (see 
Exercise 4.63). For example, taking k 1 and N 8 in this formula 
gives the particular eighth root of unity that we just discovered. 

Program 4. I 3 is an example of a client program for the complex
numbers ADT that raises each of the Nth roots of unity to the Nth 
power, using the multiplication operation defined in the ADT. The 
output that it produces in shown in Figure +I2: We expect that each 
number raised to the Nth power gives the same result: 1, or 1 + Oi. 

This client program differs from the client programs that we have 
considered to this point in one major respect: it declares variables of 
type Complex and assigns values to such variables, including using 
them as arguments and return values in functions. Accordingly, we 
need to define the type Complex in the interface. 

Program 4.14 is an interface for complex numbers that we might 
consider using. It defines the type Complex as a struct comprising 
two floats (for the real and imaginary part of the complex number), 
and declares four functions for processing complex numbers: initial
ize, extract real and imaginary parts, and multiply. Program 4.I5 
gives implementations of these functions, which are straightforward. 
Together, these two functions provide an effective implementation of a 
complex-number ADT that we can use successfully in client programs 
such as Program 4.I3. 

The interface in Program 4.I4 specifies one particular represen
tation for complex numbers-a structure containing two integers (the 
real and imaginary parts). By including this representation within the 

o 1.000 0.000 1. 000 0.000 
1 0 . 707 0 . 707 1. 000 a . 000 
2 -0. 000 1. 000 1. 000 a . 000 
3 -0.707 0.707 1.000 0.000 
4 -1.000 -0.0001.000 0.000 
5 -0.707 -0.707 1.000 -0.000 
6 0.000 -1.0001.000 0.000 
7 0.707 -0.707 1.000 -0.000 

Figure 4.I2 
Complex roots of unity 

This table gives the output that is 
produced by Program 4. 13 when 
invoked with a. out 8. The eight 
complex roots of unity are ±l, ±i, 
and 

±!2± 
2 2 

(left two columns). Each of these 
eight numbers gives the result 1 -+
Oi when raised to the eighth power 
(right two columns). 
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Program 4.15 Complex-numbers data-type implementation 

These function implementations for the complex numbers data type are 
straightforward. However, we would prefer not to separate them from 
the definition of the Complex type, which is defined in the interface for 
the convenience of the client. 

#include "COMPLEX.h" 
Complex COMPLEXinit(float Re, float 1m) 

{ Complex t; t.Re = Re; t.Im = 1m; return t; } 
float Re(Complex z) 


{ return z.Re; } 

float Im(Complex z) 


{ return z.Im; } 

Complex COMPLEXmult(Complex a, Complex b) 


{ Complex t; 

t.Re = a.Re*b.Re a.Im*b.Im; 

t.Im = a.Re*b.Im + a.Im*b.Re; 

return t; 


interface, however, we are making it available for use by client pro
grams. Programmers often organize interfaces in this way. Essentially, 
doing so amounts to publishing a standard representation for a new 
data type that might be used by many client programs. In this example, 
client programs could refer directly to t . Re and t . 1m for any variable 
t of type Complex. The advantage of allowing such access is that we 
thus ensure that clients that need to directly implement their own ma
nipulations that may not be present in the type's suite of operations 
at least agree on the standard representation. The disadvantage of 
allowing clients direct access to the data is that we cannot change the 
representation without changing all the clients. In short, Program 4.14 
is not an abstract data type, because the representation is not hidden 
by the interface. 

Even for this simple example, the difficulty of changing represen
tations is significant because there is another standard representation 
that we might wish to consider using: polar coordinates (see Exer
cise 4.62). For an application with more complicated data structures, 
the ability to change representations is a requirement. For example, 

http:a.Im*b.Re
http:a.Re*b.Im
http:a.Im*b.Im
http:a.Re*b.Re
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Program 4_16 First-class ADT for complex numbers 

This interface provides clients with handles to complex number objects, 
but does not give any information about the representation-it is a 
struct that is not specified, except for its tag name. 

typedef struct complex *Complex; 
Complex COMPLEXinit(float, float); 

float Re(Complex); 
float Im(Complex); 

Complex COMPLEXmult(Complex, Complex); 

our company that needs to process mailing lists needs to use the same 
client program to process mailing lists in different formats. With a 
first-class ADT, the client programs can manipulate the data without 
direct access, but rather with indirect access, through operations de
fined in the ADT. An operation such as extract customer name then 
can have different implementations for different list formats. The most 
important implication of this arrangement is that we can change the 
data representation without having to change the client programs. 

We use the term handle to describe a reference to an abstract 
object. Our goal is to give client programs handles to abstract objects 
that can be used in assignment statements and as arguments and return 
values of functions in the same way as built-in data types, while hiding 
the representation of the objects from the client program. 

Program 4.16 is an example of such an interface for complex 
numbers that achieves this goal, and exemplifies the conventions that 
we shall use throughout this book. The handle is defined as a pointer 
to a structure that has a name tag, but is otherwise not specified. The 
client can use this handle as intended, but there can be no code in 
the client program that uses the handle in any other way: It cannot 
access a field in a structure by dereferencing the pointer because it 
does not have the names of any of the fields. In the interface, we 
define functions which accept handles as arguments and also return 
handles as values; and client programs can use those functions, all 
without knowing anything about the data structure that will be used 
to implement the interface. 
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Program 4.17 is an implementation of the interface of Pro
gram 4.16. It defines the specific data structure that will be used 
to implement handles and the data type itself; a function that allocates 
the memory for a new object and initializes its fields; functions that 
provide access to the fields (which we implement by dereferencing the 
handle pointer to access the specific fields in the argument objects); and 
functions that implement the ADT operations. All information specific 
to the data structure being used is guaranteed to be encapsulated in 
the implementation, because the client has no way to refer to it. 

The distinction between the data type for complex numbers in 
the code in Programs 4.14 and 4.15 and the ADT for complex num
bers in the code in Programs 4.16 and 4.17 is essential and is thus 
well worth careful study. It is a mechanism that we can use to develop 
and compare efficient algorithms for fundamental problems through
out this book. We shall not treat all the implications of using such a 
mechanism for software engineering in further detail, but it is a pow
erful and general mechanism that will serve us well in the study of 
algorithms and data structures and their application. 

In particular, the issue of storage management is critical in the use 
of ADTs in software engineering. When we say x = t in Program 4. 1 3, 
where the variables are both of type Complex, we simply are assigning a 
pointer. The alternative would be to allocate memory for a new object 
and define an explicit copy function to copy the values in the object 
associated with t to the new object. This issue of copy semantics is an 
important one to address in any ADT design. We normally use pointer 
assignment (and therefore do not consider copy implementations for 
our ADTs) because of our focus on efficiency-this choice makes us 
less susceptible to excessive hidden costs when performing operations 
on huge data structures. The design of the C string data type is based 
on similar considerations. 

The implementation of COMPLEXmult in Program 4. 15 creates a 
new object for the result. Alternatively, more in the spirit of reserving 
explicit object-creation operations for the client, we could return the 
value in one of the arguments. As it stands, COMPLEXmult has a defect 
called a memory leak, that makes the program unusable for a huge 
number of multiplications. The problem is that each multiplication 
allocates memory for a new object, but we never execute any calls to 

free. For this reason, ADTs often contain explicit destroy operations 
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Program 4.I7 Complex-numbers ADT implementation 

By contrast with Program 4. I 5, this implementation of the complex
numbers ADT includes the structure definition (which is hidden from 
the client), as well as the function implementations. Objects are pointers 
to structures, so we dereference the pointer to refer to the fields. 

#include <stdlib.h> 

#include "COMPLEX.h" 

struct complex { float Re; float 1m; }; 

Complex COMPLEXinit(float Re, float 1m) 


{ Complex t malloc(sizeof *t); 

t->Re = Re; t->Im = 1m; 

return t; 


} 


float Re(Complex z) 

{ return z->Re; } 


float Im(Complex z) 

{ return z->Im; } 


Complex COMPLEXmult(Complex a, Complex b) 

{ 

return COMPLEXinit(Re(a)*Re(b) - Im(a)*Im(b), 
Re(a)*Im(b) + Im(a)*Re(b)); 

} 

for use by clients. However, having the capability for destroy is no 
guarantee that clients will use it for each and every object created, and 
memory leaks are subtle defects that plague many large systems. For 
this reason, some programming environments have automatic mecha
nisms for the system to invoke destroy; other systems have automatic 
memory allocation, where the system takes responsibility to figure out 
which memory is no longer being used by programs, and to reclaim 
it. None of these solutions is entirely satisfactory. We rarely include 
destroy implementations in our ADTs, since these considerations are 
somewhat removed from the essential characteristics ofour algorithms. 

First-class ADTs playa central role in many of our implemen
tations because they provide the necessary support for the abstract 
mechanisms for generic objects and collections of objects that we dis
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--~-~----------~------~---------..., 

Program 4.18 First-class ADT interface for queues 

We provide handles for queues in precisely the same manner as we did 
for complex numbers in Program 4.16: A handle is a pointer to a 
structure that is unspecified except for the tag name. 

typedef struct queue *Q; 

void QUEUEdump(Q); 


Q QUEUEinit(int maxN); 

int QUEUEempty(Q); 


void QUEUEput(Q, Item); 

Item QUEUEget(Q); 


6 13 51 64 71 84 90 
4 23 26 34 38 62 78 
828334854567581 
2 15 17 374347 505361 8082 

12253032364952637479 
3 14 22 27 31 42 46 59 77 
9 19 20 29 39 45 69 70 73 76 83 
5 11 18 24 35 44 57 58 67 
o 1 21 4041 5566 72 

7 1016606568 


Figure 4.13 
Random-queue simulation 

This table gives the output that is 
produced when Program 4. 19 is 
invoked with 84 as the command
line argument. The 10 queues have 
an average of 8.4 items each, rang
ing from a low of six to a high of 
11. 

cussed in Section 4.1. Accordingly, we use Item for the type of the 
items that we manipulate in the generalized queue ADTs in this book 
(and include an Item.h interface file), secure in the knowledge that an 
appropriate implementation will make our code useful for whatever 
data type a client program might need. 

To illustrate further the general nature of the basic mechanism, 
we consider next a first-class ADT for FIFO queues using the same 
basic scheme that we just used for complex numbers. Program 4.18 

is the interface for this ADT. It differs from Program 4.9 in that it 
defines a queue handle (to be a pointer to an unspecified structure, 
in the standard manner) and each function takes a queue handle as 
an argument. With handles, client programs can manipulate multiple 
queues. 

Program 4.19 is a driver program that exemplifies such a client. 
It randomly assigns N items to one of 1\J FIFO queues, then prints 
out the contents of the queues, by removing the items one by one. 
Figure 4.13 is an example of the output produced by this program. 
Our interest in this program is to illustrate how the first-class data
type mechanism allows it to work with the queue ADT itself as a 
high-level object-it could easily be extended to test various methods 
of organizing queues to serve customers, and so forth. 

Program 4.20 is an implementation of the FIFO queue ADT 
defined in Program 4.18, using linked lists for the underlying data 
structure. The primary difference between these implementations and 
those in Program 4.10 has to do with the variables head and tail. 
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Program 4.I9 Queue client program (queue simulation) 

The availability of object handles makes it possible to build compound 

data structures with ADT objects, such as the array of queues in this 

sample client program, which simulates a situation where customers 

waiting for service are assigned at random to one of Mservice queues. 


#include <stdio.h> 

#include <stdlib.h> 

#include "Item.h" 

#include IQUEUE.h" 

#define M 10 

main(int argc, char *argv[]) 


{ 	 int i, j, N atoi(argv[1]); 

Q queues[M]; 

for (i = 0; i < M; i++) 


queues[i] QUEUEinit(N); 

for (i 0; i < N; i++) 


QUEUEput(queues[rand() % MJ, j); 

for (i 0; i < Mi i++, printfCl\n")) 


for (j 0; !QUEUEempty(queues[i]); j++) 

("%3d ", QUEUEget(queues )); 


} 


In Program 4.IO, we had only one queue, so we simply declared and 
used these variables in the implementation. In Program 4.20, each 
queue q has its own pointers head and tail, which we reference with 
the code q->head and q->tail. The definition of struct queue in 
an implementation answers the question "what is a queue?" for that 
implementation: In this case, the answer is that a queue is pointer to 
a structure consisting of the links to the head and tail of the queue. 
In an array implementation, a queue is a pointer to a struct consisting 
of a pointer to an array and two integers: the size of the array and 
the number of elements currently on the queue (see Exercise 4.65). In 
general, the members of the structure are exactly the global or static 
variables from the one-object implementation. 

With a carefully designed ADT, we can make use of the sepa
ration between client and implementations in many interesting ways. 
For example, we commonly use driver programs when developing or 
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Program 4.20 Linked-list implementation of first-class queue 

The code for implementations that provide object handles is typically 
more cumbersome than the corresponding code for single objects (see 
Program 4.10). This code does not check for errors such as a client 
attempt to get from an empty queue or an unsuccessful malloe (see 
Exercise 4· 33)· 

#include <stdlib.h> 

#include "Item.h" 

#include "QUEUE.h" 

typedef struct QUEUEnode* link; 

struct QUEUEnode { Item item; link next; }; 

struct queue { link head; link tail; }; 

link NEW(Item item, link next) 


{ 	link x = malloc(sizeof *x); 

x->item = item; x->next = next; 

return x; 


} 

Q QUEUEinit(int maxN) 
{ Q q = malloc(sizeof *q); 


q->head = NULL; 

return q; 


} 

int QUEUEempty(Q q) 

{ return q->head == NULL; } 


void QUEUEput(Q q, Item item) 

{ 

if (q->head == NULL) 

{ q->tail = NEW(item, q->head); 


q->head = q->tail; return; } 
q->tail->next = NEW(item, q->tail->next); 
q->tail = q->tail->next; 

} 


Item QUEUEget(Q q) 

{ Item item = q->head->item; 


link t q->head->next; 

; q->head = t; 
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debugging ADT implementations. Similarly, we often use incomplete 
implementations of ADTs, called stubs, as placeholders while building 
systems to learn properties of clients, although this exercise can be 
tricky for clients that depend on the ADT implementation semantics. 

As we saw in Section 4.3, the ability to have multiple instances of 
a given ADT in a single program can lead us to complicated situations. 
Do we want to be able to have stacks or queues with different types 
of objects on them? How about different types of objects on the same 
queue? Do we want to use different implementations for queues of the 
same type in a single client because we know of performance differ
ences? Should information about the efficiency of implementations be 
included in the interface? What form should that information take? 
Such questions underscore the importance of understanding the basic 
characteristics of our algorithms and data structures and how client 
programs may use them effectively, which is, in a sense, the topic of 
this book. Full implementations, however, are exercises in software 
engineering, rather than in algorithms design, so we stop short of de
veloping ADTs of such generality in this book (see reference section). 

Despite its virtues, our mechanism for providing first-class ADTs 
comes at the (slight) cost of extra pointer dereferences and slightly 
more complicated implementation code, so we shall use the full mech
anism for only those ADTs that require the use of handles as argu
ments or return values in interfaces. On the one hand, the use of 
first-class types might encompass the majority of the code in a small 
number of huge applications systems; on the other hand, an only-one
object arrangement-such as the stacks, FIFO queues, and generalized 
queues of Sections 4.2 through 4.7-and the use of typedef to specify 
the types of objects as described in Section 4.1 are quite serviceable 
techniques for many of the programs that we write. In this book, we 
introduce most of the algorithms and data structures that we consider 
in the latter context, then extend these implementations into first-class 
ADTs when warranted. 

Exercises 

[> 4.57 Add a function CDMPLEXadd to the ADT for complex numbers in the 
text (Programs 4.16 and 4.17). 

4.58 Convert the equivalence-relations ADT in Section 4.5 to a first-class 
type. 

4-59 Create a first-class ADT for use in programs that process playing cards. 
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•• 4.60 Write a program to determine empirically the probability that various 
poker hands are dealt, using your ADT from Exercise 4.59. 

4.61 Create an ADT for points in the plane, and change the closest-point 
program in Chapter 3 Program 3.16 to a client program that uses your ADT. 

04.62 	 Develop an implementation for the complex-number ADT that is based 
on representing complex numbers in polar coordinates (that is, in the form 
re'o). 

• 4.63 	 Use the identity = cos () + i sin () to prove that =: 1 and that the 
N complex Nth roots of unity are 

(21f'k) .. (21f'k)
cos -:'V + 1 sm N-' 

for k 0, 1, ... , N - 1. 

4.64 List the Nth roots of unity for N from 2 through 8. 

4.65 Develop an implementation of the FIFO queue first-class ADT given in 
the text (Program 4.18) that uses an array as the underlying data structure. 

I> 4.66 Write an interface for a first-class pushdown-stack ADT. 

4.67 Develop an implementation of your first-class pushdown-stack ADT 
from Exercise 4.66 that uses an array as the underlying data structure. 

4.68 Develop an implementation of your first-class pushdown-stack ADT 
from Exercise 4.66 that uses a linked list as the underlying data structure. 

04.69 	 Modify the postfix-evaluation program in Section 4.3 to evaluate post
fix expressions consisting of complex numbers with integer coefficients, using 
the first-class complex numbers ADT in the text (Programs 4.16 and 4.17). 
For simplicity, assume that the complex numbers all have nonnull integer coef
ficients for both real and imaginary parts and are written with no spaces. For 
example, your program should print the output 8+4i when given the input 

l+li O+li + 1-2i * 3+4i + . 

4.9 Application-Based ADT Example 

As a final example, we consider in this section an application-specific 
ADT that is representative of the relationship between applications 
domains and the algorithms and data structures of the type that we 
consider in this book. The example that we shall consider is the 
polynomial ADT. It is drawn from symbolic mathematics, where we 
use the computer to help us manipulate abstract mathematical objects. 

Our goal is to be able to perform computations such as 
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Program 4.2 I Polynomial client (binomial coefficients) 

This client program uses the polynomial ADT that is defined in the 
interface Program 4.22 to perform algebraic manipulations with poly
nomials. It takes an integer N and a floating-point number p from the 
command line, computes (x + l)N, and checks the result by evaluating 
the resulting polynomial at x p. 

#include <stdio.h> 
#include <stdlib.h> 
#include "POLY.h" 
main(int argc, char *argv[]) 

{ int N = atoi(argv[1]); float p = atof(argv[2]); 
Poly t, x; int i, j; 

printf("Binomial coefficients\n"); 
t = POLYadd(POLYterm(1, 1), POLYterm(1, 0)); 
for (i = 0, x = t; i < N; i++) 

{ x = POLYmult(t, x); showPDLY(x); } 
printfC"%f\n", POLYeval(x, p)); 

} 

We also want to be able to evaluate the polynomial for a given value of 
x. For x 0.5, both sides of this equation have the value 1.1328125. 
The operations of multiplying, adding, and evaluating polynomials are 
at the heart of a great many mathematical calculations. Program 4.21 

is a simple example that performs the symbolic operations correspond
ing to the polynomial equations 

+1)2 +2x+1, 

(x + 1)3 = x3 + + 3x + 1, 

(x + 1)4 = X4 + 4x3 + 6x2 + 4x + 1, 

(x + 1)5 x 5 + 5x4 + 10x3 + 10x2 + 5x + 1, 

The same basic ideas extend to include operations such as composition, 
integration, differentiation, knowledge of special functions, and so 
forth. 

The first step is to define the polynomial ADT, as illustrated 
in the interface Program 4.22. For a well-understood mathematical 
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abstraction such as a polynomial, the specification is so clear as to be 
unspoken (in the same way as for the ADT for complex numbers that 
we discussed in Section 4.8): We want instances of the ADT to behave 
precisely in the same manner as the well-understood mathematical 
abstraction. 

To implement the functions defined in the interface, we need 
to choose a particular data structure to represent polynomials and 
then to implement algorithms that manipulate the data structure to 

produce the behavior that client programs expect from the ADT. As 
usual, the choice of data structure affects the potential efficiency of the 
algorithms, and we are free to consider several. Also as usual, we have 
the choice of using a linked representation or an array representation. 
Program 4.23 is an implementation using an array representation; the 
linked-list representation is left as an exercise (see Exercise 4.70). 

To add two polynomials, we add their coefficients. If the polyno
mials are represented as arrays, the add function amounts to a single 
loop through the arrays, as shown in Program 4.23. To multiply two 
polynomials, we use the elementary algorithm based on the distribu
tive law. We multiply one polynomial by each term in the other, line 
up the results so that powers of x match, then add the terms to get 
the final result. The following ta ble summarizes the computation for 

3(1 - x + x 2 /2 - x 3 /6) ( 1 x + :r2 + x ) : 

1 -x + 2 6 

+x -x2 + 
2 6 

:c4 
_x3 +

2 6 
6x

+
2 6 

2 5 6x 2X4 x x
1 r- +

2 3 3 3 6 

The computation seems to require time proportional to N 2 to multiply 
two polynomials. Finding a faster algorithm for this task is a significant 
challenge. We shall consider this topic in detail in Part 8, where we 
shall see that it is possible to accomplish the task in time proportional to 
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Program 4.22 First-class ADT interface for polynomials 

As usual, a handle to a polynomial is a pointer to a structure that is 
unspecified except for the tag name. 

typedef struct poly *Poly; 

void showPOLY(Poly); 

Poly POLYterm(int, int); 

Poly POLYadd(Poly, Poly); 

Poly POLYmult(Poly, Poly); 


(Poly, float); 

N3/2 using a divide-and-conquer algorithm, and in time proportional 
to N 19 N using the fast Fourier transform. 

The implementation of the evaluate function in Program 4.23 
uses a classic efficient algorithm known as Horner's algorithm. A 
naive implementation of the function involves a direct computation 
using a function that computes . This approach takes quadratic 
time. A less naive implementation involves saving the values of Xi 

in a table, then using them in a direct computation. This approach 
takes linear extra space. Horner's algorithm is a direct optimal linear 
algorithm based on parenthesizations such as 

4 3 . 2 a4X + a3X + a2X + aIX + ao (((a4X + a3)X + a2)X + ada:; + ao· 

Horner's method is often presented as a time-saving trick, but it is 
actually an early and outstanding example of an elegant and efficient 
algorithm, which reduces the time required for this essential computa
tional task from quadratic to linear. The calculation that we performed 
in Program 4.2 for converting ASCII strings to integers is a version of 
Horner's algorithm. We shall encounter Horner's algorithm again, in 
Chapter 14 and Part 5, as the basis for an important computation 
related to certain symbol-table and string-search implementations. 

For simplicity and efficiency, POLYadd modifies one of its argu
ments; if we choose to use this implementation in an application, we 
should note that fact in the specification (see Exercise 4.71). Moreover, 
we have memory leaks, particularly in POLYmult, which creates a new 
polynomial to hold the result (see Exercise 4.72). 

As usual, the array representation for implementing the polyno
mial ADT is but one possibility. If exponents are huge and there are 
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Program 4.23 Array implementation of polynomial ADT 

In this implementation of a first-class ADT for polynomials, a polyno
mial is a structure containing the degree and a pointer to an array of 
coefficients. For simplicity in this code, each addition operation mod
ifies one of its arguments and each multiplication operation creates a 
new object. Another ADT operation to destroy objects (and to free the 
associated memory) might be needed for some applications. 

#include <stdlib.h> 

#include "POLY.h" 

struct poly { int N; int *a; }; 

Poly POLYterm(int coeff, int exp) 


{ 	 int i; Poly t = malloc(sizeof *t); 

t->a = malloc«exp+l)*sizeof(int»); 

t->N = exp+l; t->a[exp] = coeff; 

for (i = 0; i < exp; i++) t->a[i] = 0; 

return t; 


} 

Poly POLYadd(Poly p, Poly q) 
{ 	 int i; Poly t; 

if (p->N < q->N) { t = p; p q; q = t; } 
for (i = 0; i < q->N; i++) p->a[i] += q->a[i]; 
return p; 

} 

Poly POLYmult(Poly p, Poly q) 
{ 	 int i, j; 


Poly t = POLYterm(O, (p->N-l)+(q->N-l»; 

for (i = 0; i < p->N; i++) 


for (j = 0; j < q->N; j++) 

t->a[i+j] += p->a[i]*q->a[j]; 


return t; 

} 

float POLYeval(Poly p, float x) 

{ int i; double t = 0.0; 


for (i = p->N-l; i >= 0; i--) 

t = t*x + p->a[i] ; 


return t; 

} 
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not many terms, a linked-list representation might be more appropri
ate. For example, we would not want to use Program 4.23 to perform 
a multiplication such as 

(1 + XlOOOOOO)(l + x2000000) 1 + XlOOOOOO + x2000000 + x3000000, 

because it would use an array with space for hundreds of thousands 
of unused coefficients. Exercise 4.70 explores the linked list option in 
more detail. 

Exercises 

4.70 Provide an implementation for the polynomial ADT given in the text 
(Program 4.22) that uses linked lists as the underlying data structure. Your 
lists should not contain any nodes corresponding to terms with coefficient 
value O. 

[> 4.71 Modify the implementation of POLYadd in Program 4.23 such that it 
operates in a manner similar to POLYmult (and does not modify either of its 
arguments). 

°	4.72 Modify the polynomial ADT interface, implementation, and client in 
the text (Programs 4.21 through 4.23) such that there are no memory leaks. 
To do so, define new operations POLYdestroy and POLYcopy, which should free 
the memory for an object and copy one object's values to another, respectively; 
and modify POLYadd and POLYmult to destroy their arguments and return a 
newly created object, by convention. 

°	4.73 Extend the polynomial ADT given in the text to include integration and 
differentiation of polynomials. 

04.74 	 Modify your polynomial ADT from Exercise 4.73 to ignore all terms 
with exponents greater than or equal to an integer lvi, which is provided by 
the client at initialization . 

•• 4.75 Extend your polynomial ADT from Exercise 4.73 to include polyno
mial division and composition . 

• 4.76 Develop an ADT that allows clients to perform addition and multipli
cation of arbitrarily long integers . 

• 4.77 Modify the postfix-evaluation program in Section 4.3 to evaluate post
fix expressions consisting of arbitrarily long integers, using the ADT that you 
developed for Exercise 4.76. 

•• 4.78 Write a client program that uses your polynomial ADT from Exer
cise 4.75 to evaluate integrals by using Taylor series approximations of func
tions, manipulating them symbolically. 

4.79 Develop an ADT that provides clients with the ability to perform alge
braic operations on vectors of floating-point numbers. 
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4.80 Develop an ADT that provides clients with the ability to perform alge
braic operations on matrices of abstract objects for which addition, subtrac
tion, multiplication, and division are defined. 

4.81 Write an interface for a character-string ADT, which includes opera
tions for creating a string, comparing two strings, concatenating two strings, 
copying one string to another, and returning the string length. 

4.82 Provide an implementation for your string ADT interface from Exer
cise 4.81, using the C string library where appropriate. 

4.83 Provide an implementation for your string ADT interface from Exer
cise 4.81, using a linked list for the underlying representation. Analyze the 
worst-case running time of each operation. 

4.84 Write an interface and an implementation for an index set ADT, which 
processes sets of integers in the range 0 to M - 1 (where .AI is a defined 
constant) and includes operations for creating a set, computing the union of 
two sets, computing the intersection of two sets, computing the complement 
of a set, computing the difference of two sets, and printing out the contents of 
a set. In your implementation, use an array of .At - 1 0-1 values to represent 
each set. 

4.85 Write a client program that tests your ADT from Exercise 4.84. 

4.IO Perspective 

There are three primary reasons for us to be aware of the fundamental 
concepts underlying ADTs as we embark on the study of algorithms 
and data structures: 

• 	 ADTs are an important software-engineering tool in widespread 
use, and many of the algorithms that we study serve as imple
mentations for fundamental ADTs that are widely applicable. 

• 	 ADTs help us to encapsulate the algorithms that we develop, so 
that we can use the same code for many different purposes. 

• ADTs provide a convenient mechanism for our use in the process 
of developing and comparing the performance of algorithms. 

Ideally, ADTs embody the common-sense principle that we are obli
gated to describe precisely the ways in which we manipulate our data. 
The client-interface-implementation mechanism that we have consid
ered in detail in this chapter is convenient for this task in C, and 
provides us with C code that has a number of desirable properties. 
Many modern languages have specific support that allows the devel
opment of programs with similar properties, but the general approach 
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transcends particular languages-when we do not have specific lan
guage support, we adopt programming conventions to maintain the 
separation that we would like to have among clients, interfaces, and 
implementations. 

As we consider an ever-expanding set of choices in specifying 
the behavior of our ADTs, we are faced with an ever-expanding set 
of challenges in providing efficient implementations. The numerous 
examples that we have considered illustrate ways of meeting such chal
lenges. We continually strive to achieve the goal of implementing all 
the operations efficiently, but we are unlikely to have a general-purpose 
implementation that can do so for all sets of operations. This situation 
works against the principles that lead us to ADTs in the first place, be
cause in many cases implementors of ADTs need to know properties of 
client programs to know which implementations of associated ADTs 
will perform most efficiently, and implementors of client programs 
need to know performance properties of various implementations to 
know which to choose for a particular application. As ever, we must 
strike a balance. In this book, we consider numerous approaches to 
implementations for variants of fundamental ADTs, all of which have 
important applications. 

We can use one ADT to build another. We have used the pointer 
and structure abstractions provided by C to build linked lists, then 
we have used linked lists or the array abstraction provided by C to 
build pushdown stacks, then we use pushdown stacks to get the capa
bility to evaluate arithmetic expressions. The ADT concept allows us 
to construct large systems on different layers of abstraction, from the 
machine-language instructions provided by the computer, to the var
ious capabilities provided by the programming language, to sorting, 
searching and other higher-level capabilities provided by algorithms 
as discussed in Parts 3 and 4 of this book, to the even higher levels 
of abstraction that the various applications require, as discussed in 
Parts 5 through 8. ADTs are one point on the continuum of devel
oping ever more powerful abstract mechanisms that is the essence of 
using computers effectively in problem solving. 
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CHAPTER FIVE 

Recursion and Trees 

T HE CONCEPT OF recursion is fundamental in mathematics and 
computer science. The simple definition is that a recursive pro

gram in a programming language is one that calls itself (just as a recur
sive function in mathematics is one that is defined in terms of itself). 
A recursive program cannot call itself always, or it would never stop 
(just as a recursive function cannot be defined in terms of itself always, 
or the definition would be circular); so a second essential ingredient 
is that there must be a termination condition when the program can 
cease to call itself (and when the mathematical function is not defined 
in terms of itself). All practical computations can be couched in a 
recursive framework. 

The study of recursion is intertwined with the study of recursively 
defined structures known as trees. We use trees both to help us under
stand and analyze recursive programs and as explicit data structures. 
We have already encountered an application of trees (although not a 
recursive one), in Chapter 1. The connection between recursive pro
grams and trees underlies a great deal of the material in this book. We 
use trees to understand recursive programs; we use recursive programs 
to build trees; and we draw on the fundamental relationship between 
both (and recurrence relations) to analyze algorithms. Recursion helps 
us to develop elegant and efficient data structures and algorithms for 
all manner of applications. 

Our primary purpose in this chapter is to examine recursive pro
grams and data structures as practical tools. First, we discuss the 
relationship between mathematical recurrences and simple recursive 
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programs, and we consider a number of examples of practical recur
sive programs. Next, we examine the fundamental recursive scheme 
known as divide and conquer, which we use to solve fundamental 
problems in several later sections of this book. Then, we consider a 
general approach to implementing recursive programs known as dy
namic programming, which provides effective and elegant solutions to 
a wide class of problems. Next, we consider trees, their mathematical 
properties, and associated algorithms in detail, including basic meth
ods for tree traversal that underlie recursive tree-processing programs. 
Finally, we consider closely related algorithms for processing graphs
we look specifically at a fundamental recursive program, depth-first 
search, that serves as the basis for many graph-processing algorithms. 

As we shall see, many interesting algorithms are simply expressed 
with recursive programs, and many algorithm designers prefer to ex
press methods recursively. We also investigate nonrecursive alterna
tives in detail. Not only can we often devise simple stack-based al
gorithms that are essentially equivalent to recursive algorithms, but 
also we can often find nonrecursive alternatives that achieve the same 
final result through a different sequence of computations. The recur
sive formulation provides a structure within which we can seek more 
efficient alternatives. 

A full discussion of recursion and trees could fill an entire book, 
for they arise in many applications throughout computer science, and 
are pervasive outside of computer science as well. Indeed, it might be 
said that this book is filled with a discussion of recursion and trees, 
for they are in a fundamental way, in everyone of the book's 
chapters. 

5. I Recursive Algorithms 

A recursive algorithm is one that solves a problem by solving one or 
more smaller instances of the same problem. To implement recursive 
algorithms in C, we use recursive functions-a recursive function is 
one that calls itself. Recursive functions in C correspond to recursive 
definitions of mathematical functions. We begin our study of recursion 
by examining programs that directly evaluate mathematical functions. 
The basic mechanisms extend to provide a general-purpose program
ming paradigm, as we shall see. 
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Program 5.1 Factorial function (recursive implementation) 

This recursive function computes the function N!, using the standard 
recursive definition. It returns the correct value when called with N 
nonnegative and sufficiently small that N! can be represented as an into 

int factorial(int N) 
{ 

if (N == 0) return 1; 

return N*factorial(N-1); 


} 


Recurrence relations (see Section 2.5) are recursively defined 
functions. A recurrence relation defines a function whose domain 
is the nonnegative integers either by some initial values or (recursively) 
in terms of its own values on smaller integers. Perhaps the most fa
miliar such function is the factorial function, which is defined by the 
recurrence relation 

N! = N· (N -I)!, for N ;::: 1 with O! 1. 

This definition corresponds directly to the recursive C function in Pro
gram 5.1. 

Program 5. I is equivalent to a simple loop. For example, the 
following for loop performs the same computation: 

for ( t = 1, i = 1; i <= N; i++) t *= i; 

As we shall see, it is always possible to transform a recursive program 
into a nonrecursive one that performs the same computation. Con
versely, we can express without loops any computation that involves 
loops, using recursion, as well. 

We use recursion because it often allows us to express complex 
algorithms in a compact form, without sacrificing efficiency, For ex
ample, the recursive implementation of the factorial function obviates 
the need for local variables. The cost of the recursive implementation 
is borne by the mechanisms in the programming systems that support 
function calls, which use the equivalent of a built-in pushdown stack. 
Most modern programming systems have carefully engineered mecha
nisms for this task. Despite this advantage, as we shall see, it is all too 
easy to write a simple recursive function that is extremely inefficient, 



puzzle (3) 
puzzle(10) 

puzzle (5) 
puzzle (16) 

puzzle (8) 
puzzle (4) 

puzzle (2) 
puzzle (1) 

Figure 5.1 
Example of a recursive call 

chain 

This nested sequence of function 
calls eventually terminates, but 
we cannot prove that the recursive 
function in Program 5.2 does not 
have arbitrarily deep nesting for 
some argument. We prefer recur
sive programs that always invoke 
themselves with smaller arguments. 
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Program 5.2 A questionable recursive program 

If the argument N is odd, this function calls itself with 3N + 1 as an 
argument; if N is even, it calls itself with N /2 as an argument. We 
cannot use induction to prove that this program terminates, because not 
every recursive call uses an argument smaller than the one 

int puzzle(int N) 
{ 


if eN ;; 1) return 1; 

if (N % 2 == 0) 


return puzzle(N!2); 

else return puzzle(3*N+1); 


} 


and we need to exercise care to avoid being burdened with intractable 
implementations. 

Program 5.1 illustrates the basic features of a recursive program: 
it calls itself (with a smaller value of its argument), and it has a termi
nation condition in which it directly computes its result. We can use 
mathematical induction to convince ourselves that the program works 
as intended: 

• It computes 01 (basis). 
• Under the assumption that it computes k1 for k < N (inductive 

hypothesis), it computes N!. 
Reasoning like this can provide us with a quick path to developing 
algorithms that solve complex problems, as we shall see. 

In a programming language such as C, there are few restrictions 
on the kinds of programs that we write, but we strive to limit our
selves in our use of recursive functions to those that embody inductive 
proofs of correctness like the one outlined in the previous paragraph. 
Although we do not consider formal correctness proofs in this book, 
we are interested in putting together complicated programs for diffi
cult tasks, and we need to have some assurance that the tasks will be 
solved properly. Mechanisms such as recursive functions can provide 
such assurances while giving us compact implementations. Practically 
speaking, the connection to mathematical induction tells us that we 
should ensure that our recursive functions satisfy two basic properties: 

• They must explicitly solve a basis case. 
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Program 5.3 Euclid's algorithm 

One of the oldest-known algorithms, dating back over 2000 years, is 
this recursive method for finding the greatest common divisors of two 
integers. 

int gcd(int m, int n) 
{ 

if en == 0) return m; 

return gcd(n, m %n); 


} 

• Each recursive call must involve smaller values of the arguments. 
These points are vague-they amount to saying that we should have a 
valid inductive proof for each recursive function that we write. Still, 
they provide useful guidance as we develop implementations. 

Program 5.2 is an amusing example that illustrates the need for 
an inductive argument. It is a recursive function that violates the rule 
that each recursive call must involve smaller values of the arguments, 
so we cannot use mathematical induction to understand it. Indeed, 
it is not known whether or not this computation terminates for every 
N, if there are no bounds on the size of N. For small integers that 
can be represented as ints, we can check that the program terminates 
(see Figure 5.1 and Exercise 5.4), but for large integers (64-bit words, 
say), we do not know whether or not this program goes into an infinite 
loop. 

Program 5.3 is a compact implementation of Euclid's algorithm 
for finding the greatest common divisor of two integers. It is based 
on the observation that the greatest common divisor of two integers x 
and y with x > y is the same as the greatest common divisor of y and 
x mod y (the remainder when x is divided by y). A number t divides 
both x and y if and only if t divides both y and x mod y, because x 
is equal to x mod y plus a multiple of y. The recursive calls made for 
an example invocation of this program are shown in Figure 5.2. For 
Euclid's algorithm, the depth of the recursion depends on arithmetic 
properties of the arguments (it is known to be logarithmic). 

Program 5.4 is an example with multiple recursive calls. It is 
another expression evaluator, performing essentially the same compu
tations as Program 4.2, but on prefix (rather than postfix) expressions, 

gcd(314159, 271828) 

gcd(271828, 42331) 


gcd(42331 , 17842) 

gcd(17842, 6647) 


gcd(6647, 4458) 

gcd(4458 , 2099) 


gcd (2099, 350) 

gcd(350, 349) 

gcd(349, 1) 
gcd(l,O) 

Figure 5.2 
Example of Euclid's algorithm 

This nested sequence of function 
calls illustrates the operation of Eu
clid's algorithm in discovering that 
314159 and 271828 are relatively 
prime. 



eval () * + 7 * * 4 6 + 8 9 5 
eval 0 + 7 * * 4 6 + 8 9 

evalO 7 
eval 0 * * 4 6 + 8 9 

evalO * 4 6 
evalO 4 
evalO 6 
return 24 4*6 

evalO + 8 9 
evalO 8 
evalO 9 
return 17 = 8 + 9 

return 408 =24*17 
return 415 = 7+408 

evalO 5 
return 2075 =415*5 

Figure 5.3 
Prefix expression evaluation 

example 

This nested sequence of function 
calls illustrates the operation of 
the recursive prefix-express ion
evaluation algorithm on a sam
ple expression. For simplicity, the 
expression arguments are shown 
here. The algorithm itself never ex
plicitly decides the extent of its ar
gument string: rather; it takes what 
it needs from the front of the string. 
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Program 5.4 Recursive program to evaluate prefix expressions 

To evaluate a prefix expression, we either convert a number from ASCII 
to binary (in the while loop at the end), or perform the operation 
indicated by the first character in the expression on the two operands, 
evaluated recursively. This function is recursive, but it uses a global 
array containing the expression and an index to the current character 
in the expression. The pointer is advanced past each subexpression 
evaluated. 

char *a; int i; 

int evalO 


{ 	 int x = 0; 

while (a[i] == , ') i++; 

if (a[i] '+') 


{ i++; return eval() + eval(); } 
if (a[i] ;= '*') 

{ i++; return eval() * eval(); } 
while «a[i] >= '0') && (a[i] <= '9'» 

x = 10*x + (a[i++]-'O'); 
return x; 

} 

and letting recursion take the place of the explicit pushdown stack. In 
this chapter, we shall see many other examples of recursive programs 
and equivalent programs that use pushdown stacks. We shall exam
ine the specific relationship between several pairs of such programs in 
detaiL 

Figure 5.3 shows the operation of Program 5.4 on a sample pre
fix expression. The multiple recursive calls mask a complex series 
of computations. Like most recursive programs, this program is best 
understood inductively: Assuming that it works properly for simple 
expressions, we can convince ourselves that it works properly for com
plex ones. This program is a simple example of a recursive descent 
parser-we can use the same process to convert C programs into ma
chine code. 

A precise inductive proof that Program 5.4 evaluates the expres
sion properly is certainly much more challenging to write than are 
the proofs for functions with integer arguments that we have been 
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discussing, and we shall encounter recursive programs and data struc
tures that are even more complicated than this one throughout this 
book. Accordingly, we do not pursue the idealistic goal of providing 
complete inductive proofs of correctness for every recursive program 
that we write. In this case, the ability of the program to "know" 
how to separate the operands corresponding to a given operator seems 
mysterious at first (perhaps because we cannot immediately see how 
to do this separation at the top level), but is actually a straightfor
ward calculation (because the path to pursue at each function call is 
unambiguously determined by the first character in the expression). 

In principle, we can replace any for loop by an equivalent re
cursive program. Often, the recursive program is a more natural way 
to express the computation than the f or loop, so we may as well take 
advantage of the mechanism provided by the programming system that 
supports recursion. There is one hidden cost, however, that we need 
to bear in mind. As is plain from the examples that we examined in 
Figures 5.1 through 5.3, when we execute a recursive program, we are 
nesting function calls, until we reach a point where we do not do a 
recursive call, and we return instead. In most programming environ
ments, such nested function calls are implemented using the equivalent 
of built-in pushdown stacks. We shall examine the nature of such im
plementations throughout this chapter. The depth of the recursion is 
the maximum degree of nesting of the function calls over the course 
of the computation. Generally, the depth will depend on the input. 
For example, the depths of the recursions for the examples depicted in 
Figures 5.2 and 5.3 are 9 and 4, respectively. When using a recursive 
program, we need to take into account that the programming envi
ronment has to maintain a pushdown stack of size proportional to the 
depth of the recursion. For huge problems, the space needed for this 
stack might prevent us from using a recursive solution. 

Data structures built from nodes with pointers are inherently re
cursive. For example, our definition of linked lists in Chapter 3 (Defi
nition 3.3) is recursive. Therefore, recursive programs provide natural 
implementations of many commonly used functions for manipulating 
such data structures. Program 5.5 comprises four examples. We use 
such implementations frequently throughout the book, primarily be
cause they are so much easier to understand than are their nonrecursive 
counterparts. However, we must exercise caution in using programs 
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such as those in Program 5.5 when processing huge lists, because the 
depth of the recursion for those functions can be proportional to the 
length of the lists, so the space required for the recursive stack might 
become prohibitive. 

Some programming environments automatically detect and elim
inate tail recursion, when the last action of a function is a recursive 
call, because it is not strictly necessary to add to the depth of the re
cursion in such a case. This improvement would effectively transform 
the count, traversal, and deletion functions in Program 5.5 into loops, 
but it does not apply to the reverse-order traversal function. 

In Sections 5.2 and 5.3, we consider two families of recursive 
algorithms that represent essential computational paradigms. Then, 
in Sections 5.4 through 5.7, we consider recursive data structures that 
serve as the basis for a very large fraction of the algorithms that we 
consider. 

Exercises 

[> 5.1 Write a recursive program to compute Ig(N!). 

5.2 Modify Program 5. I to compute NI mod AI, such that overflow is no 
longer an issue. Try running your program for 1v[ 997 and N 103

, 104
, 

105 
, and 106 

, to get an indication of how your programming system handles 
deeply nested recursive calls. 

[> 5.3 Give the sequences of argument values that result when Program 5.2 is 
invoked for each of the integers 1 through 9 . 

• 	5.4 Find the value of N < 10" for which Program 5.2 makes the maximum 
number of recursive calls. 

[> 5.5 Provide a nonrecursive implementation of Euclid's algorithm. 

[> 5.6 Give the figure corresponding to Figure 5.2 for the result of running 
Euclid's algorithm for the inputs 89 and 55. 

05.7 	 Give the recursive depth of Euclid's algorithm when the input values 
are two consecutive Fibonacci numbers (Ev and FN+l). 

[> 5.8 Give the figure corresponding to Figure 5.3 for the result of recursive 
prefix-expression evaluation for the input + * * 12 12 12 144. 

5.9 Write a recursive program to evaluate postfix expressions. 

5. I 0 Write a recursive program to evaluate infix expressions. You may 
assume that operands are always enclosed in parentheses. 

05.11 Write a recursive program that converts infix expressions to postfix. 

05.12 Write a recursive program that converts postfix expressions to infix. 
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Program 5.5 Examples of recursive functions for linked lists 

These recursive functions for simple list-processing tasks are easy to 
express, but may not be useful for huge lists because the depth of the 
recursion may be proportional to the length of the list. 

The first function, count, counts the number of nodes on the list. 
The second, traverse, calls the function visit for each node on the 
list, from beginning to end. These two functions are both also easy to 
implement with a for or while loop. The third function, traverseR, 
does not have a simple iterative counterpart. It calls the function visit 
for every node on the list, but in reverse order. 

The fourth function, delete, makes the structural changes needed 
for a given item to be deleted from a list. It returns a link to the 
(possibly altered) remainder of the list-the link returned is x, except 
when x->itern is v, when the link returned is x->next (and the recursion 
stops). 

int count(link x) 
{ 


if (x == NULL) return 0; 

return 1 + count(x->next); 


} 

void traverse(link h, void (*visit)(link)) 

{ 


if (h == NULL) return; 

(*visit)(h); 

traverse (h->next, visit); 


} 


void traverseR(link h, void (*visit)(link)) 

{ 


if (h == NULL) return; 

traverseR(h->next, visit); 

(*visit)(h); 


} 


link delete(link x, Item v) 

{ 


if (x == NULL) return NULL; 

if (eq(x->item, v)) 


{ link t = x->nextj free(x)j return t; } 
x->next delete (x->next , v); 
return x; 

} 
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Y max(O, 10) 
Y max(O, 5) 

T max(O, 2) 
T 	 max(O, 1) 

T max(O, 0) 
I max (1 , 1) 

N max(2, 2) 
Y max(3, 5) 

Y 	max(3, 4) 
Y max(3, 3) 
E max(4, 4) 

X max(5, 5) 
P max(6, 10) 

P max(6, 8) 
M 	max(6, 7) 

A max(6, 6) 
M max(7, 7) 

P 	max(8, 8) 
L 	 max(9, 10) 

L max(9, 9) 
E max(10, 10) 

Figure 5.4 
A recursive approach to find

ing the maximum 

This sequence of function calls il
lustrates the dynamics of finding 
the maximum with a recursive al
gorithm. 
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5.l3 Write a recursive program for solving the Josephus problem (see Sec
tion 3.3). 

5.14 Write a recursive program that deletes the final element of a linked list. 

o S.I5 Write a recursive program for reversing the order of the nodes in a 
linked list (see Program 3.7). Hint: Use a global variable. 

5.2 Divide and Conquer 

Many of the recursive programs that we consider in this book use 
two recursive calls, each operating on about one-half of the input. 
This recursive scheme is perhaps the most important instance of the 
well-known divide-and-conquer paradigm for algorithm design, which 
serves as the basis for many of our most important algorithms. 

As an example, let us consider the task of finding the maximum 
among N items stored in an array a [0], ... , a [N-1]. We can easily 
accomplish this task with a single pass through the array, as follows: 

for (t = a[O] , i = 1; i < N; i++) 

if (a[iJ > t) t = a[i]; 


The recursive divide-and-conquer solution given in Program 5.6 is also 
a simple (entirely different) algorithm for the same problem; we use it 
to illustrate the divide-and-conquer concept. 

Most often, we use the divide-and-conquer approach because 
it provides solutions faster than those available with simple iterative 
algorithms (we shall discuss several examples at the end of this section), 
but it also is worthy of close examination as a way of understanding 
the nature of certain fundamental computations. 

Figure 5.4 shows the recursive calls that are made when Pro
gram 5.6 is invoked for a sample array. The underlying structure 
seems complicated, but we normally do not need to worry about it 
we depend on a proof by induction that the program works, and we 
use a recurrence relation to analyze the program's performance. 

As usual, the code itself suggests the proof by induction that it 
performs the desired computation: 

• 	It finds the maximum for arrays of size 1 explicitly and immedi
ately. 

• For 	N > 1, it partitions the array into two arrays of size less 
than N, finds the maximum of the two parts by the inductive 
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Program 5.6 Divide-and-conquer to find the maximum 

This function divides a file a [1], ... , a [r] into a [1], ... , a em] and 
a(m+i], ... , a[r], finds the maximum elements in the two parts (re
cursively), and returns the larger of the two as the maximum element 
in the whole file. It assumes that Item is a first-class type for which> 
is defined. If the file size is even, the two parts are equal in size; if the 
file size is odd, the size of the first part is 1 greater than the size of the 
second part. 

Item max (Item a[], int 1, int r) 
{ Item u, v; int m = (1+r)/2; 

if (1 == r) return a[l] ; 
u max(a, 1, m); 
v = max(a, m+l, r); 
if (u > v) return u; else return v; 

} 

hypothesis, and returns the larger of these two values, which 
must be the maximum value in the whole array. 

Moreover, we can use the recursive structure of the program to under
stand its performance characteristics. 

Property 5. I A recursive function that divides a problem of size N 
into two independent (nonempty) parts that it solves recursively calls 
itself less than N times. 

If the parts are one of size k and one of size N - k, then the total 
number of recursive function calls that we use is 

for N ;::: 1 with Tl O. 

The solution TN = N - 1 is immediate by induction. If the sizes sum 
ro a value less than N, the proof that the number of calls is less than 
N - 1 follows the same inductive argument. We can prove analogous 
results under general conditions (see Exercise 5.20). • 

Program 5.6 is representative of many divide-and-conquer algo
rithms with precisely the same recursive structure, but other examples 
rna y differ in two primary respects. First, Program 5.6 does a constant 
amount of work on each function call, so its total running time is 
linear. Other divide-and-conquer algorithms may perform more work 
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Figure 5.5 
Example of internal stack dy

namics 

This sequence is an idealistic rep
resentation of the contents of the 
internal stack during the sample 
computation of Figure 5.4. We 
start with the left and right indices 
of the whole subarray on the stack. 
Each line depicts the result of pop
ping two indices and, if they are 
not equal, pushing four indices, 
which delimit the left subarray and 
the right subarray after the popped 
subarray is divided into two parts. 
In practice, the system keeps re
turn addresses and local variables 
on the stack, instead of this spe
cific representation of the work to 
be done, but this model suffices to 
describe the computation. 
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5 

y 

Figure 5.6 
Recursive structure of find-

the-maximum algorithm. 

The divide-and-conquer algorithm 
splits a problem of size 11 into one 
of size 6 and one of size S, a prob
lem of size 6 into two problems of 
size J, and so forth, until reaching 
problems of size 1 (top). Each cir
cle in these diagrams represents a 
calf on the recursive function, to 
the nodes just below connected 
to it by lines (squares are those 
calfs for which the recursion termi
nates). The diagram in the middle 
shows the value of the index into 
the middle of the file that we use 
to effect the split; the diagram at 
the bottom shows the return value. 

on each function call, as we shall see, so determining the total run
ning time requires more intricate analysis. The running time of such 
algorithms depends on the precise manner of division into parts. Sec
ond, Program 5.6 is representative of divide-and-conquer algorithms 
for which the parts sum to make the whole. Other divide-and-conquer 
algorithms may divide into smaller parts that constitute less than the 
whole problem, or overlapping parts that total up to more than the 
whole problem. These algorithms are still proper recursive algorithms 
because each part is smaller than the whole, but analyzing them is more 
difficult than analyzing Program 5.6. We shall consider the analysis of 
these different types of algorithms in detail as we encounter them. 

For example, the binary-search algorithm that we studied in Sec
tion 2.6 is a divide-and-conquer algorithm that divides a problem in 
half, then works on just one of the halves. We examine a recursive 
implementation of binary search in Chapter I2. 

Figure 5.5 indicates the contents of the internal stack maintained 
by the programming environment to support the computation in Fig
ure 5+ The model depicted in the figure is idealistic, but it gives useful 
insights into the structure of the divide-and-conquer computation. If 
a program has two recursive calls, the actual internal stack contains 
one entry corresponding to the first function call while that function is 
being executed (which contains values of arguments, local variables, 
and a return address), then a similar entry corresponding to the sec
ond function call while that function is being executed. The alternative 
that is depicted in Figure 5. 5 is to put the two entries on the stack at 
once, keeping all the subtasks remaining to be done explicitly on the 
stack. This arrangement plainly delineates the computation, and sets 
the stage for more general computational schemes, such as those that 
we examine in Sections 5.6 and 5.8. 

Figure 5.6 depicts the structure of the divide-and-conquer find
the-maximum computation. It is a recursive structure: the node at the 
top contains the size of the input array, the structure for the left subar
ray is drawn at the left and the structure for the right subarray is drawn 
at the right. We will formally define and discuss tree structures of this 
type in in Sections 5.4 and 5.5. They are useful for understanding the 
structure of any program involving nested function calls-recursive 
programs in particular. Also shown in Figure 5.6 is the same tree, but 
with each node labeled with the return value for the corresponding 
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Program 5.7 Solution to the towers of Hanoi 

We shift the tower of disks to the right by (recursively) shifting all but 
the bottom disk to the left, then shifting the bottom disk to the right, 
then (recursively) shifting the tower back onto the bottom disk. 

void hanoi(int N, int d) 
{ 


if (N == 0) return; 

hanoi(N-l, -d); 

shift(N, d); 

hanoi(N-l, -d); 


function call. In Section 5.7, we shall consider the process of building 
explicit linked structures that represent trees like this one. 

No discussion of recursion would be complete without the an
cient towers of Hanoi problem. We have three pegs and N disks that 
fit onto the pegs. The disks differ in size, and are initially arranged 
on one of the pegs, in order from largest (disk N) at the bottom to 
smallest (disk 1) at the top. The task is to move the stack of disks to 
the right one position (peg), while obeying the following rules: (i) only 
one disk may be shifted at a time; and (ii) no disk may be placed on 
top of a smaller one. One legend says that the world will end when 
a certain group of monks accomplishes this task in a temple with 40 
golden disks on three diamond pegs. 

Program 5.7 gives a recursive solution to the problem. It specifies 
which disk should be shifted at each step, and in which direction (+ 

means move one peg to the right, cycling to the leftmost peg when on 
the rightmost peg; and - means move one peg to the left, cycling to the 
rightmost peg when on the leftmost peg). The recursion is based on the 
following idea: To move N disks one peg to the right, we first move 
the top N - 1 disks one peg to the left, then shift disk N one peg to the 
right, then move the N 1 disks one more peg to the left (onto disk 
N). We can verify that this solution works by induction. Figure 5.7 
shows the moves for N 5 and the recursive calls for N 3. An 
underlying pattern is evident, which we now consider in detail. 

First, the recursive structure of this solution immediately tells us 
the number of moves that the solution requires. 
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Figure 5.7 
+5Towers of Hanoi 

This diagram depicts the solution 
to the towers of Hanoi problem for 
five disks. We shift the top four 
disks left one position (left col
umn), then move disk 5 to the 
right, then shift the top four disks 
left one position (right column). 
The sequence of function calls that 
follows constitutes the computa
tion for three disks. The computed 
sequence of moves is +1 -2 +1 
+3 +1 -2 +1, which appears four 
times in the solution (for example, 
the first seven moves). 
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Property 5.2 The recursive divide-and-conquer algorithm for the 
towers ofHanoi problem produces a solution that has 2N ~ 1 moves. 

As usual, it is immediate from the code that the number of moves 
satisfies a recurrence. In this case, the recurrence satisfied by the 
number of disk moves is similar to Formula 2.5: 

IN 21:'\1-1 + 1, for N ~ 2 with 1\ 1. 

We can verify the stated result directly by induction: we have T(l) 
121 - 1 1; and, if T(k) 2k - 1 for k < N, then T(N) = 2(2 N 

1) + 1 2N - 1.• 

If the monks are moving disks at the rate of one per second, 
it will take at least 348 centuries for them to finish (see Figure 2.r), 

assuming that they do not make a mistake. The end of the world is 
likely be even further off than that because those monks presumably 
never have had the benefit of being able to use Program 5.7, and might 
not be able to figure out so quickly which disk to move next. We now 
consider an analysis of the method that leads to a simple (nonrecursive) 
method that makes the decision easy. While we may not wish to let the 
monks in on the secret, it is relevant to numerous important practical 
algorithms. 

To understand the towers of Hanoi solution, let us consider the 
simple task of drawing the markings on a ruler. Each inch on the ruler 
has a mark at the 1/2 inch point, slightly shorter marks at 1/4 inch 
intervals, still shorter marks at 1/8 inch intervals, and so forth. Our 
task is to write a program to draw these marks at any given resolution, 
assuming that we have at our disposal a procedure mark ex. h) to 
make a mark h units high at position x. 

If the desired resolution is 1/2n inches, we rescale so that our 
task is to put a mark at every point between 0 and 2n , endpoints not 
included. Thus, the middle mark should be n units high, the marks in 
the middle of the left and right halves should be n -1 units high, and so 
forth. Program 5.8 is a straightforward divide-and-conquer algorithm 
to accomplish this objective; Figure 5.8 illustrates it in operation on a 
small example. Recursively speaking, the idea behind the method is 
the following. To make the marks in an interval, we first divide the 
interval into two equal halves. Then, we make the (shorter) marks in 
the left half (recursively), the long mark in the middle, and the (shorter) 
marks in the right half (recursively). Iteratively speaking, Figure 5.8 

20r 
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rule(O, 8, 3) 
rule(O, 4, 2) 

rule(O, 2, 1) 

rule(O, 1,0) 
markCi, 1) 
ruleC1, 2,0) 

mark(2, 2) 
rule(2, 4, 1) 

rule(2, 3, 0) 
mark (3 , 1) 

rule(3, 4, 0) 
mark(4, 3) 
rule(4, 8, 2) 

rule(4, 6, 1) 
rule(4, 5, 0) 
mark(5, 1) 
rule(5, 6, 0) 

mark(6, 2) 
rule(6, 8, 1) 

rule(6, 7, 0) 
mark (7 , 1) 
rule(7, 8, 0) 

Figure 5.8 
Ruler-drawing function calls 

This sequence of function calls 
constitutes the computation for 
drawing a ruler of length 8, result
ing in marks of lengths 1, 2, 1, 3, 
1,2, and 1. 

Program 5.8 Divide and conquer to draw a ruler 

To draw the marks on a ruler, we draw the marks on the left half, then 
draw the longest mark in the middle, then draw the marks on the right 
half. This program is intended to be used with r -l equal to a power of 
2-a property that it preserves in its recursive calls (see Exercise 5.27). 

ru1e(int 1, int r, int h) 

{ int m (1+r)/2; 


if (h > 0) 

{ 


ru1e(l, m, h-l); 

mark(m, h); 

ru1e(m, r, h-l); 


} 

} 

illustrates that the method makes the marks in order, from left to 
right-the trick lies in computing the lengths. The recursion tree in the 
figure helps us to understand the computation: Reading down, we see 
that the length of the mark decreases by 1 for each recursive function 
call. Reading across, we get the marks in the order that they are drawn, 
because, for any given node, we first draw the marks associated with 
the function call on the left, then the mark associated with the node, 
then the marks associated with the function call on the right. 

We see immediately that the sequence of lengths is precisely the 
same as the sequence of disks moved for the towers of Hanoi problem. 
Indeed, a simple proof that they are identical is that the recursive 
programs are the same. Put another way, our monks could use the 
marks on a ruler to decide which disk to move. 

Moreover, both the towers of Hanoi solution in Program 5.7 
and the ruler-drawing program in Program 5.8 are variants of the 
basic divide-and-conquer scheme exemplified by Program 5.6. All 
three solve a problem of size 2n by dividing it into two problems of 
size 2n - 1

• For finding the maximum, we have a linear-time solution 
in the size of the input; for drawing a ruler and for solving the towers 
of Hanoi, we have a linear-time solution in the size of the output. 
For the towers of Hanoi, we normally think of the solution as being 
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exponential time, because we measure the size of the problem in terms 
of the number of disks, n. 

It is easy to draw the marks on a ruler with a recursive program, 
but is there some simpler way to compute the length of the ith mark, 
for any given i? Figure 5.9 shows yet another simple computational 
process that provides the answer to this question. The ith number 
printed out by both the towers of Hanoi program and the ruler pro
gram is nothing other than the number of trailing 0 bits in the binary 

0 0 0 0 1
representation of i. We can prove this property by induction by cor
0 0 0 1 0 

respondence with a divide-and-conquer formulation for the process 0 0 0 1 1 


of printing the table of n-bit numbers: Print the table of (n - 1)-bit 0 0 0 0 2 


0 0 0 1
numbers, each preceded by a 0 bit, then print the table of (0 I)-bit 
numbers each preceded by a 1-bit (see Exercise 5.25). 

0 0 1 0 

0 0 1 1 


For the towers of Hanoi problem, the implication of the corre 0 1 0 0 0 3 


0 1 0 0 1
spondence with n-bit numbers is a simple algorithm for the task. We 
0 1 0 0 

can move the pile one peg to the right by iterating the following two 0 1 0 1 


steps until done: 0 1 1 0 0 2 


0 1 1 0 1
• Move the small disk to the right if n is odd (left if n is even). 
0 1 1 0 

• Make the only legal move not involving the small disk. 0 1 1 1 


That is, after we move the small disk, the other two pegs contain two 1 0 0 0 0 4 


1 0 0 0 1
disks, one smaller than the other. The only legal move not involving 
1 0 0 1 0 

the small disk is to move the smaller one onto the larger one. Every 1 0 0 1 1 


other move involves the small disk for the same reason that every other 1 0 1 0 0 2 


1 0 1 0 1
number is odd and that every other mark on the rule is the shortest. 
1 0 1 1 0

Perhaps our monks do know this secret, because it is hard to imagine 

0 1 1 1 


how they might be deciding which moves to make otherwise. 1 0 0 0 3 


1 1 0 0 1
A formal proof by induction that every other move in the towers 
1 0 1 0

of Hanoi solution involves the small disk (beginning and ending with 

1 0 1 1 


such moves) is instructive: For n 1, there is just one move, involving 1 1 1 0 0 2 

1 1 0 1
the small disk, so the property holds. For n > 1, the assumption that 

the property holds for n  1 1 1
1 implies that it holds for n by the recursive 0 

1 1 1 1 1 

construction: The first solution for n 1 begins with a small-disk 
move, and the second solution for n 1 ends with a small-disk move, Figure 5.9 

Binary counting and the rulerso the solution for n begins and ends with a small-disk move. We put 
function a move not involving the small disk in between two moves that do 

Computing the ruler function isinvolve the small disk (the move ending the first solution for n -1 and 
equivalent to counting the number 

the move beginning the second solution for n -1), so the property that of trailing zeros in the even N -bit 
every other move involves the small disk is preserved. numbers. 
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Figure 5.10 

Drawing a ruler in bottom-up 
order 

To draw a ruler nonrecursively, we 
alternate drawing marks of length 
1 and skipping positions, then al
ternate drawing marks of length 2 
and skipping remaining positions, 
then alternate drawing marks of 
length 3 and skipping remaining 
positions, and so forth, 

Program 5.9 Nonrecursive program to draw a ruler 

In contrast to Program 5.8, we can also draw a ruler by first 
all the marks of length 1, then drawing all the marks of length 
forth. The variable t carries the length of the marks and the 
carries the number of marks in between two successive marks 
t. The outer for loop increments t and preserves the property j 
The inner for loop draws all the marks of length t. 

rule(int 1, int r, int h) 
{ 

int i, j, t; 
for (t = 1, j 1; t <= h; j += j, t++) 

for (i = 0; l+j+i <= r; i += j+j) 
mark(l+j+i, t); 

Program 5.9 is an alternate way to draw a ruler that is inspired 
by the correspondence to binary numbers (see Figure 5.10). We refer 
to this version of the algorithm as a bottom-up implementation. It is 
not recursive, but it is certainly suggested by the recursive algorithm. 
This correspondence between divide-and-conquer algorithms and the 
binary representations of numbers often provides insights for analysis 
and development of improved versions, such as bottom-up approaches. 
We consider this perspective to understand, and possibly to improve, 
each of the divide-and-conquer algorithms that we examine. 

The bottom-up approach involves rearranging the order of the 
computation when we are drawing a ruler. Figure 5.II shows another 
example, where we rearrange the order of the three function calls in the 
recursive implementation. It reflects the recursive computation in the 
way that we first described it: Draw the middle mark, then draw the 
left half, then draw the right half. The pattern of drawing the marks 
is complex, but is the result of simply exchanging two statements in 
Program 5.8. As we shall see in Section 5.6, the relationship between 
Figures 5.8 and 5.1 I is akin to the distinction between postfix and 
prefix in arithmetic expressions. 

Drawing the marks in order as in Figure 5.8 might be prefer
able to doing the rearranged computations contained in Program 5.9 
and indicated in Figure 5. I I, because we can draw an arbitrarily long 
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ruler, if we imagine a drawing device that simply moves on to the 
next mark in a continuous scroll. Similarly, to solve the towers of 
Hanoi problem, we are constrained to produce the sequence of disk 
moves in the order that they are to be performed. In general, many 
recursive programs depend on the subproblems being solved in a par
ticular order. For other computations (see, for example, Program 5.6), 
the order in which we solve the subproblems is irrelevant. For such 
computations, the only constraint is that we must solve the subprob
lems before we can solve the main problem. Understanding when we 
have the flexibility to reorder the computation not only is a secret 
to success in algorithm design, but also has direct practical effects in 
many contexts. For example, this matter is critical when we consider 
implementing algorithms on parallel processors. 

The bottom-up approach corresponds to the general method of 
algorithm design where we solve a problem by first solving trivial 
subproblems, then combining those solutions to solve slightly bigger 
subproblems, and so forth, until the whole problem is solved. This 
approach might be called combine and conquer. 

It is a small step from drawing rulers to drawing two-dimensional 
patterns such as Figure 5.12. This figure illustrates how a simple 
recursive description can lead to a computation that appears to be 
complex (see Exercise 5.30). 

Recursively defined geometric patterns such as Figure 5.12 are 
sometimes called fractals. If more complicated drawing primitives 
are used, and more complicated recursive invocations are involved 
(especially including recursively-defined functions on reals and in the 
complex plane), patterns of remarkable diversity and complexity can 
be developed. Another example, demonstrated in Figure 5.13, is the 
Koch star, which is defined recursively as follows: A Koch star of order°is the simple hill example of Figure 4.3, and a Koch star of order 
n is a Koch star of order n - 1 with each line segment replaced by the 
star of order 0, scaled appropriately. 

Like the ruler-drawing and the towers of Hanoi solutions, these 
algorithms are linear in the number of steps, but that number is ex
ponential in the maximum depth of the recursion (see Exercises 5.29 
and 5.33). They also can be directly related to counting in an appro
priate number system (see Exercise 5.34). 

rule(O, 8, 3) 
mark(4, 3) 
rule(O. 4, 2) 

mark (2 , 2) 
rule(O, 2, 1) 

markO, 1) 

rule(O, 1, 0) 
rule (1 , 2, 0) 

rule(2, 4, 1) 
mark(3, 1) 

rule(2, 3, 0) 
rule(3. 4, 0) 

rule(4, 8. 2) 
mark(6, 2) 
rule(4, 6. 1) 

marke5, 1) 
rule(4, 5. 0) 
rule(5, 6, 0) 

rule(6, 8, 1) 
mark (7 , 1) 
rule(6, 7, 0) 
rule (7, 8, 0) 

Figure S.Il 
Ruler-drawing function calls 

(preorder version) 

This sequence indicates the result 
of drawing marks before the recur
sive calls, instead of in between 
them. 
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Table 5.1 Basic divide-and-conquer algorithms 

Binary search (see Chapters 2 and 12) and mergesort (see Chapter 8) 
are prototypical divide-and-conquer algorithms that provide guaranteed 
optimal performance for searching and sorting, respectively. The re
currences indicate the nature of the divide-and-conquer computation for 
each algorithm. (See Sections 2.5 and 2.6 for derivations of the solutions 
in the rightmost column.) Binary search splits a problem in half, does 1 
comparison, then makes a recursive call for one of the halves. Merge
sort splits a problem in half, then works on both halves recursively, then 
does N comparisons. Throughout the book, we shall consider numerous 
other algorithms developed with these recursive schemes. 

approximate 
recurrence solution 

binary search 

comparisons CN = CN/2 + 1 19N 

mergesort 

recursive calls AN 2A'V/2 + 1 N 
comparisons CN 2CN/2 +N NlgN 

The towers of Hanoi problem, ruler-drawing problem, and frac
tals are amusing; and the connection to binary numbers is surprising, 
but our primary interest in all of these topics is that they provide us 
with insights in understanding the basic algorithm design paradigm of 
divide in half and solve one or both halves independently, which is 
perhaps the most important such technique that we consider in this 
book. Table 5.1 includes details about binary search and mergesort, 
which not only are important and widely used practical algorithms, 
but also exemplify the divide-and-conquer algorithm design paradigm. 

Quicksort (see Chapter 7) and binary-tree search (see Chapter 12) 
represent a significant variation on the basic divide-and-conquer theme 
where the problem is split into subproblems of size k - 1 and N - k, 
for some value k, which is determined by the input. For random input, 
these algorithms divide a problem into subproblems that are half the 
size (as in merge sort or in binary search) on the average. We study 
the analysis of the effects of this difference when we discuss these 
algorithms. 
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Other variations on the basic theme that are worthy of consider
ation include these: divide into parts of varying size, divide into more 
than two parts, divide into overlapping parts, and do various amounts 
of work in the nonrecursive part of the algorithm. In general, divide
and-conquer algorithms involve doing work to split the input into 
pieces, or to merge the results of processing two independent solved 
portions of the input, or to help things along after half of the input has 
been processed. That is, there may be code before, after, or in between 
the two recursive calls. Naturally, such variations lead to algorithms 
more complicated than are binary search and mergesort, and are more 
difficult to analyze. We consider numerous examples in this book; we 
return to advanced applications and analysis in Part 8. 

Exercises 

5.16 Write a recursive program that finds the maximum element in an array, 
based on comparing the first element in the array against the maximum element 
in the rest of the array (computed recursively). 

5.17 Write a recursive program that finds the maximum element in a linked 
list. 

5.18 Modify the divide-and-conquer program for finding the maximum ele
ment in an array (Program 5.6) to divide an array of size N into one part of 
size k 2 rig Nl-l and another of size N - k (so that the size of at least one of 
the parts is a power of 2). 

5.19 Draw the tree corresponding to the recursive calls that your program 
from Exercise 5.I8 makes when the array size is 11. 

.5.20 Prove by induction that the number of function calls made by any 
divide-and-conquer algorithm that divides a problem into parts that constitute 
the whole, then solves the parts recursively, is linear . 

• 	5.2I Prove that the recursive solution to the towers of Hanoi problem (Pro
gram 5.7) is optimal. That is, show that any solution requires at least 2N - 1 
moves. 

[> 5.22 Write a recursive program that computes the length of the ith mark in 
a ruler with 2n 

- 1 marks. 

•• 5.23 Examine tables of n-bit numbers, such as Figure 5.9, to discover a 
property of theith number that determines the direction of the ith move 
(indicated by the sign bit in Figure 5.7) for solving the towers of Hanoi 
problem. 

5.24 Write a program that produces a solution to the towers of Hanoi prob
lem by filling in an array that holds all the moves, as in Program 5.9. 

Figure 5.12 
Two-dimensional fractal star 

This fractal is a two-dimensional 
version of Figure 5.10. The out
lined boxes in the bOl/om diagram 
highlight the recursive structure of 
the computation. 
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/kochR 
{ 

2 copy ge {dup 0 rlineto } 
{ 


3 div 

2 copy kochR 

60 rotate 

2 copy kochR 


-120 rotate 

2 copy kochR 

60 rotate 

2 copy kochR 


} ifelse 

pop pop 


} def 

00 moveto 

2781 kochR 

027 moveto 

981 kochR 

054 moveto 

381 kochR 

081 moveto 

181 kochR 

stroke 


Figure 5.I3 
Recursive PostScript for Koch 

fractal 

This modification to the PostScript 
program of Figure 4.3 transforms 
the output into a fractal (see text). 

§5·3 

05.25 	 Write a recursive program that fills in an n-by-2n array with Os and 
Is such that the array represents all the n-bit binary numbers, as depicted in 
Figure 5.9. 

5.26 Draw the results of using the recursive ruler-drawing program (Pro
gram 5.8) for these unintended values of the arguments: rule(O, 11, 4), 
rule(4, 20, 4), and rule (7 , 30, 5). 

5.27 Prove the following fact about the ruler-drawing program (Pro
gram 5.8): If the difference between its first two arguments is a power of 
2, then both of its recursive calls have this property also. 

05.28 	 Write a function that computes efficiently the number of trailing Os in 
the binary representation of an integer. 

05.29 	 How many squares are there in Figure 5.12 (counting the ones that are 
covered up by bigger squares)? 

05.30 	 Write a recursive C program that outputs a PostScript program that 
draws the bottom diagram in Figure 5. I 2, in the form of a list of function 
calls x y r box, which draws an r-by-r square at (x, y). Implement box in 
PostScript (see Section 4.3). 

5.3 I Write a bottom-up nonrecursive program (similar to Program 5.9) that 
draws the bottom diagram in Figure 5.12, in the manner described in Exer
cise 5.30. 

.5.32 Write a PostScript program that draws the bottom diagram in Fig
ure 5.12. 

I> 5.33 How many line segments are there in a Koch star of order n? 

•• 5.34 Drawing a Koch star of order n amounts to executing a sequence of 
commands of the form "rotate a degrees, then draw a line segment of length 
1/3n 

." Find a correspondence with number systems that gives you a way to 
draw the star by incrementing a counter, then computing the angle a from the 
counter value. 

• 	5.35 Modify the Koch star program in Figure 5.13 to produce a different 
fractal based on a five-line figure for order 0, defined by I-unit moves east, 
north, east, south, and east, in that order (see Figure 4· 3). 

5.36 Write a recursive divide-and-conquer function to draw an approxima
tion to a line segment in an integer coordinate space, given the endpoints. 
Assume that all coordinates are between 0 and 1\11. Hint: First plot a point 
close to the middle. 

5.3 Dynamic Programming 

An essential characteristic of the divide-and-conquer algorithms that 
we considered in Section 5.2 is that they partition the problem into in
dependent subproblems. When the subproblems are not independent, 
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the situation is more complicated, primarily because direct recursive 
implementations of even the simplest algorithms of this type can re
quire unthinkable amounts of time. In this section, we consider a 
systematic technique for avoiding this pitfall for an important class of 
problems. 

For example, Program 5.10 is a direct recursive implementation 
of the recurrence that defines the Fibonacci numbers (see Section 2.3). 
Do not use this program: It is spectacularly inefficient. Indeed, the 
number of recursive calls to compute FN is exactly FN+l. But FN 
is about ¢;N, where ¢; ~ 1.618 is the golden ratio. The awful truth 
is that Program 5.10 is an exponential-time algorithm for this trivial 
computation. Figure 5.14, which depicts the recursive calls for a small 
example, makes plain the amount of recomputation that is involved. 

By contrast, it is easy to compute FN in linear (proportional to 
N) time, by computing the first N Fibonacci numbers and storing them 
in an array: 

F[O] = 0; F[1] = 1; 
for (i = 2; i <= N; i++) 

F[i] = F[i-1] + F[i-2] ; 

The numbers grow exponentially, so the array is small-for exam
ple, F45 = 1836311903 is the largest Fibonacci number that can be 
represented as a 32-bit integer, so an array of size 46 will do. 

This technique gives us an immediate way to get numerical solu
tions for any recurrence relation. In the case of Fibonacci numbers, we 
can even dispense with the array, and keep track of just the previous 
two values (see Exercise 5.37); for many other commonly encountered 
recurrences (see, for example, Exercise 5.4°), we need to maintain the 
array with all the known values. 

A recurrence is a recursive function with integer values. Our 
discussion in the previous paragraph leads to the conclusion that we 
can evaluate any such function by computing all the function values 
in order starting at the smallest, using previously computed values at 
each step to compute the current value. We refer to this technique as 
bottom-up dynamic programming. It applies to any recursive compu
tation, provided that we can afford to save all the previously computed 
values. It is an algorithm-design technique that has been used success
fully for a wide range of problems. We have to pay attention to a 



210 §S·3 CHAPTER FIVE 

Program 5.10 Fibonacci numbers (recursive implementation) 

This program, although compact and elegant, is not usable because it 
takes exponential time to compute FN. The running time to compute 
FN+1 is dJ ;:::; 1.6 times as long as the running time to compute fiN. For 
example, since <1>9 > 60, if we notice that our computer takes about a 
second to compute FN, we know that it will take more than a minute 
to compute FN+9 and more than an hour to compute }<~V+18. 

int F(int i) 

{ 

if (i < 1) return 0; 
if (i ~= 1) return 1; 
return F(i-1) + F(i-2); 

} 

simple technique that can improve the running time of an algorithm 
from exponential to linear! 

Top-down dynamic programming is an even simpler view of the 
technique that allows us to execute recursive functions at the same cost 
as (or less cost than) bottom-up dynamic programming, in an auto
matic way. We instrument the recursive program to save each value 
that it computes (as its final action), and to check the saved values to 
avoid recomputing any of them (as its first action). Program 5. I I is the 
mechanical transformation of Program 5.10 that reduces its running 
time to be linear via top-down dynamic programming. Figure 5. 15 
shows the drastic reduction in the number of recursive calls achieved 
by this simple automatic change. Top-down dynamic programming is 
also sometimes called memoization. 

For a more complicated example, consider the knapsack prob
lem: A thief robbing a safe finds it filled with N types of items of 
varying size and value, but has only a small knapsack of capacity AI to 
use to carry the goods. The knapsack problem is to find the combina
tion of items which the thief should choose for the knapsack in order 
to maximize the total value of all the stolen items. For example, with 
the item types depicted in Figure 5.16, a thief with a knapsack of size 
17 can take five Ns (but not six) for a total take of 20, or a D and an E 
for a total take of 24, or one of many other combinations. Our goal is 
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to find an efficient algorithm that somehow finds the maximum among 
all the possibilities, given any set of items and knapsack capacity. 

There are many applications in which solutions to the knapsack 
problem are important. For example, a shipping company might wish 
to know the best way to load a truck or cargo plane with items for 
shipment. In such applications, other variants to the problem might 
arise as well: for example, there might be a limited number of each 
kind of item available, or there might be two trucks. Many such 
variants can be handled with the same approach that we are about 
to examine for solving the basic problem just stated; others turn out 
to be much more difficult. There is a fine line between feasible and 
infeasible problems of this type, which we shall examine in Part 8. 

In a recursive solution to the knapsack problem, each time that 
we choose an item, we assume that we can (recursively) find an optimal 
way to pack the rest of the knapsack. For a knapsack of size cap, we 
determine, for each item i among the available item types, what total 
value we could carry by placing i in the knapsack with an optimal 
packing of other items around it. That optimal packing is simply the 
one we have discovered (or will discover) for the smaller knapsack 
of size cap-iterns [i] . size. This solution exploits the principle that 
optimal decisions, once made, do not need to be changed. Once we 
know how to pack knapsacks of smaller capacities with optimal sets 
of we do not need to reexamine those problems, regardless of 
what the next items are. 

Program 5.12 is a direct recursive solution based on this dis
cussion. Again, this program is not feasible for use in solving actual 
problems, because it takes exponential time due to massive recom
putation (see Figure 5.17), but we can automatically apply top-down 
dynamic programming to eliminate this problem, as shown in Pro-

Figure 5.14 
Structure of recursive algo

rithm for Fibonacci num
bers 

The picture of the recursive calls 
needed to used to compute Fa by 
the standard recursive algorithm 
illustrates how recursion with over
lapping subproblems can lead to 
exponential costs. In this case, the 
second recursive call ignores the 
computations done during the first, 
which results in massive recompu
tation because the effect multiplies 
recursively. The recursive calls to 
compute F6 = 8 (which are re
flected in the right subtree of the 
root and the left subtree of the left 
subtree of the root) are listed be
low. 

8 F(6) 
5 F(5) 

3 F(4) 
2 F(3) 

1 F(2) 
1 F(U 
o F(O) 

1 F(1) 

1 F(2) 
1 F(1) 

o F(O) 
2 F(3) 

1 F(2) 
1 F(1) 
o F(O) 

1 F(1) 
3 F(4) 

2 F(3) 
1 F(2) 

1 F(1) 
o F(O) 

1 F(1) 
1 F(2) 

1 F(1) 
o F(O) 
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Figure 5.15 
Top-down dynamic program

ming for computing Fi
bonacci numbers 

This picture of the recursive calls 
used to compute .F:~ by the top
down dynamic programming im
plementation of the recursive algo
rithm illustrates how saving com
puted values cuts the cost from 
exponential (see Figure 5. 14) to 
linear. 

§S·3 

Program 5.1I Fibonacci numbers (dynamic programming) 

By saving the values that we compute in an array external to the recur
sive procedure, we explicitly avoid any recomputation. This program 
computes FN in time proportional to N, in stark contrast to the 0 (ON) 
time used by Program 5.10. 

int F(int i) 

{ int t; 
if (knownF[i] != unknown) return knownF[i] ; 
if (i == 0) t = 0; 
if (i == 1) t = 1; 
if (i > 1) t = F(i-1) + F(i-2); 
return knownF[i] t; 

} 

gram 5.13. As before, this technique eliminates all recomputation, as 
shown in Figure 5.r8. 

By design, dynamic programming eliminates all recomputation 
in any recursive program, subject only to the condition that we can 
afford to save the values of the function for arguments smaller than 
the call in question. 

Property 5.3 Dynamic programming reduces the running time of 
a recursive function to be at most the time required to evaluate the 
function for all arguments less than or equal to the given argument, 
treating the cost ofa recursive call as constant. 

See Exercise 5. 50. • 

For the knapsack problem, this property implies that the running time 
is proportional to Nl,,!. Thus, we can solve the knapsack problem 
easily when the capacity is not huge; for huge capacities, the time and 
space requirements may be prohibitively large. 

Bottom-up dynamic programming applies to the knapsack prob
lem, as welL Indeed, we can use the bottom-up approach any time 
that we use the top-down approach, although we need to take care to 
ensure that we compute the function values in an appropriate order, so 
that each value that we need has been computed when we need it. For 
functions with single integer arguments such as the two that we have 
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Program 5.12 Knapsack problem (recursive implementation) 

As we warned about the recursive solution to the problem of computing 
the Fibonacci numbers, do not use this program, because it will take 
exponential time and therefore may not ever run to completion even for 
small problems. It does, however, represent a compact solution that we 
can improve easily Program 5. I 3). This code assumes that items 
are structures with a size and a value, defined with 

typedef struct { int size; int val; } Item; 

and that we have an array of N items of type Item. For each possi
ble item, we calculate (recursively) the maximum value that we could 
achieve by including that item, then take the maximum of all those 
values. 

int knap(int cap) 

{ int i, space, max, t; 


for (i = 0, max = 0; i < N; i++) 
if «space = cap-items[i] .size) >= 0) 

if «t = knap(space) + items[i] .val) > max) 
max = t; 

return max; 
} 

considered, we simply proceed in increasing order of the argument (see 
Exercise 5.53); for more complicated recursive functions, determining 
a proper order can be a challenge. 

For example, we do not need to restrict ourselves to recursive 
functions with single integer arguments. When we have a function 
with multiple integer arguments, we can save solutions to smaller sub
problems in multidimensional arrays, one for each argument. Other 
situations involve no integer arguments at all, but rather use an abstract 
discrete problem formulation that allows us to decompose problems 
into smaller ones. We shall consider examples of such problems in 
Parts 5 through 8. 

In top-down dynamic programming, we save known values; in 
bottom-up dynamic programming, we precompute them. We generally 
prefer top-down to bottom-up dynamic programming, because 

• It is a mechanical transformation of a natural problem solution. 
• The order of computing the subproblems takes care of itself. 
• We may not need to compute answers to all the subproblems. 

0 1 2 3 4 

item A B C D E 

size 3 4 7 8 9 

val 4 5 10 11 13 

00000

A B C D E 

Figure 5.16 
Knapsack example 
An instance of the knapsack prob
lem (top) consists of a knapsack 
capacity and a set of items of vary
ing size (horizontal dimension) and 
value (vertical dimension). This fig
ure shows four different ways to 
fiff a knapsack of size 17, two of 
which lead to the highest possible 
total value of 24. 
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Figure 5.17 
Recursive structure of knap

sack algorithm. 

This tree represents the recursive 
calf structure of the simple recur
sive knapsack algorithm in Pro
gram 5.12. The number in each 
node represents the remaining ca
pacity in the knapsack. The algo
rithm suffers the same basic prob
lem of exponential performance 
due to massive recomputation for 
overlapping subproblems that we 
considered in computing Fibonacci 
numbers (see Figure 5.74). 

Dynamic-programming applications differ in the nature of the sub
problems and in the amount of information that we need to save 
regarding the subproblems. 

A crucial point that we cannot overlook is that dynamic pro
gramming becomes ineffective when the number of possible function 
values that we might need is so high that we cannot afford to save 
(top-down) or precompute (bottom-up) all of them. For example, if 
10/[ and the item sizes are 64-bit quantities or floating-point numbers in 
the knapsack problem, we will not be able to save values by indexing 
into an array. This distinction causes more than a minor annoyance
it poses a fundamental difficulty. No good solution is known for such 
problems; we will see in Part 8 that there is good reason to believe that 
no good solution exists. 

Dynamic programming is an algorithm-design technique that is 
primarily suited for the advanced problems of the type that we shall 
consider in Parts 5 through 8. Most of the algorithms that we discuss 
in Parts 2 through 4 are divide-and-conquer methods with nonover
lapping subproblems, and we are focusing on subquadratic or sub
linear, rather than subexponential, performance. However, top-down 
dynamic programming is a basic technique for developing efficient im
plementations of recursive algorithms that belongs in the toolbox of 
anyone engaged in algorithm design and implementation. 

Exercises 

[> 5.37 Write a function that computes FN mod lv1, using only a constant 
amount of space for intermediate calculations. 

5.38 What is the largest N for which Fry can be represented as a 64-bit 
integer? 

05.39 	 Draw the tree corresponding to Figure 5.I5 for the case where we 
exchange the recursive calls in Program 5. I I. 

5.40 Write a function that uses bottom-up dynamic programming to com
pute the value of pry defined by the recurrence 

for N ;::: 1 with Po O. 
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Program 5.13 Knapsack problem (dynamic programming) 

This mechanical modification to the code of Program 5. 12 reduces the 
running time from exponential to linear. We simply save any function 
values that we compute, then retrieve any saved values whenever we 
need them (using a sentinel value to represent unknown values), rather 
than making recursive calls. We save the index of the item, so that we 
can reconstruct the contents of the knapsack after the computation, if 
we wish: itemKnown[M] is in the knapsack, the remaining contents are 
the same as for the optimal knapsack of size M-itemKnown [M] . size so 
i temKnown [M-i tems [M] . size] is in the knapsack, and so forth. 

int knap(int M) 
{ int i, space, max, maxi, t; 

if (maxKnown[M] ! unknown) return maxKnown[M] ; 
for (i = 0, max = 0; i < N; i++) 

if «space M-items[i] .size) >= 0) 
if «t knap(space) + items[i] .val) > max) 

{ max t; maxi = i; } 
maxKnown [M] max; itemKnown[M] items [maxi] ; 
return max; 

Draw a plot of N versus PN N 19 N /2 for 0 S N S 1024. 

5.41 Write a function that uses top-down dynamic programming to solve 
Exercise 5 ·40. 

05.42 	 Draw the tree corresponding to Figure 5. I 5 for your function from 
Exercise 5.41, when invoked for N 23. 

5.43 Draw a plot of N versus the number of recursive calls that your function 
from Exercise 5.41 makes to compute PI'l, for 0 S N S 1024. (For the 
purposes of this calculation, start your program from scratch for each N.) 

5.44 Write a function that uses bottom-up dynamic programming to com
pute the value of CN defined by the recurrence 

CN=N+l~ L (Ck-l+CN - k), forN:2:1withCo =L 
l:'Ok:'ON 

5.45 Write a function that uses top-down dynamic programming to solve 
Exercise 5.44. 

05.46 	 Draw the tree corresponding to Figure 5.15 for your function from 
Exercise 5.45, when invoked for N 23. 
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Figure 5.18 
Top-down dynamic program

ming for knapsack algo
rithm 

As it did for the Fibonacci num
bers computation, the technique 
of saving known values reduces 
the cost of the knapsack algorithm 
from exponential (see Figure 5.17) 
to linear. 
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5.47 Draw a plot of N versus the number of recursive calls that your function 
from Exercise 5.45 makes to compute eN, for 0 ::; N .:; 1024. (For the 
purposes of this calculation, start your program from scratch for each N.) 

I> 5.48 Give the contents of the arrays maxKnolffi and itemKnolffi that are com
puted by Program 5.I3 for the call knap(17) with the items in Figure 5.I6. 

I> 5.49 Give the tree corresponding to Figure 5.18 under the assumption that 
the items are considered in decreasing order of their size. 

• 5.50 Prove Property 5.3. 

a 5.51 Write a function that solves the knapsack problem using a bottom-up 
dynamic programming version of Program 5. I 2 . 

• 5.52 Write a function that solves the knapsack problem using top-down 
dynamic programming, but using a recursive solution based on computing 
the optimal number of a particular item to include in the knapsack, based 
on (recursively) knowing the optimal way to pack the knapsack without that 
item. 

05.53 	 Write a function that solves the knapsack problem using a bottom-up 
dynamic programming version of the recursive solution described in Exer
cise 5.52. 

• 5.54 Use dynamic programming to solve Exercise 5.4. Keep track of the 
total number of function calls that you save. 

5.55 Write a program that uses top-down dynamic programming to compute 
the binomial coefficient ('~), based on the recursive rule 

(N) (N -1) (N 1)

k k + k-l 

with (l;;r) = (Z) 1. 

5-4 Trees 

Trees are a mathematical abstraction that playa central role in the 
design and analysis of algorithms because 

• We use trees to describe dynamic properties of algorithms. 
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• We build and use explicit data structures that are concrete real
izations of trees. 

We have already seen examples of both of these uses. We designed 
algorithms for the connectivity problem that are based on tree struc
tures in Chapter 1, and we described the call structure of recursive 
algorithms with tree structures in Sections 5.2 and 5.3. 

We encounter trees frequently in everyday life-the basic concept 
is a familiar one. For example, many people keep track of ancestors 
or descendants with a family tree; as we shall see, much of our termi
nology is derived from this usage. Another example is found in the 
organization of sports tournaments; this usage was studied by Lewis 
Carroll, among others. A third example is found in the organizational 
chart of a large corporation; this usage is suggestive of the hierarchi
cal decomposition that characterizes divide-and-conquer algorithms. 
A fourth example is a parse tree of an English sentence into its con
stituent parts; such trees are intimately related to the processing of 
computer languages, as discussed in Part 5. Figure 5. I 9 gives a typical 
example of a tree-one that describes the structure of this book. We 
touch on numerous other examples of applications of trees throughout 
the book. 

In computer applications, one of the most familiar uses of tree 
structures is to organize file systems. We keep files in directories (which 
are also sometimes called folders) that are defined recursively as se
quences of directories and files. This recursive definition again reflects 
a natural recursive decomposition, and is identical to the definition of 
a certain type of tree. 

There are many different types of trees, and it is important to 
understand the distinction between the abstraction and the concrete 
representation with which we are working for a given application. 
Accordingly, we shall consider the different types of trees and their 
representations in detail. We begin our discussion by defining trees 
as abstract objects, and by introducing most of the basic associated 
terminology. We shall discuss informally the different types of trees 
that we need to consider in decreasing order of generality: 

• Trees 
• Rooted trees 
• Ordered trees 
• ll1-ary trees and binary trees 
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Figure 5.I9 
A tree 

This tree depicts the parts, chap
ters, and sections in this book. 
There is a node for each entity. 
Each node is connected to its con
stituent parts by links down to 
them, and is connected to the large 
part to which it belongs by a link 
up to that part. 

After developing a context with this informal discussion, we move 
to formal definitions and consider representations and applications. 
Figure 5.20 illustrates many of the basic concepts that we discuss and 
then define. 

A tree is a nonempty collection of vertices and edges that satisfies 
certain requirements. A vertex is a simple object (also referred to as a 
node) that can have a name and can carry other associated information; 
an edge is a connection between two vertices. A path in a tree is a list 
of distinct vertices in which successive vertices are connected by edges 
in the tree. The defining property of a tree is that there is precisely 
one path connecting any two nodes. If there is more than one path 
between some pair of nodes, or if there is no path between some pair 
of nodes, then we have a graph; we do not have a tree. A disjoint set 
of trees is called a forest. 

A rooted tree is one where we designate one node as the root of 
a tree. In computer science, we normally reserve the term tree to refer 
to rooted trees, and use the term free tree to refer to the more general 
structure described in the previous paragraph. In a rooted tree, any 
node is the root of a subtree consisting of it and the nodes below it. 

There is exactly one path between the root and each of the other 
nodes in the tree. The definition implies no direction on the edges; 
we normally think of the edges as all pointing away from the root or 
all pointing towards the root, depending upon the application. We 
usually draw rooted trees with the root at the top (even though this 
convention seems unnatural at first), and we speak of node y as being 
below node x (and x as above y) if:1: is on the path from y to the root 
(that is, if y is below x as drawn on the page and is connected to x 
by a path that does not pass through the root). Each node (except 
the root) has exactly one node above it, which is called its parent; 
the nodes directly below a node are called its children. We sometimes 
carry the analogy to family trees further and refer to the grandparent 
or the sibling of a node. 
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internal node~ 
y 

Figure 5.20 

Types of trees 

These diagrams show examples of 
a binary tree (top left), a ternary 
tree (top right), a rooted tree (bot
tom left), and a free tree (bottom 
right). 

Nodes with no children are called leaves, or terminal nodes. To 
correspond to the latter usage, nodes with at least one child are some
times called nonterminal nodes. We have seen an example in this 
chapter of the utility of distinguishing these types of nodes. In trees 
that we use to present the call structure of recursive algorithms (see, for 
example, Figure 5.14) the nonterminal nodes (circles) represent func
tion invocations with recursive calls and the terminal nodes (squares) 
represent function invocations with no recursive calls. 

In certain applications, the way in which the children of each 
node are ordered is significant; in other applications, it is not. An 
ordered tree is a rooted tree in which the order of the children at 
every node is specified. Ordered trees are a natural representation: for 
example, we place the children in some order when we draw a tree. 
As we shall see, this distinction is also significant when we consider 
representing trees in a computer. 

If each node must have a specific number of children appearing in 
a specific order, then we have an Iv!-ary tree. In such a tree, it is often 
appropriate to define special external nodes that have no children. 
Then, external nodes can act as dummy nodes for reference by nodes 
that do not have the specified number of children. In particular, the 
simplest type of Al-ary tree is the binary tree. A binary tree is an 
ordered tree consisting of two types of nodes: external nodes with no 
children and internal nodes with exactly two children. Since the two 
children of each internal node are ordered, we refer to the left child 
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and the right child of internal nodes: every internal node must have 
both a left and a right child, although one or both of them might be 
an external node. A leaf in an lv/-ary tree is an internal node whose 
children are all external. 

That is the basic terminology. Next, we shall consider formal 
definitions, representations, and applications of, in increasing order of 
generality, 

• Binary trees and 1vl-ary trees 
• Ordered trees 
• Rooted trees 
• Free trees 

That is, a binary tree is a special type of ordered tree, an ordered tree 
is a special type of rooted tree, and a rooted tree is a special type 
of free tree. The different types of trees arise naturally in various 
applications, and is important to be aware of the distinctions when we 
consider ways of representing trees with concrete data structures. By 
starting with the most specific abstract structure, we shall be able to 
consider concrete representations in detail, as will become clear. 

Definition 5.1 A binary tree is either an external node or an internal 
node connected to a pair of binary trees, which are called the left 
subtree and the right subtree of that node. 

This definition makes it plain that the binary tree itself is an 
abstract mathematical concept. When we are working with a computer 
representation, we are working with just one concrete realization of 
that abstraction. The situation is no different from representing real 
numbers with floats, integers with ints, and so forth. When we draw 
a tree with a node at the root connected by edges to the left subtree on 
the left and the right subtree on the right, we are choosing a convenient 
concrete representation. There are many different ways to represent 
binary trees (see, for example, Exercise 5.62) that are surprising at 
first, but, upon reflection, that are to be expected, given the abstract 
nature of the definition. 

The concrete representation that we use most often when we 
implement programs that use and manipulate binary trees is a structure 
with two links (a left link and a right link) for internal nodes (see 
Figure 5.21). These structures are similar to linked lists, but they 
have two links per node, rather than one. Null links correspond to 
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external nodes. Specifically, we add a link to our standard linked list 
representation from Section 3.3, as follows: 

typedef struct node *link; 
struct node { Item item; link 1, r; }; 

which is nothing more than C code for Definition 5.1. Links are 
references to nodes, and a node consists of an item and a pair of links. 
Thus, for example, we implement the abstract operation move to the 
left subtree with a pointer reference such as x = x->l. 

This standard representation allows for efficient implementation 
of operations that call for moving down the tree from the root, but not 
for operations that call for moving up the tree from a child to its parent. 
For algorithms that require such operations, we might add a third link 
to each node, pointing to the parent. This alternative is analogous to 
a doubly linked list. As with linked lists (see Figure 3.6), we keep tree 
nodes in an array and use indices instead of pointers as links in certain 
situations. We examine a specific instance of such an implementation 
in Section 12.7. We use other binary-tree representations for certain 
specific algorithms, most notably in Chapter 9. 

Because of all the different possible representations, we might 
develop a binary-tree ADT that encapsulates the important operations 
that we want to perform, and that separates the use and implementa
tion of these operations. We do not take this approach in this book 
because 

• We most often use the two-link representation. 
• 	We use trees to implement higher-level ADTs, and wish to focus 

on those. 
• 	 We work with algorithms whose efficiency depends on a partic

ular representation-a fact that might be lost in an ADT. 

Figure 5-21 

Binary-tree representation 

The standard representation of a 
binary tree uses nodes with two 
links: a left link to the left subtree 
and a right link to the right subtree. 
Nul/links correspond to external 
nodes. 
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These are the same reasons that we use familiar concrete representa
tions for arrays and linked lists. The binary-tree representation de
picted in Figure 5.2I is a fundamental tool that we are now adding to 
this short list. 

For linked lists, we began by considering elementary operations 
for inserting and deleting nodes (see Figures 3.3 and 3.4). For the 
standard representation of binary trees, such operations are not nec
essarily elementary, because of the second link. If we want to delete a 
node from a binary tree, we have to reconcile the basic problem that 
we may have two children to handle after the node is gone, but only 
one parent. There are three natural operations that do not have this 
difficulty: insert a new node at the bottom (replace a null link with a 
link to a new node), delete a leaf (replace the link to it by a null link), 
and combine two trees by creating a new root with a left link pointing 
to one tree and the right link pointing to the other one. We use these 
operations extensively when manipulating binary trees. 

Definition 5.2 An M-ary tree is either an external node or an internal 
node connected to an ordered sequence of IvI trees that are also AI-ary 
trees. 

We normally represent nodes in l1I-ary trees either as structures 
with IvI named links (as in binary trees) or as arrays of M links. For 
example, in Chapter I5, we consider 3-ary (or ternary) trees where we 
use structures with three named links (left, middle, and right) each of 
which has specific meaning for associated algorithms. Otherwise, the 
use of arrays to hold the links is appropriate because the value of IvI 
is fixed, although, as we shall see, we have to pay particular attention 
to excessive use of space when using such a representation. 

Definition 5.3 A tree (also called an ordered tree) is a node (called 
the root) connected to a sequence of disjoint trees. Such a sequence is 
called a forest. 

The distinction between ordered trees and l\I-ary trees is that 
nodes in ordered trees can have any number of children, whereas 
nodes in lVf-ary trees must have precisely AI children. We sometimes 
use the term general tree in contexts where we want to distinguish 
ordered trees from 1\1-ary trees. 

Because each node in an ordered tree can have any number of 
links, it is natural to consider using a linked list, rather than an array, 
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to hold the links to the node's children. Figure 5.22 is an example of 
such a representation. From this example, it is clear that each node 
then contains two links, one for the linked list connecting it to its 
siblings, the other for the linked list of its children. 

Property 5.4 There is a one-to-one correspondence between binary 
trees and ordered forests. 

The correspondence is depicted in Figure 5.22. We can represent any 
forest as a binary tree by making the left link of each node point to its 
leftmost child, and the right link of each node point to its sibling on 
the right. _ 

Definition 5.4 A rooted tree (or unordered tree) is a node (called the 
root) connected to a multiset of rooted trees. (Such a multiset is called 
an unordered forest.) 

The trees that we encountered in Chapter I for the connectivity 
problem are unordered trees. Such trees may be defined as ordered 
trees where the order in which the children of a node are considered 
is not significant. We could also choose to define unordered trees 
as comprising a set of parent-child relationships among nodes. This 
choice would seem to have little relation to the recursive structures 

Figure 5.22 

Tree representation 
Representing an ordered tree by 
keeping a linked list of the chil
dren of each node is equivalent 
to representing it as a binary tree. 
The diagram on the right at the 
top shows a linked-list-of-children 
representation of the tree on the 
left at the top, with the list imple
mented in the right links of nodes, 
and each node's left link pointing 
to the first node in the linked list 
of its children. The diagram on the 
right at the bottom shows a slightly 
rearranged version of the diagram 
above it, and clearly represents the 
binary tree at the left on the bot
tom. That is, we can consider the 
binary tree as representing the tree. 
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that we are considering, but it is perhaps the concrete representation 
that is most true to the abstract notion. 

We could choose to represent an unordered tree in a computer 
with an ordered tree, recognizing that many different ordered trees 
might represent the same unordered tree. Indeed, the converse problem 
of determining whether or not two different ordered trees represent the 
same unordered tree (the tree-isomorphism problem) is a difficult one 
to solve. 

The most general type of tree is one where no root node is distin
guished. For example, the spanning trees resulting from the connec
tivity algorithms in Chapter I have this property. To define properly 
unrooted, unordered trees, or free trees, we start with a definition for 
graphs. 

Definition 5.5 A graph is a set of nodes together with a set of edges 
that connect pairs of distinct nodes (with at most one edge connecting 
any pair of nodes). 

We can envision starting at some node and following an edge to 
the constituent node for the edge, then following an edge from that 
node to another node, and so on. A sequence of edges leading from 
one node to another in this way with no node appearing twice is called 
a simple path. A graph is connected if there is a simple path connecting 
any pair of nodes. A path that is simple except that the first and final 
nodes are the same is called a cycle. 

Every tree is a graph; which graphs are trees? We consider a 
graph to be a tree if it satisfies any of the following four conditions: 

• G has N - 1 edges and no cycles. 
• G has N - 1 edges and is connected. 
• Exactly one simple path connects each pair of vertices in G. 
• G is connected, but does not remain connected if any edge is 

removed. 
Anyone of these conditions is necessary and sufficient to prove the 
other three. Formally, we should choose one of them to serve as a 
definition of a free tree; informally, we let them collectively serve as 
the definition. 

We represent a free tree simply as a collection of edges. If we 
choose to represent a free tree as an unordered, ordered or even a 
binary tree, we need to recognize that, in general, there are many 
different ways to represent each free tree. 
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The tree abstraction arises frequently, and the distinctions dis
cussed in this section are important, because knowing different tree 
abstractions is often an essential ingredient in finding an efficient algo
rithm and corresponding data structure for a given problem. We often 
work directly with concrete representations of trees without regard to 
a particular abstraction, but we also often profit from working with 
the proper tree a bstraction, then considering various concrete repre
sentations. We shall see numerous examples of this process throughout 
the book. 

Before moving back to algorithms and implementations, we con
sider a number of basic mathematical properties of trees; these prop
erties will be of use to us in the design and analysis of tree algorithms. 

Exercises 

l> 5.56 Give representations of the free tree in Figure 5.20 as a rooted tree and 
as a binary tree . 

• 5.57 How many different ways are there to represent the free tree in Fig
ure 5.20 as an ordered tree? 

l> 5.58 Draw three ordered trees that are isomorphic to the ordered tree in 
Figure 5.20. That is, you should be able to transform the four trees to one 
another by exchanging children. 

05.59 	 Assume that trees contain items for which eq is defined. Write a recur
sive program that deletes all the leaves in a binary tree with items equal to a 
given item (see Program 5.5). 

05.60 	 Change the divide-and conquer function for finding the maximum item 
in an array (Program 5.6) to divide the array into k parts that differ by at most 
1 in size, recursively find the maximum in each part, and return the maximum 
of the maxima. 

5.61 Draw the 3-ary and 4-ary trees corresponding to using k 3 and k = 4 
in the recursive construction suggested in Exercise 5.60, for an array of 11 
elements (see Figure 5.6). 

05.62 	 Binary trees are equivalent to binary strings that have one more 0 bit 
than 1 bit, with the additional constraint that, at any position k, the number 
of 0 bits that appear strictly to the left of k is no larger than the number of 
1 bits strictly to the left of k. A binary tree is either a 0 or two such strings 
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concatenated together, preceded by a 1. Draw the binary tree that corresponds 
to the string 

1 1 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 o. 

05.63 	 Ordered trees are equivalent to balanced strings of parentheses: An 
ordered tree either is null or is a sequence of ordered trees enclosed in paren
theses. Draw the ordered tree that corresponds to the string 

«() «) (» (» «) () (») . 

•• 5.64 Write a program to determine whether or not two arrays of N integers 
between 0 and N 1 represent isomorphic unordered trees, when interpreted 
(as in Chapter I) as parent-child links in a tree with nodes numbered between 
oand N 1. That is, your program should determine whether or not there is 
a way to renumber the nodes in one tree such that the array representation of 
the one tree is identical to the array representation of the other tree . 

•• 5.65 Write a program to determine whether or not two binary trees represent 
isomorphic unordered trees. 

I> 5.66 Draw all the ordered trees that could represent the tree defined by the 
set of edges 0-1, 1-2, 1-3, 1-4, 4-5. 

• 5.67 Prove that, if a connected graph of N nodes has the property that 
removing any edge disconnects the graph, then the graph has N - 1 edges and 
no cycles. 

5.5 Mathematical Properties of Binary Trees 

Before beginning to consider tree-processing algorithms, we continue 
in a mathematical vein by considering a number of basic properties 
of trees. We focus on binary trees, because we use them frequently 
throughout this book. Understanding their basic properties will lay 
the groundwork for understanding the performance characteristics of 
various algorithms that we will encounter-not only of those that use 
binary trees as explicit data structures, but also of divide-and-conquer 
recursive algorithms and other similar applications. 

Property 5.5 A binary tree with N internal nodes has N + 1 external 
nodes. 

We prove this property by induction: A binary tree with no internal 
nodes has one external node, so the property holds for N = O. For 
N > 0, any binary tree with N internal nodes has k internal nodes in 
its left subtree and N 1 - k internal nodes in its right subtree for 
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some k between 0 and N -- 1, since the root is an internal node. By the 
inductive hypothesis, the left subtree has k + 1 external nodes and the 
right subtree has N - k external nodes, for a total of N + 1. • 

Property 5.6 A binary tree with N internal nodes has 2N links: N -1 
links to internal nodes and N + 1 links to external nodes. 

In any rooted tree, each node, except the root, has a unique parent, 
and every edge connects a node to its parent, so there are N - 1 links 
connecting internal nodes. Similarly, each of the N + 1 external nodes 
has one link, to its unique parent. • 

The performance characteristics of many algorithms depend not 
just on the number of nodes in associated trees, but on various struc
tural properties. 

Definition 5.6 The level of a node in a tree is one higher than the 
level of its parent (with the root at level 0). The height of a tree is the 
maximum of the levels of the tree's nodes. The path length ofa tree is 
the sum of the levels of all the tree's nodes. The internal path length 
of a binary tree is the sum of the levels ofall the tree's internal nodes. 
The external path length ofa binary tree is the sum of the levels of all 
the tree's external nodes. 

A convenient way to compute the path length of a tree is to sum, for 
all k, the product of k and the number of nodes at level k. 

These quantities also have simple recursive definitions that fol
low directly from the recursive definitions of trees and binary trees. 
For example, the height of a tree is 1 greater than the maximum of 
the height of the subtrees of its root, and the path length of a tree 
with N nodes is the sum of the path lengths of the subtrees of its root 
plus N 1. The quantities also relate directly to the analysis of recur
sive algorithms. For example, for many recursive computations, the 
height of the corresponding tree is precisely the maximum depth of the 
recursion, or the size of the stack needed to support the computation. 

Property 5.7 The external path length of any binary tree with N 
internal nodes is 2N greater than the internal path length. 

We could prove this property by induction, but an alternate proof 
(which also works for Property 5.6) is instructive. Observe that any 
binary tree can be constructed by the following process: Start with the 

eveIO-
level1

level 4 ---"""~ 

Figure 5.23 
Three binary trees with 10 

internal nodes 

The binary tree shown at the top 
has height 7, internal path length 
31 and external path length 51. A 
fully balanced binary tree (center) 
with 10 internal nodes has height 
4, internal path length 19 and ex
ternal path length 39 (no binary 
tree with 10 nodes has smaller val
ues for any of these quantities). A 
degenerate binary tree (bottom) 
with 10 internal nodes has height 
10, internal path length 45 and ex
ternal path length 65 (no binary 
tree with 10 nodes has larger val
ues for any of these quantities). 
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binary tree consisting of one external node. Then, repeat the following 
N times: Pick an external node and replace it by a new internal node 
with two external nodes as children. If the external node chosen is at 
level k, the internal path length is increased by k, but the external path 
length is increased by k + 2 (one external node at level k is removed, 
but two at level k + 1 are added). The process starts with a tree with 
internal and external path lengths both 0 and, for each of N steps, 
increases the external path length by 2 more than the internal path 
length. _ 

Property 5.8 The height ofa binary tree with N internal nodes is at 
least 19 N and at most N - l. 

The worst case is a degenerate tree with only one leaf, with N - 1 links 
from the root to the leaf (see Figure 5.23). The best case is a balanced 
tree with 2i internal nodes at every level i except the bottom level (see 
Figure 5.23). If the height is h, then we must have 

2h - 1 < N + 1 S. 2h, 

since there are N + 1 external nodes. This inequality implies the 
property stated: The best-case height is precisely equal to 19 N rounded 
up to the nearest integer. • 

Property 5.9 The internal path length ofa binary tree with N internal 
nodes is at least N 19(N /4) and at most N(N - 1)/2. 

The worst case and the best case are achieved for the same trees referred 
to in the discussion of Property 5.8 and depicted in Figure 5.23. The 
internal path length of the worst-case tree is 0 + 1+2 + . . . (N - 1) 
N{N 1)/2. The best case tree has (N + 1) external nodes at height 
no more than LlgNJ. Multiplying these and applying Property 5.7, we 
get the bound (1'1 + l)llg 1'1J - 2N < N 19(N/4). _ 

As we shall see, binary trees appear extensively in computer 
applications, and performance is best when the binary trees are fully 
balanced (or nearly so). For example, the trees that we use to describe 
divide-and-conquer algorithms such as binary search and mergesort 
are fully balanced (see Exercise 5.74). In Chapters 9 and 13, we shall 
examine explicit data structures that are based on balanced trees. 

These basic properties of trees provide the information that we 
need to develop efficient algorithms for a number of practical prob
lems. More detailed analyses of several of the specific algorithms 
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that we shall encounter require sophisticated mathematical analysis, 
although we can often get useful estimates with straightforward in
ductive arguments like the ones that we have used in this section. 
We discuss further mathematical properties of trees as needed in the 
chapters that follow. At this point, we are ready to move back to 
algorithmic matters. 

Exercises 
I> 5.68 How many external nodes are there in an M-ary tree with N internal 

nodes? Use your answer to give the amount of memory required to represent 
such a tree, assuming that links and items require one word of memory each. 

5.69 Give upper and lower bounds on the height of an M-ary tree with N 
internal nodes. 

05.70 	 Give upper and lower bounds on the internal path length of an .f\;[-ary 
tree with N internal nodes. 

5.71 Give upper and lower bounds on the number of leaves in a binary tree 
with N nodes . 

• 	5.72 Show that if the levels of the external nodes in a binary tree differ by a 
constant, then the height is o(log N). 

05.73 	 A Fibonacci tree of height n > 2 is a binary tree with a Fibonacci tree 
of height n - 1 in one subtree and a Fibonacci tree of height n 2 in the 
other subtree. A Fibonacci tree of height 0 is a single external node, and a 
Fibonacci tree of height 1 is a single internal node with two external children 
(see Figure 5.14). Give the height and external path length of a Fibonacci tree 
of height n, as a function of N, the number of nodes in the tree. 

5.74 A divide-aNd-conquer tree of N nodes is a binary tree with a root 
labeled N, a divide-and-conquer tree of lN /2J nodes in one subtree, and a 
divide-and-conquer tree of IN/2l nodes in the other subtree. (Figure 5.6 
depicts a divide-and-conquer tree.) Draw divide-and·conquer trees with 11, 
15, 16, and 23 nodes. 

05.75 	 Prove by induction that the internal path length of a divide-and-conquer 
tree is between N 19 Nand N 19 N + N. 

5.76 A combine-and-conquer tree of N nodes is a binary tree with a root 
labeled N, a combine-and-conquer tree of lN /2J nodes in one subtree, and 
a combine-and-conquer tree of IN/2l nodes in the other subtree (see Exer
cise 5.18). Draw combine-and-conquer trees with 11, 15, 16, and 23 nodes. 

5.77 Prove by induction that the internal path length of a combine-and
conquer tree is between N 19 Nand N 19 N + N. 

5.78 A complete binary tree is one with all levels filled, except possibly the 
final one, which is filled from left to right, as illustrated in Figure 5.24. Prove 
that the internal path length of a complete tree with N nodes is between N 19 N 
and NlgN +N. 

Figure 5.24 
Complete binary trees with 

seven and 10 internal nodes 

When the number of external 
nodes is a power of 2 (top), the ex
ternal nodes in a complete binary 
tree are all at the same level. Oth
erwise (bottom), the external nodes 
appear on two levels! with the in
ternal nodes to the left of the ex
ternal nodes on the next-to-bottom 
level. 
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5.6 Tree Traversal 

Before considering algorithms that construct binary trees and trees, we 
consider algorithms for the most basic tree-processing function: tree 
traversal: Given a pointer to a tree, we want to process every node in 
the tree systematically. In a linked list, we move from one node to the 
next by following the single link; for trees, however, we have decisions 
to make, because there may be multiple links to follow. 

We begin by considering the process for binary trees. For linked 
lists, we had two basic options (see Program 5.5): process the node 
and then follow the link (in which case we would visit the nodes in 
order), or follow the link and then process the node (in which case we 
would visit the nodes in reverse order). For binary trees, we have two 
links, and we therefore have three basic orders in which we might visit 
the nodes: 

• 	 Preorder, where we visit the node, then visit the left and right 
subtrees 

• 	 Inorder, where we visit the left subtree, then visit the node, then 
visit the right subtree 

• 	 Postorder, where we visit the left and right subtrees, then visit 
the node 

We can implement these methods easily with a recursive program, as 
shown in Program 5.14, which is a direct generalization of the linked
list-traversal program in Program 5.5. To implement traversals in the 
other orders, we permute the function calls in Program 5.14 in the 
appropriate manner. Figure 5.26 shows the order in which we visit the 
nodes in a sample tree for each order. Figure 5.25 shows the sequence 
of function calls that is executed when we invoke Program 5.14 on the 
sample tree in Figure 5.26. 

We have already encountered the same basic recursive processes 
on which the different tree-traversal methods are based, in divide-and
conquer recursive programs (see Figures 5.8 and 5.Il), and in arith
metic expressions. For example, doing preorder traversal corresponds 
to drawing the marks on the ruler first, then making the recursive calls 
(see Figure 5.Il); doing inorder traversal corresponds to moving the 
biggest disk in the towers of Hanoi solution in between recursive calls 
that move all of the others; doing postorder traversal corresponds to 
evaluating postfix expressions, and so forth. These correspondences 
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Program 5.14 Recursive tree traversal 

This recursive function takes a link to a tree as an argument and calls 
the function visit with each of the nodes in the tree as argument. As 
is, the function implements a preorder traversal; if we move the call to 
visit between the recursive calls, we have an inorder traversal; and if 
we move the call to visit after the recursive calls, we have a postorder 
traversal. 

void traverse(link h, void (*visit)(link» 
{ 

if (h == NULL) return; 
(*visit) (h); 
traverse (h->l, visit); 

give us immediate insight into the mechanisms behind tree traversal. 
For example, we know that every other node in an inorder traversal 
is an external node, for the same reason that every other move in the 
towers of Hanoi problem involves the small disk. 

It is also useful to consider nonrecursive implementations that use 
an explicit pushdown stack. For simplicity, we begin by considering 
an abstract stack that can hold items or trees, initialized with the tree 
to be traversed. Then, we enter into a loop, where we pop and process 
the top entry on the stack, continuing until the stack is empty. If the 
popped entity is an item, we visit it; if the popped entity is a tree, then 
we perform a sequence of push operations that depends on the desired 
ordering: 

• 	 For preorder, we push the right subtree, then the left subtree, and 
then the node. 

• 	 For inorder, we push the right subtree, then the node, and then 
the left subtree. 

• 	 For postorder, we push the node, then the right subtree, and then 
the left subtree. 

We do not push null trees onto the stack. Figure 5.27 shows the stack 
contents as we use each of these three methods to traverse the sample 
tree in Figure 5.26. We can easily verify by induction that this method 
produces the same output as the recursive one for any binary tree. 

traverse E 
visit E 
traverse D 

visit D 
traverse B 

visit B 
traverse A 

visit A 
traverse * 
traverse * 

traverse C 
visit C 
traverse * 
traverse * 

traverse * 
traverse H 

visit H 
traverse F 

visit F 
traverse * 
traverse G 

visit G 
traverse * 
traverse * 

traverse * 

Figure 5.25 
Preorder-traversal function 

calls 

This sequence of function calls 
constitutes preorder traversal for 
the example tree in Figure 5.26. 
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Figure 5.2.6 
Tree-traversal orders 
These sequences indicate the order 
in which we visit nodes for pre-
order (left), inorder (center), and 
postorder (right) tree traversal. 
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Program 5.15 Preorder traversal (nonrecursive) 

This nonrecursive stack-based function is functionally equivalent to its 
recursive counterpart, Program 5.I4. 

void traverse(link h, void (*visit)(link)) 
{ 


STACKinit(rnax); STACKpush(h); 

while (!STACKernpty()) 


{ 

(*visit)(h = STACKpop()); 

if (h->r != NULL) STACKpush(h->r); 

if (h->l! NULL) STACKpush(h->l); 


} 


} 


The scheme described in the previous paragraph is a conceptual 
one that encompasses the three traversal methods, but the implemen
tations that we use in practice are slightly simpler. For example, for 
preorder, we do not need to push nodes onto the stack (we visit the 
root of each tree that we pop), and we therefore can use a simple stack 
that contains only one type of item (tree link), as in the nonrecur
sive implementation in Program 5. I 5. The system stack that supports 
the recursive program contains return addresses and argument values, 
rather than items or nodes, but the actual sequence in which we do 
the computations (visit the nodes) is the same for the recursive and the 
stack-based methods. 

A fourth natural traversal strategy is simply to visit the nodes in a 
tree as they appear on the page, reading down from top to bottom and 
from left to right. This method is called level-order traversal because 
all the nodes on each level appear together, in order. Figure 5.28 shows 
how the nodes of the tree in Figure 5.26 are visited in level order. 

Remarkably, we can achieve level-order traversal by substituting 
a queue for the stack in Program 5.I5, as shown in Program 5.16. 

For preorder, we use a LIFO data structure; for level order, we use a 
FIFO data structure. These programs merit careful study, because they 
represent approaches ro organizing work remaining to be done that 
differ in an essential way. In particular, level order does not correspond 
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Figure 5.27 
Stack contents for tree-

traversal algorithms 

These sequences indicate the stack 
content.s for preorder (left), inorder 
(center), and postorder (right) tree 
traversal (see Figure 5.26), for an 
idealized model of the compu
tation, similar to the one that we 
used in Figure 5.5, where we put 
the item and its two subtrees on 
the stack, in the indicated order. 
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to a recursive implementation relates to the recursive structure of the 
tree. 

Preorder, postorder, and level order are well defined for forests 
as well. To make the definitions consistent, think of a forest as a tree 
with an imaginary root. Then, the preorder rule is "visit the root, 
then visit each of the subtrees," the postorder rule is "visit each of the 
subtrees, then visit the root." The level-order rule is the same as for 
binary trees. Direct implementations of these methods are straightfor
ward generalizations of the stack-based preorder traversal programs 
(Programs 5.14 and 5.15) and the queue-based level-order traversal 
program (Program 5. I 6) for binary trees that we just considered. We 
omit consideration of implementations because we consider a more 
general procedure in Section 5.8. 

Exercises 

[> 5.79 Give preorder, inorder, postorder, and level-order traversals of the fol
lowing binary trees: 

reAmB F 
ACE G~ ~I'rf{ 
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Program S.I6 Level-order traversal 

Switching the underlying data structure in preorder traversal (see Pro
gram 5. r 5) from a stack to a queue transforms the traversal into a 
level-order one. 

void traverse(link h, void (*visit) (link» 
{ 


QUEUEinit(max); QUEUEput(h); 

while (!QUEUEempty(» 


{ 

(*visit)(h = QUEUEget(»; 
if (h->l != NULL) QUEUEput(h->l); 
if (h->r != NULL) QUEUEput(h->r); 

} 

} 

I> 5.80 Show the contents of the queue during the level order traversal (Pro
gram 5.r6) depicted in Figure 5.28, in the style of Figure 5.27. 

5.8r Show that preorder for a forest is the same as preorder for the corre
sponding binary tree (see Property 5.4), and that postorder for a forest is the 
same as inorder for the binary tree. 

05.82 Give a nonrecursive implementation of inorder traversal. 

.5.83 Give a nonrecursive implementation of postorder traversal. 

.5.84 Write a program that takes as input the preorder and inorder traversals 
of a binary tree, and produces as output the level-order traversal of the tree. 

5.7 Recursive Binary-Tree Algorithms 

The tree-traversal algorithms that we considered in Section 5.6 exem
plify the basic fact that we are led to consider recursive algorithms 
for binary trees, because of these trees' very nature as recursive struc
tures. Many tasks admit direct recursive divide-and-conquer algo
rithms, which essentially generalize the traversal algorithms. We pro
cess a tree by processing the root node and (recursively) its subtrees; 
we can do computation before, between, or after the recursive calls (or 
possibly all three). 

We frequently need to find the values of various structural param
eters for a tree, given only a link to the tree. For example, Program 5.17 

Figure 5.28 
Level-order traversal 

This sequence depicts the result of 
visiting nodes in order from top to 
bottom and left to right in the tree. 
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Program 5.I7 Computation of tree parameters 

We can use simple recursive procedures such as these to 
structural properties of trees. 

int count(link h) 
{ 

if (h == NULL) return 0; 
return count(h->l) + count(h->r) + 1; 

} 

int height(link h) 
{ 	 int u, v; 

if (h == NULL) return -1; 
u height(h->l); v = height(h->r); 
if Cu > v) return u+1; else return 

comprises recursive functions for computing the number of nodes in 
and the height of a given tree. The functions follow immediately from 
Definition 5.6. Neither of these functions depends on the order in 
which the recursive calls are processed: they process all the nodes in 
the tree and return the same answer if we, for example, exchange the 
recursive calls. Not all tree parameters are so easily computed: for 
example, a program to compute efficiently the internal path length of 
a binary tree is more challenging (see Exercises 5.88 through 5.90). 

Another function that is useful whenever we write programs that 
process trees is one that prints out or draws the tree. For example, 
Program 5.I8 is a recursive procedure that prints out a tree in the 
format illustrated in Figure 5.29. We can use the same basic recursive 
scheme to draw more elaborate representations of trees, such as those 
that we use in the figures in this book (see Exercise 5.85). 

Program 5. I 8 is an inorder traversal-if we print the item before 
the recursive calls, we get a pre order traversal, which is also illustrated 
in Figure 5.29. This format is a familiar one that we might use, for 
example, for a family tree, or to list files in a tree-based file system, 
or to make an outline of a printed document. For example, doing a 
preorder traversal of the tree in Figure 5. I9 gives a version of the table 
of contents of this book. 
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Program 5-18 Quick tree-print function 

This recursive program keeps track of the tree height and uses that 
information for indentation in printing out a representation of the tree 
that we can use to debug tree-processing programs (see Figure 5.29). It 
assumes that items in nodes are characters. 

void printnode(char c, int h) 
{ int i; 

for (i = 0; i < h; i++) printf(" "); 
printf("%c\n", c); 

} 

void show(link x, int h) 
{ 

if (x == NULL) { printnode('*', h); return; } 

show(x->r, h+l); 

printnode(x->item, h); 


* E 
H D 

* B 
G A 

* * 
F * 

* c 
E * 

Our first example of a program that builds an explicit binary tree 
structure is associated with the find-the-maximum application that we 
considered in Section 5.2. Our goal is to build a tournament: a binary 
tree where the item in every internal node is a copy of the larger of the 
items in its two children. In particular, the item at the root is a copy of 
the largest item in the tournament. The items in the leaves (nodes with 
no children) constitute the data of interest, and the rest of the tree is a 
data structure that allows us to find the largest of the items efficiently. 

Program 5.19 is a recursive program that builds a tournament 
from the items in an array. A modification of Program 5.6, it thus 
uses a divide-and-conquer recursive strategy: To build a tournament 
for a single item, we create (and return) a leaf containing that item. To 
build a tournament for N > 1 items, we use the divide-and-conquer 
strategy: Divide the items in half, build tournaments for each half, 
and create a new node with links to the two tournaments and with an 
item that is a copy of the larger of the items in the roots of the two 
tournaments. 

Figure 5.30 is an example of an explicit tree structure that might 
be built by Program 5. 19. Building a recursive data structure such 

* * 
D * 

* H 
c F 

* * 
B G 

* * 
A * 

* * 

Figure 5.29 
Printing a tree (inorder and 

preorder) 

The output at the left results from 
using Program 5.18 on the sample 
tree in Figure 5.26, and exhibits 
the tree structure in a manner sim
ilar to the graphical representation 
that we have been using, rotated 
90 degrees. The output at the right 
is from the same program with the 
print statement moved to the be
ginning; it exhibits the tree struc
ture in a familiar outline format. 
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Program 5.I9 Construction of a tournament 

This recursive function divides a file a [1], ... , a [r] into the two parts 
a [1], ... , a em] and a [m+l] , ... , a [r], builds tournaments for the two 
parts (recursively), and makes a tournament for the whole file by setting 
links in a new node to the recursively built tournaments and setting its 
item value to the larger of the items in the roots of the two recursively 
built tournaments. 

typedef struct node *link; 

struct node { Item item; link 1, r }; 

link NEW(Item item, link 1, link r) 


{ 	link x = malloc(sizeof *x); 

x->item item; x->l = 1; x->r = r; 

return x; 


} 


link max(Item a[], int I, int r) 

{ 	 int m (1+r)/2; Item u, v; 


link x NEW(a[m], NULL, NULL); 

if (1 == r) return x; 

x->l = max(a, 1, m); 

x->r = max(a, m+l, r); 

u = x->l->item; v = x->r->item; 

if (u > v) 


x->item = u; else x->item = v; 

return x; 


} 

as this one is perhaps preferable in some situations to finding the 
maximum by scanning the data, as we did in Program 5.6, because 
the tree structure provides us with the flexibility to perform other 
operations. The very operation that we use to build the tournament 
is an important example: Given two tournaments, we can combine 
them into a single tournament in constant time, by creating a new 
node, making its left link point to one of the tournaments and its 
right link point to the other, and taking the larger of the two items 
(at the roots of the two given tournaments) as the largest item in the 
combined tournament. We also can consider algorithms for adding 
items, removing items, and performing other operations. We shall not 
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consider such operations in any further detail here because similar data 
structures with this flexibility are the topic of Chapter 9. 

Indeed, tree-based implementations for several of the generalized 
queue ADTs that we discussed in Section 4.6 are a primary topic of 
discussion for much of this book. In particular, many of the algorithms 
in Chapters 12 through 15 are based on binary search trees, which are 
explicit trees that correspond to binary search, in a relationship anal
ogous to the relationship between the explicit structure of Figure 5.30 
and the recursive find-the-maximum algorithm (see Figure 5.6). The 
challenge in implementing and using such structures is to ensure that 
our algorithms remain efficient after a long sequence of insert, delete, 
and other operations. 

Our second example of a program that builds a binary tree is 
a modification of our prefix-expression-evaluation program in Sec
tion 5. I (Program 5.4) to construct a tree representing a prefix expres
sion, instead of just evaluating it (see Figure 5.31). Program 5.20 uses 
the same recursive scheme as Program 5.4, but the recursive function 
returns a link to a tree, rather than a value. We create a new tree 
node for each character in the expression: Nodes corresponding to 
operators have links to their operands, and the leaf nodes contain the 
variables (or constants) that are inputs to the expression. 

Translation programs such as compilers often use such internal 
tree representations for programs, because the trees are useful for many 
purposes. For example, we might imagine operands corresponding to 

variables that take on values, and we could generate machine code 
to evaluate the expression represented by the tree with a postorder 
traversal. Or, we could use the tree to print out the expression in infix 
with an inorder traversal or in postfix with a postorder traversal. 

We considered the few examples in this section to introduce the 
concept that we can build and process explicit linked tree structures 
with recursive programs. To do so effectively, we need to consider 

Figure 5.30 
Explicit tree for finding the 

maximum (tournament) 

This figure depicts the explicit tree 
structure that is constructed by 
Program 5.19 from the input AM 
P L E. The data items are in the 
leaves. Each internal node has a 
copy of the of the items in 
its two children! 50! by induction! 
the largest item is at the root. 



Figure 5.31 
Parse tree 
This tree is constructed by Pro
gram 5.20 for the prefix expression 
* + a * * b c + d e f. It is a natu
ral way to represent the expression: 
Each operand is ill a leaf (which 
we draw here as an external node), 
and each operator is to be applied 
to the expressions represented by 
the left and right subtrees of the 
node containing the operator. 
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Program 5.20 Construction of a parse tree 

Using the same strategy that we used to evaluate prefix expressions (see 
Program 5.4), this program builds a parse tree from a prefix expression. 
For simplicity, we assume that operands are single characters. Each call 
of the recursive function creates a new node with the next character 
from the input as the token. If the token is an operand, we return the 
new node; if it is an operator, we set the left and right pointers to the 
tree built (recursively) for the two arguments. 

char *a; int i; 

typedef struct Tnode* link; 

struct Tnode { char token; link 1, r; }; 

link NEW(char token, link 1, link r) 


{ 	link x = malloc(sizeof *x); 

x->token = token; x->l = 1; x->r r', 

return x; 


} 


link parse () 

{ 	char t a[i++]; 


link x NEW(t, NULL, NULL); 

if « t == '+') I I (t == '*')) 


{ x->l = parseC); x->r = parseC); } 

return x; 


} 


the performance of various algorithms, alternate representations, non
recursive alternatives, and many other details. However, we shall 
defer consideration of tree-processing programs in further detail until 
Chapter 12, because we use trees primarily for descriptive purposes in 
Chapters 7 through II. We return to explicit tree implementations in 
Chapter 12 because they form the basis of numerous algorithms that 
we consider in Chapters I2 through 15. 

Exercises 

05.85 Modify Program 5. I 8 to output a PostScript program that draws the 
tree, in a format like that used in Figure 5.23, but without the small boxes to 
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represent the external nodes. Use moveto and lineto to draw lines, and the 
user-defined operator 

/node { newpath moveto currentpoint 4 0 360 arc fill} def 

to draw nodes. After this definition, the call node draws a black dot at the 
coordinates on the stack (see Section 4· 3J. 

I> 5.86 Write a program that counts the leaves in a binary tree. 

I> 5.87 Write a program that counts the number of nodes in a binary tree that 
have one external and one internal child. 

I> 5.88 Write a recursive program that computes the internal path length of a 
binary tree, using Definition 5.6. 

5.89 Determine the number of function calls made by your program when it 
is computing the internal path length of a binary tree. Prove your answer by 
induction . 

• 	5.90 Write a recursive program that computes the internal path length of a 
binary tree in time proportional to the number of nodes in the tree. 

o 5.9l Write a recursive program that deletes all the leaves with a given key 
from a tournament (see Exercise 5.59J. 

5.8 Graph Traversal 

For our final example of a recursive program in this chapter, we con
sider one of the most important of all recursive programs: recursive 
graph traversal, or depth-first search. This method for systematically 
visiting all the nodes in a graph is a direct generalization of the tree
traversal methods that we considered in Section 5.6, and it serves as 
the basis for many basic algorithms for processing graphs (see Part 7). 
It is a simple recursive algorithm. Starting at any node v, we 

• Visit v . 
• (Recursively) visit each (unvisited) node attached to v. 

If the graph is connected, we eventually reach all of the nodes. Pro
gram 5.21 is an implementation of this recursive procedure. 

For example, suppose that we use the adjacency-list representa
tion depicted in the sample graph in Figure 3.15. Figure 5.32 shows 
the recursive calls made during the depth-first search of this graph, and 
the sequence on the left in Figure 5.33 depicts the way in which we 
follow the edges in the graph. We follow each edge in the graph, with 
one of two possible outcomes: if the edge takes us to a node that we 
have already visited, we ignore it; if it takes us to a node that we have 



CHAPTER FIVE 

visit 0 

visit 7 (first on D's list) 


visit 1 (first on 7's list) 
check 7 on 1's list 
check 0 on 1's list 

visit 2 (second on 7's list) 
check 7 on 2's list 
check 0 on 2's list 

check 0 on 7's list 
visit 4 (fourth on 7's list) 

visit 6 (first on 4's list) 
check 4 on 6's list 
check 0 on 6's list 

visit 5 (second on 4's list) 
check 0 on 5's list 
check 4 on 5's list 
visit 3 (third on 5's list) 

check 5 on 3's list 
check 4 on 3's list 

check 7 on 4's list 
check 3 on 4's list 

check 5 on D's list 

check 2 on D's list 

check 1 on O's list 

check 6 on D's list 


Figure 5.32 
Depth-first-search function 

calls 

This sequence of function calls 
constitutes depth-first search for 
the example graph in Figure 3. I 5. 
The tree that depicts the recursive
call structure (top) is called the 
depth-First-search tree. 

Program 5.2 I Depth-first search 

To visit all the nodes connected to node k in a graph, we mark it as 
visited, then (recursively) visit all the unvisited nodes on k's adjacency 
list. 

void traverse(int k, void (*visit)( 
{ link t; 

(*visit)(k); visited[k) = 1; 
for (t = adj [11:]; t! NULL; t t->next) 

if (!visited[t->v)) traverse (t->v, visit); 
} 

not yet visited, we follow it there via a recursive calL The set of all 
edges that we follow in this way forms a spanning tree for the graph. 

The difference between depth-first search and general tree traver
sal (see Program 5.I4) is that we need to guard explicitly against vis
iting nodes that we have already visited. In a tree, we never encounter 
any such nodes. Indeed, if the graph is a tree, recursive depth-first 
search starting at the root is equivalent to preorder traversal. 

Property 5.10 Depth-first search requires time proportional to V +E 
in a graph with V vertices and E edges, using the adjacency lists 
representation. 

In the adjacency lists representation, there is one list node correspond
ing to each edge in the graph, and one list head pointer corresponding 
to each vertex in the graph. Depth-first search touches all of them, at 
most once. _ 

Because it also takes time proportional to V + E to build the 
adjacency lists representation from an input sequence of edges (see 
Program 3.I9), depth-first search gives us a linear-time solution to the 
connectivity problem of Chapter 1. For huge graphs, however, the 
union-find solutions might still be preferable, because representing 
the whole graph takes space proportional to E, while the union-find 
solutions take space only proportional to V. 

As we did with tree traversal, we can define a graph-traversal 
method that uses an explicit stack, as depicted in Figure 5.34. We 
can think of an abstract stack that holds dual entries: a node and 
a pointer into that node's adjacency list. With the stack initialized 



RECURSION AND TREES §S·8 243 

Figure 5.33 
Depth-first search and 

breadth-first search 

Depth-first search (left) moves from 
node to node, backing up to the 
previous node to try the next pos
sibility whenever it has tried ev
ery possibility at a given node. 
Breadth-first search (right) exhausts 
all the possibilities at one node be
fore moving to the next. 
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Figure 5.34 
Depth-~st-search stack dy

namlCS 

We can think of the pushdown 
stack supporting depth-first search 
as containing a node and a ref
erence to that node's adjacency 
list (indicated by a circled node) 
(left). Thus, we begin with node 0 
on the stack, with reference to the 
first node on its lisl, node 7. Each 
line indicates the result of popping 
the stack, pushing a reference to 
the next node on the list for nodes 
that have been visited, and push
ing an entry on the stack for nodes 
that have not been visited. Altema
tively, we can think of the process 
as simply pushing all nodes adja
cent to any unvisited node onto 
the stack (right). 
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to the start node and a pointer initialized to the first node on that 
node's adjacency list, the depth-first search algorithm is equivalent to 
entering into a loop, where we visit the node at the top of the stack 
(if it has not already been visited); save the node referenced by the 
current adjacency-list pointer; update the adjacency list reference to 
the next node (popping the entry if at the end of the adjacency list); 
and push a stack entry for the saved node, referencing the first node 
on its adjacency list. 

Alternatively, as we did for tree traversal, we can consider the 
stack to contain links to nodes only. With the stack initialized to the 
start node, we enter into a loop where we visit the node at the top of 
the stack (if it has not already been visited), then push all the nodes 
adjacent to it onto the stack. Figure 5.34 illustrates that both of these 
methods are equivalent to depth-first search for our example graph, 
and the equivalence indeed holds in general. 



245 RECURSION AND TREES 

Program 5.22 Breadth-first search 

To visit all the nodes connected to node k in a graph, we put k onto a 
FIFO queue, then enter into a loop where we get the next node from the 
queue, and, if it has not been visited, visit it and push all the unvisited 
nodes on its adjacency list, continuing until the queue is empty. 

void traverse(int k, void (*visit)(int)) 
{ link t; 

QUEUEinit(V); QUEUEput(k); 
while (IQUEUEempty()) 

if (visited[k = QUEUEget()] == 0) 
{ 

(*visit)(k); visited[k] = 1; 
for (t = adj[k]; t 1= NULL; t = t->next) 

if (visited[t->v] == 0) QUEUEput(t->v); 
} 

The visit-the-top-node-and-push-all-its-neighbors algorithm is a 
simple formulation of depth-first search, but it is clear from Figure 5.34 
that it suffers the disadvantage of possibly leaving multiple copies of 
each node on the stack. It does so even if we test whether each node 
that is about to go on the stack has been visited and refrain from 
putting the node in the stack if it has been. To avoid this problem, 
we can use a stack implementation that disallows duplicates by using 
a forget-the-old-item policy, because the copy nearest the top of the 
stack is always the first one visited, so the others are simply popped. 

The stack dynamics for depth-first search that are illustrated in 
Figure 5.34 depend on the nodes on each adjacency list ending up on 
the stack in the same order that they appear in the list. To get this 
ordering for a given adjacency list when pushing one node at a time, 
we would have to push the last node first, then the next-to-last node, 
and so forth. Moreover, to limit the stack size to the number of vertices 
while at the same time visiting the nodes in the same order as in depth
first search, we need to use a stack discipline with a forget-the-old-item 
policy. If visiting the nodes in the same order as depth-first search is not 
important to us, we can avoid both of these complications and directly 
formulate a nonrecursive stack-based graph-traversal method: With 
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Figure 5.35 
Breadth-first-search queue 

dynamics 

We start with 0 on the queue, then 
get 0, visit it, and put the nodes 
on its adjacency list 7 5 2 1 6, in 
that order onto the queue. Then 
we get 7, visit it, and put the nodes 
on its adjacency list, and so forth. 
With duplicates disallowed with an 
ignore-the-new-item policy (right), 
we get the same result without any 
extraneous queue entries. 
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o 75216 0 7 5 2 1 6 

7 5216124 7 5 2 1 6 4 
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6 1 2 4 4 3 6 4 3 
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24434 4 3 

4 4 3 4 3 

4 4 3 4 3 

343 

3 4 3 

3 

the stack initialized to the start node, we enter into a loop where we 
visit the node at the top of the stack, then proceed through its adjacency 
list, pushing each node onto the stack (if the node has not been visited 
already), using a stack implementation that disallows duplicates with 
an ignore-the-new-item policy. This algorithm visits all the nodes in the 
graph in a manner similar to depth-first-search, but it is not recursive. 

The algorithm in the previous paragraph is noteworthy because 
we could use any generalized queue ADT, and still visit each of the 
nodes in the graph (and generate a spanning tree). For example, if 
we use a queue instead of a stack, then we have breadth-first search, 
which is analogous to level-order traversal in a tree. Program 5.2.2. 
is an implementation of this method (assuming that we use a queue 
implementation like Program 4.n); an example of the algorithm in 
operation is depicted in Figure 5.35. In Part 6, we shall examine 
numerous graph algorithms based on more sophisticated generalized 
queue ADTs. 

Breadth~first search and depth-first search both visit all the nodes 
in a graph, but their manner of doing so is dramatically different, as 
illustrated in Figure 5.36. Breadth-first search amounts to an army 
of searchers fanning out to cover the territory; depth-first search cor
responds to a single searcher probing unknown territory as deeply 
as possible, retreating only when hitting dead ends. These are basic 
problem~solving paradigms of significance in many areas of computer 
science beyond graph searching. 
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Exercises 

5.92 Show how recursive depth-first search visits the nodes in the graph built 
for the edge sequence 0-2,1-4,2-5,3-6,0-4,6-0, and 1-3 (see Exercise 3.70), 
by giving diagrams corresponding to 5.33 (left) and 5.34 (right). 

5.93 Show how stack-based depth-first search visits the nodes in the graph 
built for the edge sequence 0-2, 1-4, 2-5, 3-6, 0-4, 6-0, and 1-3, by giving 
diagrams corresponding to Figures 5.33 (left) and 5.34 (right). 

5.94 Show how (queue-based) breadth-first search visits the nodes in the 
graph built for the edge sequence 0-2, 1-4, 2-5, 3-6, 0-4, 6-0, and 1-3, by 
giving diagrams corresponding to Figures 5.33 (right) and 5.35 (left). 

05.95 	 Why is the running time in Property 5.10 quoted as V + E and not 
simply E? 

5.96 Show how stack-based depth-first search visits the nodes in the example 
graph in the text (Figure 3.15) when using a forget-the-old-item policy, by 
giving diagrams corresponding to Figures 5.33 (left) and 5.35 (right). 

5.97 Show how stack-based depth-first search visits the nodes in the example 
graph in the text (Figure 3.15) when using an ignore-the-new-item policy, by 
giving diagrams corresponding to Figures 5.33 (left) and 5.35 (right). 

l> 5.98 Implement a stack-based depth-first search for graphs that are repre
sented with adjacency lists. 

05.99 	 Implement a recursive depth-first search for graphs that are represented 
with adjacency lists. 

5.9 Perspective 

Recursion lies at the heart of early theoretical studies into the nature 
of computation. Recursive functions and programs playa central role 
in mathematical studies that attempt to separate problems that can be 
solved by a computer from problems that cannot be. 

lt is certainly impossible to do justice to topics as far-reaching as 
trees and recursion in so brief a discussion. Many of the best examples 
of recursive programs will be our focus throughout the book-divide
and-conquer algorithms and recursive data structures that have been 
applied successfully to solve a wide variety of problems. For many 
applications, there is no reason to go beyond a simple, direct recursive 
implementation; for others, we will consider the derivation of alternate 
nonrecursive and bottom-up implementations. 

In this book, our interest lies in the practical aspects of recursive 
programs and data structures. Our goal is to exploit recursion to 

Figure 5.36 
Graph-traversal trees 

This diagram shows depth-first 
search (center) and breadth-first 
search (bottom), halfway through 
searching in a large graph (top). 
Depth-first search meanders from 
one node to the next, so most 
nodes are connected to just two 
others. By contrast, breadth-first 
search sweeps through the graph, 
visiting all the nodes connected to 
a given node before moving on, 
so several nodes are connected to 
many others. 
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produce elegant and efficient implementations. To meet that goal, 
we need to have particular respect for the dangers of simple programs 
that lead to an exponential number of function calls or impossibly deep 
nesting. Despite this pitfall, recursive programs and data structures are 
attractive because they often provide us with inductive arguments that 
can convince us that our programs are correct and efficient. 

We use trees throughout the book, both to help us understand 
the dynamic properties of programs, and as dynamic data structures. 
Chapters 12 through 15 in particular are largely devoted to the ma
nipulation of explicit tree structures. The properties described in this 
chapter provide us with the basic information that we need if we are 
to use explicit tree structures effectively. 

Despite its central role in algorithm design, recursion is not a 
panacea. As we discovered in our study of tree- and graph-traversal 
algorithms, stack-based (inherently recursive) algorithms are not the 
only option when we have multiple computational tasks to manage. 
An effective algorithm-design technique for many problems is the use 
of generalized queue implementations other than stacks to give us the 
freedom to choose the next task according to some more subjective 
criteria than simply choosing the most recent. Data structures and 
algorithms that efficiently support such operations are a prime topic of 
Chapter 9, and we shall encounter many examples of their application 
when we consider graph algorithms in Part 7. 
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References for Part Two 

There are numerous introductory textbooks on data structures. For 
example, the book by Standish covers linked structures, data abstrac
tion, stacks and queues, memory allocation, and software engineering 
concepts at a more leisurely pace than here. Summit's book (and its 
source on the web) is an invaluable source of detailed information 
about C implementations, as is, of course, the Kernighan and Ritchie 
classic. The book by Plauger is a thorough explanation of C library 
functions. 

The designers of PostScript perhaps did not anticipate that their 
language would be of interest to people learning basic algorithms and 
data structures. However, the language is not difficult to learn, and 
the reference manual is both thorough and accessible. 

The technique for implementing ADTs with pointers to structures 
that are not specified was taught by Appel in the systems programming 
course at Princeton in the mid 19805. It is described in full detail, with 
numerous examples, in the book by Hanson. The Hanson and Summit 
books are both outstanding references for programmers who want to 
write bugfree and portable code for large systems. 

Knuth's books, particularly Volumes 1 and 3, remain the author
itative source on properties of elementary data structures. Baeza-Yates 
and Gonnet have more up-to-date information, backed by an extensive 
bibliography. Sedgewick and F1ajolet cover mathematical properties 
of trees in detail. 
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CHAPTER SIX 

Elementary Sorting Metllods 


FOR OUR FIRST excursion into the area of sorting algorithms, we 
shall study several elementary methods that are appropriate for 

small files, or for files that have a special structure. There are several 
reasons for studying these simple sorting algorithms in detail. First, 
they provide context in which we can learn terminology and basic 
mechanisms for sorting algorithms, and thus allow us to develop an 
adequate background for studying the more sophisticated algorithms. 
Second, these simple methods are actually more effective than the more 
powerful general-purpose methods in many applications of sorting. 
Third, several of the simple methods extend to better general-purpose 
methods or are useful in improving the efficiency of more sophisticated 
methods. 

Our purpose in this chapter is not just to introduce the elementary 
methods, but also to develop a framework within which we can study 
sorting in later chapters. We shall look at a variety of situations that 
may be important in applying sorting algorithms, examine different 
kinds of input files, and look at other ways of comparing sorting 
methods and learning their properties. 

We begin by looking at a simple driver program for testing sort
ing methods, which provides a context for us to consider the conven
tions that we shall follow. We also consider the basic properties of 
sorting methods that are important for us to know when we are eval
uating the utility of algorithms for particular applications. Then, we 
look closely at implementations of three elementary methods: selec
tion sort, insertion sort, and bubble sort. Following that, we examine 
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the performance characteristics of these algorithms in detail. Next, 
we look at shellsort, which is perhaps not properly characterized as 
elementary, but is easy to implement and is closely related to insertion 
sort. After a digression into the mathematical properties of shellsort, 
we delve into the subject of developing data type interfaces and imple
mentations, along the lines that we have discussed in Chapters 3 and 4, 

for extending our algorithms to sort the kinds of data files that arise in 
practice. We then consider sorting methods that refer indirectly to the 
data and linked-list sorting. The chapter concludes with a discussion 
of a specialized method that is appropriate when the key values are 
known to be restricted to a small range. 

In numerous sorting applications, a simple algorithm may be the 
method of choice. First, we often use a sorting program only once, 
or just a few times. Once we have "solved" a sort problem for a set 
of data, we may not need the sort program again in the application 
manipulating those data. If an elementary sort is no slower than some 
other part of processing the data-for example reading them in or 
printing them out-then there may be no point in looking for a faster 
way. If the number of items to be sorted is not too large (say, less 
than a few hundred elements), we might just choose to implement 
and run a simple method, rather than bothering with the interface 
to a system sort or with implementing and debugging a complicated 
method. Second, elementary methods are always suitable for small 
files (say, less than a few dozen elements)-sophisticated algorithms 
generally incur overhead that makes them slower than elementary ones 
for small files. This issue is not worth considering unless we wish to sort 
a huge number of small files, but applications with such a requirement 
are not unusual. Other types of files that are relatively easy to sort 
are ones that are already almost sorted (or already are sorted!) or 
ones that contain large numbers' of duplicate keys. We shall see that 
several of the simple methods are particularly efficient when sorting 
such well-structured files. 

As a rule, the elementary methods that we discuss here take time 
proportional to N2 to sort N randomly arranged items. If N is small, 
this running time may be perfectly adequate. As just mentioned, the 
methods are likely to be even faster than more sophisticated methods 
for tiny files and in other special situations. But the methods that we 
discuss in this chapter are not suitable for large, randomly arranged 
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files, because the running time will become excessive even on the fastest 
computers. A notable exception is shellsort (see Section 6.6), which 
takes many fewer than N 2 steps for large N, and is arguably the 
sorting method of choice for midsize files and for a few other special 
applications. 

6. I Rules of the Game 

Before considering specific algorithms, we will find it useful to discuss 
general terminology and basic assumptions for sorting algorithms. We 
shall be considering methods of sorting files of items containing keys. 
All these concepts are natural abstractions in modern programming 
environments. The keys, which are only part (often a small part) of 
the items, are used to control the sort. The objective of the sorting 
method is to rearrange the items such that their keys are ordered 
according to some well-defined ordering rule (usually numerical or 
alphabetical order). Specific characteristics of the keys and the items 
can vary widely across applications, but the abstract notion of putting 
keys and associated information into order is what characterizes the 
sorting problem. 

If the file to be sorted will fit into memory, then the sorting 
method is called internal. Sorting files from tape or disk is called 
external sorting. The main difference between the two is that an 
internal sort can access any item easily whereas an external sort must 
access items sequentially, or at least in large blocks. We shall look at a 
few external sorts in Chapter II, but most of the algorithms that we 
consider are internal sorts. 

We shall consider both arrays and linked lists. The problem 
of sorting arrays and the problem of sorting linked lists are both of 
interest: during the development of our algorithms, we shall also en
counter some basic tasks that are best suited for sequential allocation, 
and other tasks that are best suited for linked allocation. Some of the 
classical methods are sufficiently abstract that they can be implemented 
efficiently for either arrays or linked lists; others are particularly well 
suited to one or the other. Other types of access restrictions are also 
sometimes of interest. 

We begin by focusing on array sorting. Program 6.1 illustrates 
many of the conventions that we shall use in our implementations. It 
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Program 6. I Example of array sort with driver program 

This program illustrates our conventions for implementing basic array 
sorts. The main function is a driver that initializes an array of integers 
(either with random values or from standard input), calls a sort function 
to sort that array, then prints out the ordered result. 

The sort function, which is a version of insertion sort (see Sec
tion 6.3 for a detailed description, an example, and an improved imple
mentation), assumes that the data type of the items being sorted is Item, 
and that the operations less (compare two keys), exch (exchange two 
items), and compexch (compare two items and exchange them if neces
sary to make the second not less than the first) are defined for Item. 
We implement Item for integers (as needed by main) with typedef and 
simple macros in this code. Use of other data types is the topic of 
Section 6.7, and does not affect sort. 

#include <stdio.h> 

#include <stdlib.h> 

typedef int Item: 

#define key(A) (A) 

#define less(A, B) (key(A) < key(B)) 

#define exch(A, B) { Item t ;; A; A B; B ;; t; } 


#define compexch(A, B) if (less (B, A)) exch(A, B) 

void sort(Item a[], int 1, int r) 


{ int i, j; 

for (i 1+1; i <;; r: i++) 


for (j ; i; j > 1: j--) 

compexch(a[j-1], a[j]); 


} 


main(int argc, char *argv[]) 

{ 	 int i, N = atoi(argv[1]), sw = atoi(argv[2]); 

int *a = malloc(N*sizeof(int)): 
if (sw) 

for (i 0; i < N; i++) 

a[i] 1000*(1.0*rand()/RAND_MAX); 
else 

while (scanf ("%d", &a[N]) == 1) N++; 
sort(a, 0, N-1); 
for (i = 0; i < N: i++) printf("%3d a[i]);II 

printf("\n"): 
} 
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consists of a driver program that fills an array by reading integers from 
standard input or generating random ones (as dictated by an integer 
argument); then calls a sort function to put the integers in the array in 
order; then prints out the sorted result. 

As we know from Chapters 3 and 4, there are numerous mech
anisms available to us to arrange for our sort implementations to be 
useful for other types of data. We shall discuss the use of such mecha
nisms in detail in Section 6.7. The sort function in Program 6.1 uses 
a simple inline data type like the one discussed in Section 4.1, referring 
to the items being sorted only through its arguments and a few simple 
operations on the data. As usual, this approach allows us to use the 
same code to sort other types of items. For example, if the code for 
generating, storing, and printing random keys in the function main in 
Program 6.1 were changed to process floating-point numbers instead 
of integers, the only change that we would have to make outside of 
main is to change the typedef for Item from int to float (and we 
would not have to change sort at all). To provide such flexibility 
(while at the same time explicitly identifying those variables that hold 
items) our sort implementations will leave the data type of the items to 
be sorted unspecified as Item. For the moment, we can think of Item 
as int or float; in Section 6.7, we shall consider in detail data-type 
implementations that allow us to use our sort implementations for ar
bitrary items with floating-point numbers, strings, and other different 
types of keys, using mechanisms discussed in Chapters 3 and 4. 

We can substitute for sort any of the array-sort implementations 
from this chapter, or from Chapters 7 through 10. They all assume that 
items of type Item are to be sorted, and they all take three arguments: 
the array, and the left and right bounds of the subarray to be sorted. 
They also all use less to compare keys in items and exch to exchange 
items (or the compexch combination). To differentiate sorting meth
ods, we give our various sort routines different names. It is a simple 
matter to rename one of them, to change the driver, or to use function 
pointers to switch algorithms in a client program such as Program 6.1 

without having to change any code in the sort implementation. 
These conventions will allow us to examine natural and concise 

implementations of many array-sorting algorithms. In Sections 6.7 

and 6.8, we shall consider a driver that illustrates how to use the 
implementations in more general contexts, and numerous data type 
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implementations. Although we are ever mindful of such packaging 
considerations, our focus will be on algorithmic issues, to which we 
now turn. 

The example sort function in Program 6. I is a variant of insertion 
sort, which we shall consider in detail in Section 6.3. Because it uses 
only compare-exchange operations, it is an example of a nonadaptive 
sort: The sequence of operations that it performs is independent of the 
order of the data. By contrast, an adaptive sort is one that performs 
different sequences of operations, depending on the outcomes of com
parisons (less operations). Nonadaptive sorts are interesting because 
they are well suited for hardware implementation (see Chapter II), 
but most of the general-purpose sorts that we consider are adaptive. 

As usual, the primary performance parameter of interest is 
the running time of our sorting algorithms. The selection-sort, 
insertion-sort, and bubble-sort methods that we discuss in Sections 6.2 

through 6.4 all require time proportional to N2 to sort N items, as 
discussed in Section 6.5. The more advanced methods that we discuss 
in Chapters 7 through 10 can sort N items in time proportional to 
N log N, but they are not always as good as the methods considered 
bere for small N and in certain other special situations. In Section 6.6, 
we shall look at a more advanced method (shellsort) that can run in 
time proportional to Iy<3/2 or less, and, in Section 6.10, we shall see 
a specialized method (key-indexed sorting) that runs in time propor
tional to N for certain types of keys. 

The analytic results described in the previous paragraph all fol
low from enumerating the basic operations (comparisons and ex
changes) that the algorithms perform. As discussed in Section 2.2, 

we also must consider the costs of the operations, and we generally 
find it worthwhile to focus on the most frequently executed operations 
(the inner loop of the algorithm). Our goal is to develop efficient and 
reasonable implementations of efficient algorithms. In pursuit of this 
goal, we will not just avoid gratuitous additions to inner loops, but 
also look for ways to remove instructions from inner loops when pos
sible. Generally, the best way to reduce costs in an application is to 
switch to a more efficient algorithm; the second best way is to tighten 
the inner loop. We shall consider both options in detail for sorting 
algorithms. 
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The amount of extra memory used by a sorting algorithm is the 
second important factor that we shall consider. Basically, the methods 
divide into three types: those that sort in place and use no extra 
memory except perhaps for a small stack or table; those that use a 
linked-list representation or otherwise refer to data through pointers 
or array indices, and so need extra memory for N pointers or indices; 
and those that need enough extra memory to hold another copy of the 
array to be sorted. 

We frequently use sorting methods for items with multiple keys
we may even need to sort one set of items using different keys at differ
ent times. In such cases, it may be important for us to be aware whether 
or not the sorting method that we use has the following property: 

Definition 6.1 A sorting method is said to be stable if it preserves 
the relative order of items with duplicated keys in the file. 

For example, if an alphabetized list of students and their year of gradu
ation is sorted by year, a stable method produces a list in which people 
in the same class are still in alphabetical order, but a nonstable method 
is likely to produce a list with no vestige of the original alphabetic or
der. Figure 6. I shows an example. Often, people who are unfamiliar 
with stability are surprised by the wayan unstable algorithm seems to 
scramble the data when they first encounter the situation. 

Several (but not all) of the simple sorting methods that we con
sider in this chapter are stable. On the other hand, many (but not all) 
of the sophisticated algorithms that we consider in the next several 
chapters are not. If stability is vital, we can force it by appending 
a small index to each key before sorting or by lengthening the sort 
key in some other way. Doing this extra work is tantamount to using 
both keys for the sort in Figure 6.!; using a stable algorithm would be 
preferable. It is easy to take stability for granted; actually, few of the 
sophisticated methods that we see in later chapters achieve stability 
without using significant extra time or space. 

As we have mentioned, sorting programs normally access items 
in one of two ways: either keys are accessed for comparison, or entire 
items are accessed to be moved. If the items to be sorted are large, 
it is wise to avoid shuffling them around by doing an indirect sort: 
we rearrange not the items themselves, but rather an array of pointers 
(or indices) such that the first pointer points to the smallest item, the 
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Figure 6.I 
Stable-sort example 

A sort of these records might be 
appropriate on either key. Suppose 
that they are sorted initially by the 
first key (top). A nonstable sort on 
the second key does not preserve 
the order in records with duplicate 
keys (center), but a stable sort does 
preserve the order (bottom). 
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second pointer points to the next smallest item, and so forth. We 
can keep keys either with the items (if the keys are large) or with the 
pointers (if the keys are small). We could rearrange the items after the 
sort, but that is often unnecessary, because we do have the capability 
to refer to them in sorted order (indirectly). We shall consider indirect 
sorting in Section 6.8. 

Exercises 

[> 6.1 A child's sorting toy has i cards that fit on a peg in position i for i from 
1 to 5. Write down the method that you use to put the cards on the pegs, 
assuming that you cannot tell from the card whether it fits on a peg (you have 
to try fitting it on). 

6.2 A card trick requires that you put a deck of cards in order by suit (in the 
order spades, hearts, clubs, diamonds) and by rank within each suit. Ask a few 
friends to do this task (shuffling in between!) and write down the method(s) 
that they use. 

6,3 Explain how you would sort a deck of cards with the restriction that 
the cards must be laid out face down in a row, and the only allowed operations 
are to check the values of two cards and (optionally) to exchange them. 

06.4 	 Explain how you would sort a deck of cards with the restriction that 
the cards must be kept stacked in the deck, and the only allowed operations 
are to look at the value of the top two cards, to exchange the top two cards, 
and to move the top card to the bottom of the deck. 

6.5 Give all sequences of three compare--exchange operations that will sort 
three elements (see Program 6.1). 

06.6 	 Give a sequence of five compare-exchange operations that will sort 
four elements . 

• 	6.7 Write a client program that checks whether the sort routine being used 
is stable. 

6.8 Checking that the array is sorted after sort provides no guarantee that 
the sort works. Why not? 

.6.9 Write a performance driver client program that runs sort multiple 
times on files of various sizes, measures the time taken for each run, and prints 
out or plots the average running times . 

• 6.10 Write an exercise driver client program that runs sort on difficult or 
pathological cases that might turn up in practical applications. Examples 
include files that are already in order, files in reverse order, files where all keys 
are the same, files consisting of only two distinct values, and files of size 0 or 
1. 
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6.2 Selection Sort 

One of the simplest sorting algorithms works as follows. First, find 
the smallest element in the array, and exchange it with the element 
in the first position. Then, find the second smallest element and ex
change it with the element in the second position. Continue in this 
way until the entire array is sorted. This method is called selection 
sort because it works by repeatedly selecting the smallest remaining 
element. Figure 6.2 shows the method in operation on a sample file. 

Program 6.2 is an implementation of selection sort that adheres 
to our conventions. The inner loop is just a comparison to test a 
current element against the smallest element found so far (plus the code 
necessary to increment the index of the current element and to check 
that it does not exceed the array bounds); it could hardly be simpler. 
The work of moving the items around falls outside the inner loop: 
each exchange puts an element into its final position, so the number 
of exchanges is N - 1 (no exchange is needed for the final element). 
Thus the running time is dominated by the number of comparisons. 
In Section 6.5, we show this number to be proportional to N 2 , and 
examine more closely how to predict the total running time and how 
to compare selection sort with other elementary sorts. 

A disadvantage of selection sort is that its running time depends 
only slightly on the amount of order already in the file. The process 
of finding the minimum element on one pass through the file does not 
seem to give much information about where the minimum might be on 
the next pass through the file. For example, the user of the sort might 
be surprised to realize that it takes about as long to run selection sort 
for a file that is already in order, or for a file with all keys equal, as it 
does for a randomly ordered file! As we shall see, other methods are 
better able to take advantage of order in the input file. 

Despite its simplicity and evident brute-force approach, selection 
sort outperforms more sophisticated methods in one important appli
cation: it is the method of choice for sorting files with huge items 
and small keys. For such applications, the cost of moving the data 
dominates the cost of making comparisons, and no algorithm can sort 
a file with substantially less data movement than selection sort (see 
Property 6.5 in Section 6.5). 
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Figure 6.2 
Selection sort example 

The first pass has no effect in this 
example, because there is no ele
ment in the array smaller than the 
A at the left. On the second pass, 
the other A is the smallest remain
ing element, so it is exchanged 
with the S in the second position. 
Then, the E near the middle is ex
changed with the a in the third 
position on the third pass; then, the 
other E is exchanged with the R 
in the fourth position on the fourth 
pass; and so forth. 
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Program 6.2 Selection sort 

For each i from 1 to r-l, exchange a[i] with the minimum element in 
a [i], ... , a [r]. As the index i travels from left to right, the elements 
to its left are in their final position in the array (and will not be touched 
again), so the array is fully sorted when i reaches the right end. 

void selection(Item a[], int 1, int r) 

{ int i, j; 


for (i = 1; i < r; i++) 

{ int min = i; 


for (j i+l; j <= r; j++) 

if (less(a[j], a[min])) min j; 


exch(a[i], a[min]); 

} 

} 

Exercises/ 

[> 6.II Show, in the style of Figure 6.2, how selection sort sorts the sample file 
E A S Y QUE S T ION. 

6.I2 What is the maximum number of exchanges involving any particular 
element during selection sort? What is the average number of exchanges 
involving an element? 

6.I3 Give an example of a file of N elements that maximizes the number 
of times the test less (a[j], a [min]) fails (and, therefore, min gets updated) 
during the operation of selection sort. 

o 6.I4 Is selection sort stable? 

6.3 Insertion Sort 

The method that people often use to sort bridge hands is to consider 
the elements one at a time, inserting each into its proper place among 
those already considered (keeping them sorted). In a computer imple
mentation, we need to make space for the element being inserted by 
moving larger elements one position to the right, and then inserting the 
element into the vacated position. The sort function in Program 6.1 
is an implementation of this method, which is called insertion sort. 

As in selection sort, the elements to the left of the current index 
are in sorted order during the sort, but they are not in their final 
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posltion, as they may have to be moved to make room for smaller 
elements encountered later. The array is, however, fully sorted when 
the index reaches the right end. Figure 6.3 shows the method in 
operation on a sample file. 

The implementation of insertion sort in Program 6.I is straight
forward, but inefficient. We shall now consider three ways to improve 
it, to illustrate a recurrent theme throughout many of our implemen
tations: We want code to be succinct, clear, and efficient, but these 
goals sometimes conflict, so we must often strike a balance. We do 
so by developing a natural implementation, then seeking to improve 
it by a sequence of transformations, checking the effectiveness (and 
correctness) of each transformation. 

First, we can stop doing compexch operations when we encounter 
a key that is not larger than the key in the item being inserted, be
cause the subarray to the left is sorted. Specifically, we can break 
out of the inner for loop in sort in Program 6.I when the condition 
less(a[j-l], a[j]) is true. This modification changes the imple
mentation into an adaptive sort, and speeds up the program by about 
a factor of 2 for randomly ordered keys (see Property 6.2). 

With the improvement described in the previous paragraph, we 
have two conditions that terminate the inner loop-we could recode it 
as a while loop to reflect that fact explicitly. A more subtle improve
ment of the implementation follows from noting that the test j >1 is 
usually extraneous: indeed, it succeeds only when the element inserted 
is the smallest seen so far and reaches the beginning of the array. A 
commonly used alternative is to keep the keys to be sorted in a [1] to 
a [N], and to put a sentinel key in a [0], making it at least as small 
as the smallest key in the array. Then, the test whether a smaller key 
has been encountered simultaneously tests both conditions of interest, 
making the inner loop smaller and the program faster. 

Sentinels are sometimes inconvenient to use: perhaps the smallest 
possible key is not easily defined, or perhaps the calling routine has 
no room to include an extra key. Program 6.3 illustrates one way 
around these two problems for insertion sort: We make an explicit 
first pass over the array that puts the item with the smallest key in 
the first position. Then, we sort the rest of the array, with that first 
and smallest item now serving as sentineL We generally shall avoid 
sentinels in our code, because it is often easier to understand code with 
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Figure 6.3 
Insertion sort example 

During the first pass of insertion 
sort, the S in the second position 
is larger than the A,so it does not 
have to be moved. On the sec
ond pass, when the 0 in the third 
position is encounterect it is ex
changed with the S to put A 0 S 
in sorted order; and 50 forth. Un
shaded elements that are not cir
cled are those that were moved 
one position to the right. 
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Program 6.3 Insertion sort 

This code is an improvement over the implementation of sort in Pro
gram 6.1 because (i) it first puts the smallest element in the array into 
the first position, so that that element can serve as a sentinel; (ii) it does a 
single assignment, rather than an exchange, in the inner loop; and (iii) it 
terminates the inner loop when the element being inserted is in position. 
For each i, it sorts the elements a [1], ... , a [i] by moving one position 
to the right elements in the sorted list a [1], ... , a[i -1] that are larger 
than a [i], then putting a [i] into its proper position. 

void insertion(Item a[], int 1, int r) 
{ 	 int ij 

for (i = r; i > 1; i--) compexch(a[i-l], a[i]); 
for (i = 1+2; i <= r; i++) 

{ int j = i; Item v = a[i]; 

while (less(v, a[j-i])) 


{ a[j] = a[j-i]; j--j } 

a[j] = Vj 


} 


} 

explicit tests, but we shall note situations where sentinels might be 
useful in making programs both simpler and more efficient. 

The third improvement that we shall consider also involves re
moving extraneous instructions from the inner loop. It follows from 
noting that successive exchanges involving the same element are inef
ficient. If there are two or more exchanges, we have 

t = a[j]; a[j] = a[j-iJ; a[j-i] = t; 
followed by 

t = a[j-i]j a[j-i] = a[j-2]; a[j-2] = t; 

and so forth. The value of t does not change between these two 
sequences, and we waste time storing it, then reloading it for the next 
exchange. Program 6.3 moves larger elements one position to the right 
instead of using exchanges, and thus avoids wasting time in this way. 

Program 6.3 is an implementation of insertion sort that is more 
efficient than the one given in Program 6.1 (in Section 6.5, we shall 
see that it is nearly twice as fast). In this book, we are interested both 
in elegant and efficient algorithms and in elegant and efficient imple
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mentations of them. In this case, the underlying algorithms do differ 
slightly-we should properly refer to the sort function in Program 6.1 
as a nonadaptive insertion sort. A good understanding of the proper
ties of an algorithm is the best guide to developing an implementation 
that can be used effectively in an application. 

Unlike that of selection sort, the running time of insertion sort 
primarily depends on the initial order of the keys in the input. For 
example, if the file is large and the keys are already in order (or even 
are nearly in order), then insertion sort is quick and selection sort is 
slow. We compare the algorithms in more detail in Section 6.5. 

Exercises 

t> 6. I 5 Show, in the style of Figure 6.3, how insertion sort sorts the sample file 
E A S Y QUE S T ION. 

6.16 Give an implementation of insertion sort with the inner loop coded as a 
while loop that terminates on one of two conditions, as described in the text. 

6.17 For each of the conditions in the while loop in Exercise 6.16, de
scribe a file of N elements where that condition is always false when the loop 
terminates. 

06.18 Is insertion sort stable? 

6.19 Give a nonadaptive implementation of selection sort based on finding 
the minimum e1emen! with code like the first for loop in Program 6.3. 

6.4 Bubble Sort 

The first sort that many people learn, because it is so simple, is bubble 
sort: Keep passing through the file, exchanging adjacent elements that 
are out of order, continuing until the file is sorted. Bubble sort's prime 
virtue is that it is easy to implement, but whether it is actually easier 
to implement than insertion or selection sort is arguable. Bubble sort 
generally will be slower than the other two methods, but we consider 
it briefly for the sake of completeness. 

Suppose that we always move from right to left through the file. 
Whenever the minimum element is encountered during the first pass, 
we exchange it with each of the elements to its left, eventually putting 
it into position at the left end of the array. Then on the second pass, 
the second smallest element will be put into position, and so forth. 
Thus, N passes suffice, and bubble sort operates as a type of selection 
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Figure 6.4 
Bubble sort example 

Small keys percolate over to the 
left in bubble sort. As the sort 
moves from right to left, each key 
is exchanged with the one on its 
left until a smaller one is encoun
tered. On the first pass, the E is 
exchanged with the L, the P, and 
the M before stopping at the A on 
the right; then the A moves to the 
beginning of the file, stopping at 
the other A, which is already in po
sition. The ith smallest key reaches 
its final position after the ith pass, 
just as in selection sort, but other 
keys are moved closer to their final 
position, as well. 

Program 6.4 Bubble sort 

For each i from 1 to r-l, the inner (j) loop puts the minimum element 
among the elements in a [i], ... , a [r] into a [i] by passing from right 
to left through the elements, compare-exchanging successive elements. 
The smallest one moves on all such comparisons, so it "bubbles" to the 
beginning. As in selection sort, as the index i travels from left to right 
through the file, the elements to its left are in their final position in the 
array. 

void bubb1e(Item a[], int 1, int r) 

{ int i, j; 


for (i 1; i < r; i++) 

for (j = r; j > i; j--) 


compexch(a[j-l], a[j]); 


sort, although it does more work to get each element into position. 
Program 6.4 is an implementation, and Figure 6.4 shows an example 
of the algorithm in operation. 

We can speed up Program 6.4 by carefully implementing the inner 
loop, in much the same way as we did in Section 6.3 for insertion 
sort (see Exercise 6.25). Indeed, comparing the code, Program 6.4 
appears to be virtually identical to the nonadaptive insertion sort in 
Program 6.1. The difference between the two is that the inner for loop 
moves through the left (sorted) part of the array for insertion sort and 
through the right (not necessarily sorted) part of the array for bubble 
sort. 

Program 6,4 uses only compexch instructions and is therefore 
nonadaptive, but we can improve it to run more efficiently when the file 
is nearly in order by testing whether no exchanges at all are performed 
on one of the passes (and therefore the file is in sorted order, so we 
can break out of the outer loop). Adding this improvement will make 
bubble sort faster on some types of files, but it is generally not as 
effective as is changing insertion sort to break out of the inner loop, as 
discussed in detail in Section 6.5. 

Exercises 

I> 6.20 Show, in the style of Figure 6.4, how bubble sort sorts the sample file 
E A S Y QUE S T ION. 
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6.21 Give an example of a file for which the number of exchanges done by 
bubble sort is maximized. 

06.22 Is bubble sort stable? 

6.23 Explain how bubble sort is preferable to the nonadaptive version of 
selection sort described in Exercise 6. I9. 

• 6.24 Do experiments to determine how many passes are saved, for random 
files of N elements, when you add to bubble sort a test to terminate when the 
file is sorted. 

6.25 Develop an efficient implementation of bubble sort, with as few instruc
tions as possible in the inner loop. Make sure that your "improvements" do 
not slow down the program! 

6.5 Performance Characteristics of Elementary Sorts 

Selection sort, insertion sort, and bubble sort are all quadratic-time 
algorithms both in the worst and in the average case, and none requires 
extra memory. Their running times thus differ by only a constant 
factor, but they operate quite differently, as illustrated in Figures 6.5 
through 6.7. 

Generally, the running time of a sorting algorithm is proportional 
to the number of comparisons that the algorithm uses, to the number 
of times that items are moved or exchanged, or to both. For random 
input, comparing the methods involves studying constant-factor dif
ferences in the numbers of comparisons and exchanges and constant
factor differences in the lengths of the inner loops. For input with 
special characteristics, the running times of the methods may differ by 
more than a constant factor. In this section, we look closely at the 
analytic results in support of this conclusion. 

Property 6.1 Selection sort uses about N 2 /2 comparisons and N 
exchanges. 

We can verify this property easily by examining the sample run in 
Figure 6.2, which is an N-by-N table in which unshaded letters cor
respond to comparisons. About one-half of the elements in the table 
are unshaded-those above the diagonal. The N ~ 1 (not the final 
one) elements on the diagonal each correspond to an exchange. More 
precisely, examination of the code reveals that, for eachi from 1 to 
N 1, there is one exchange and N ~ i comparisons, so there is a total 

tj 
I 

Figure 6.5 
Dynamic characteristics of in

sertion and selection sorts 

These snapshots of insertion sort 
(left) and selection sort (right) in 
action on a random permutation 
illustrate how each method pro
gresses through the sort. We repre
sent an array being sorted by plot
ting i VS. a [i] for each i. Before 
the sort, the plot is uniformly ran
dom; after the sort, it is a diagonal 
line from bottom left to top right. 
Insertion sort never looks ahead 
of its current position in the array; 
selection sort never looks back. 
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of N ~ 1 exchanges and (N 1) + (N ~ 2) + ... + 2 + 1 = N(N ~ 1)/2 
comparisons. These observations hold no matter what the input data 
are; the only part of selection sort that does depend on the input is 
the number of times that min is updated. In the worst case, this quan
tity could also be quadratic; in the average case, however, it is just 
O(N log N) (see reference section), so we can expect the running time 
of selection sort to be insensitive to the input. _ 

Property 6.2 Insertion sort uses about N 2 /4 comparisons and N 2 /4 
half-exchanges (moves) on the average, and twice that many at worst. 

As implemented in Program 6.3, the number of comparisons and of 
moves is the same. Just as for Property 6.1, this quantity is easy to 
visualize in the N-by-N diagram in Figure 6,3 that gives the details of 
the operation of the algorithm. Here, the elements below the diagonal 
are counted-all of them, in the worst case. For random input, we 
expect each element to go about halfway back, on the average, so 
one-half of the elements below the diagonal should be counted. _ 

Property 6,3 Bubble sort uses about N2/2 comparisons and N2/2 
exchanges on the average and in the worst case. 

The ith bubble sort pass requires N - i compare-exchange operations, 
so the proof goes as for selection sort. When the algorithm is modified 
to terminate when it discovers that the file is sorted, the running time 
depends on the input. Just one pass is required if the file is already 
in order, but the ith pass requires N - i comparisons and exchanges 
if the file is in reverse order. The average-case performance is not 
significantly better than the worst case, as stated, although the analysis 
that demonstrates this fact is complicated (see reference section). _ 

Although the concept of a partially sorted file is necessarily rather 
imprecise, insertion sort and bubble sort work well for certain types 
of nonrandom files that often arise in practice. General-purpose sorts 
are commonly misused for such applications. For example, consider 
the operation of insertion sort on a file that is already sorted. Each 
element is immediately determined to be in its proper place in the file, 
and the total running time is linear. The same is true for bubble sort, 
but selection sort is still quadratic. 

Definition 6.2 An inversion is a pair of keys that are out of order in 
the file. 



ELEMENTARY SORTING METHODS §6·S 

A/~\~~'kI'-« A I~\ ~~ 'k 1'-« Alt\~~'kl'-« 

A It\ ~~ 'k 1'-« "A/~\ IX-\~/II~ 

Ix ;( It\ IX- ~'k 1'-« ," A I~\ I'fr..\ \ \ /I // 
IIII\(\ :.J It\ IX /)('k 1'-« '\ A IX\/~\II/// 

\ 11/)<\ 1/t\ IX /)('k 1'-« "\A I'X\\ IXI 11/// 
JIJi. I)(k IX /)( 'k \.-« ~ I'X\\ IAII!// 

//II":\ \ )(k IX /)( I~ .-« ~ I)AIIAI/// 
'\111/1 \\ kIX IX') ~ .-« \~/X1I/AI// 

'\\/11/1 hlX IX')~'-« \\A\/X1II/I// 
\\//I//;k\ \ / IX IX')~.-« '\J?\IXlII/// 

ill/) , IA IX')~'-« IAI Iill/// 
/II/;(: AI))~'-« I A 11)1/// 

\\/11/1/1. 11))1/'-« ' . IAIIJ/// 
"\\\\ \ \ //I/I//. II))I/A" , 1",,114// 
~\\\\\ /11/111 ! i))1/4 i if;//1////• 

\1////1/11 ' /1/)/4 ' '11'f///// 
i.<';\\\\\\ //////1 //)/4 1/1//// 

111/1// ,ill/4 //11// 
\\\\\\\ /111/1/1/;/ /14 ;/11// 

.
1/////1/1·+ ;/11$ . , 

' 

//// 

,$ /// 

.// • //// ! i// 

\\!)/III/11/// . i./;/ ,/i;/ 

~\\\\\\\\1 11111/1//// ~\\\\\\\\ \11111/11/// ~\\\\\\\I \1/1/1/1//// 

Figure 6.6 
Comparisons and exchanges 

in elementary sorts 

This diagram highlights the dif
ferences in the way that insertion 
sort, selection sort, and bubble sort 
bring a file into order. The file to 
be sorted is represented by lines 
that are to be sorted according 
to their angles. Black lines corre
spond to the items accessed during 
each pass of the sort; gray lines 
correspond to items not touched. 
For insertion sort (left), the element 
to be inserted goes about halfway 
back through the sorted part of the 
file on each pass. Selection sort 
(center) and bubble sort (right) both 
go through the entire unsorted part 
of the array to find the next small
est element there for each pass; the 
difference between the methods 
is that bubble sort exchanges any 
adjacent out-of-order elements that 
it encounters, whereas selection 
sort just exchanges the minimum 
into position. The effect of this dif
ference is that the unsorted part 
of the array becomes more nearly 
sorted as bubble sort progresses. 
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Figure 6.7 
Dynamic characteristics of 

two bubble sorts 

Standard bubble sort (left) oper
ates in a manner similar to selec
tion sort in that each pass brings 
one element into position, but it 
also brings some order into other 
parts of the array" in an asymmet
ric manner. Changing the scan 
through the array to alternate be
tween beginning to end and end to 
beginning gives a version of bub
ble sort called shaker sort (right), 
which finishes more quickly (see 
Exercise 6.30). 

CHAPTER SIX 

To count the number of inversions in a file, we can add up, for each 
element, the number of elements to its left that are greater (we refer 
to this quantity as the number of inversions corresponding to the 
element). But this count is precisely the distance that the elements 
have to move when inserted into the file during insertion sort. A file 
that has some order will have fewer inversions than will one that is 
arbitrarily scrambled. 

In one type of partially sorted file, each item is close to its final 
position in the file. For example, some people sort their hand in a card 
game by first organizing the cards by suit, to put their cards close to 
their final position, then considering the cards one by one. We shall 
be considering a number of sorting methods that work in much the 
same way-they bring elements close to final positions in early stages 
to produce a partially sorted file with every element not far from where 
it ultimately must go. Insertion sort and bubble sort (but not selection 
sort) are efficient methods for sorting such files. 

Property 6.4 Insertion sort and bubble sort use a linear number of 
comparisons and exchanges for files with at most a constant number 
of inversions corresponding to each element. 

As just mentioned, the running time of insertion sort is directly pro
portional to the number of inversions in the file. For bubble sort (here, 
we are referring to Program 6.4, modified to terminate when the file 
is sorted), the proof is more subtle (see Exercise 6.29). Each bubble 
sort pass reduces the number of smaller elements to the right of any 
element by precisely 1 (unless the number was already 0), so bubble 
sort uses at most a constant number of passes for the types of files 
under consideration, and therefore does at most a linear number of 
comparisons and exchanges. _ 

In another type of partially sorted file, we perhaps have appended 
a few elements to a sorted file or have edited a few elements in a sorted 
file to change their keys. This kind of file is prevalent in sorting 
applications. Insertion sort is an efficient method for such files; bubble 
80rt and selection sort are not. 

Property 6,5 Insertion sort uses a linear number of comparisons and 
exchanges for files with at most a constant number ofelements having 
more than a constant number of corresponding inversions. 
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Table 6.I Empirical study of elementary sorting algorithms 

Insertion sort and selection sort are about twice as fast as bubble sort 
for small files, but running times grow quadratically (when the file size 
grows by a factor of 2, the running time grows by a factor of 4). None 
of the methods are useful for large randomly ordered files-for example, 
the numbers corresponding to those in this table are less than 2 for the 
shellsort algorithm in Section 6.6. When comparisons are expensive
for example, when the keys are strings-then insertion sort is much 
faster than the other two because it uses many fewer comparisons. Not 
included here is the case where exchanges are expensive; then selection 
sort is best. 

N S 

32-bit integer keys 

1* B B* 

string keys 

S B 

1000 

2000 

4000 

5 

21 

85 

7 

29 

119 

4 

15 

62 

11 

45 

182 

8 

34 

138 

13 

56 

228 

8 

31 

126 

19 

78 

321 

Key: 
S Selection sort (Program 6.2) 

1* Insertion sort, exchange-based (Program 6.1) 


Insertion sort (Program 6.3) 
B Bubble sort (Program 6-4) 
B* Shaker sort (Exercise 6.30) 

The running time of insertion sort depends on the total number of 
inversions in the file, and does not depend on the way in which the 
inversions are distributed. • 

To draw conclusions about running time from Properties 6.1 
through 6.5, we need to analyze the relative cost of comparisons and 
exchanges, a factor that in turn depends on the size of the items and 
keys (see Table 6.1). For example, if the items are one-word keys, then 
an exchange (four array accesses) should be about twice as expensive 
as a comparison. In such a situation, the running times of selection 
and insertion sort are roughly comparable, but bubble sort is slower. 
But if the items are large in comparison to the keys, then selection sort 
will be best. 
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Property 6.6 Selection sort runs in linear time for files with large 
items and small keys. 

Let At be the ratio of the size of the item to the size of the key. Then we 
can assume the cost of a comparison to be 1 time unit and the cost of 
an exchange to be M time units. Selection sort takes about N 2 /2 time 
units for comparisons and about N}Vl time units for exchanges. If 1'vl 
is larger than a constant multiple of N, then the N!v! term dominates 
the N 2 term, so the running time is proportional to N}V[, which is 
proportional to the amount of time that would be required to move 
all the data. _ 

For example, if we have to sort 1000 items that consist of 1
word keys and 1000 words of data each, and we actually have to 
rearrange the items, then we cannot do better than selection sort, since 
the running time will be dominated by the cost of moving all 1 million 
words of data. In Section 6.8, we shall see alternatives to rearranging 
the data. 

Exercises 

I> 6.26 Which of the three elementary methods (selection sort, insertion sort, 
or bubble sort) runs fastest for a file with all keys identical? 

6.27 Which of the three elementary methods runs fastest for a file in reverse 
order? 

6.28 Give an example of a file of 10 elements (use the keys A through J) for 
which bubble sort uses fewer comparisons than insertion sort, or prove that 
no such file exists . 

• 6.29 Show that each bubble sort pass reduces by precisely 1 the number of 
elements to the left of each element that are greater (unless that number was 
already 0). 

6.30 Implement a version of bubble sort that alternates left-to-right and 
right-to-left passes through the data. This (faster but more complicated) algo
rithm is called shaker sort (see Figure 6.7) . 

• 6.3 I Show that Property 6.5 does not hold for shaker sort (see Exer
cise 6.30) . 

•• 6.32 Implement selection sort in PostScript (see Section 4.3), and use your 
implementation to draw figures like Figures 6.5 through 6.7. You may try a 
recursive implementation, or read the manual to learn about loops and arrays 
in PostScript. 



273 ELEMENTARY SORTING METHODS §6.6 

6.6 Shellsort 

Insertion sort is slow because the only exchanges it does involve ad
jacent items, so items can move through the array only one place at 
a time. For example, if the item with the smallest key happens to be 
at the end of the array, N steps are needed to get it where it belongs. 
Shellsort is a simple extension of insertion sort that gains speed by 
allowing exchanges of elements that are far apart. 

The idea is to rearrange the file to give it the property that taking 
every hth element (starting anywhere) yields a sorted file. Such a file is 
said to be h-sorted. Put another way, an h-sorted file is h independent 
sorted files, interleaved together. By h-sorting for some large values of 
h, we can move elements in the array long distances and thus make it 
easier to h-sort for smaller values of h. Using such a procedure for any 
sequence of values of h that ends in 1 will produce a sorted file: that 
is the essence of shellsort. 

One way to implement shellsort would be, for each h, to use 
insertion sort independently on each of the h subfiles. Despite the ap
parent simplicity of this process, we can use an even simpler approach, 
precisely because the subfiles are independent. When h-sorting the 
file, we simply insert it among the previous elements in its h-subfile by 
moving larger elements to the right (see Figure 6.8). We accomplish 
this task by using the insertion-sort code, but modified to increment 
or decrement by h instead of 1 when moving through the file. This ob
servation reduces the shellsort implementation to nothing more than 
an insertion-sort-like pass through the file for each increment, as in 
Program 6.5. The operation of this program is illustrated in Figure 6.9. 

How do we decide what increment sequence to use? In general, 
this question is a difficult one to answer. Properties of many different 
increment sequences have been studied in the literature, and some 
have been found that work well in practice, but no provably best 
sequence has been found. In practice, we generally use sequences 
that decrease roughly geometrically, so the number of increments is 
logarithmic in the size of the file. For example, if each increment is 
about one-half of the previous, then we need only ~bout 20 increments 
to sort a file of 1 million elements; if the ratio is about one-quarter, 
then 10 increments will suffice. Using as few increments as possible 
is an important consideration that is easy to respect-we also need to 

A S 0 R T I N G E X AMP L E 
A S 0 R E I N G T X AMP l E 
A S 0 R E I N G P X A M T L E 

A I ORE S N G P X A M T L E 
A I o R E S N G P X A M T L E 
A lOR E l N G P SAM T X E 

A I N R E lOG P SAM T X E 
A I ARE l N G P S 0 M T X E 
A I ARE L E G P S N M T X 0 

A I AGE L E R P S N M T X 0 
A I AGE L E M P S N R T X 0 

A S 0 R TIN G E X AMP l E 
A lOR T S N G E X AMP L E 
A I N R T S 0 G E X AMP l E 
A I N G T S 0 REX AMP l E 
A I N G E S 0 R T X AMP L E 
AI N G E S 0 R T X AMP l E 
A I AGE S N R T X 0 M P L E 
A I AGE S N M T X 0 R P L E 
A I AGE S N M P X 0 R T L E 
A I AGE L N M P S 0 R T X E 
A I AGE l E M P S N R T X 0 

Figure 6.8 
Interleaving 4-sorts 
The top part of this diagram shows 
the process of 4-sorting a file of IS 
elements by first insertion sorting 
the subfile at pOSitions 0, 4, 8, 12, 
then insertion sorting the subfile at 
positions I, S, 9, 13, then insertion 
sorting the subfile at positions 2, 6, 
10, 14, then insertion sorting the 
subfile at positions 3, 7, 11. But 
the four subfiles are independent, 
so we can achieve the same result 
by inserting each element into po
sition into its subfile, going back 
four at a time (bottom). Taking the 
first row in each section of the top 
diagram, then the second row in 
each section, and 50 forth, gives 
the bottom diagram. 
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AS 0 R T N G E X AMP L E 
A S 0 R T N G E X AMP L E 
A E 0 R TIN G E X AMP L S 

A E 0 R T N G E X AMP L S 
A E 0 R T N G E X AMP L S 
A E N R T lOG E X AMP L S 
A ENG T lOR E X AMP L S 
A ENG E lOR T X AMP L S 
A ENG E 0 R T X AMP L S 
A E AGE N R T X 0 M P L S 
A E AGE I N M T X 0 R P L S 
A E AGE I N M P X 0 R T L S 
A E AGE N M P LOR T X S 
A E AGE N M P LOR T X S 

A E AGE N M P LOR T X S 
A A E G E N M P LOR T X S 
A A E GEl N M P LOR T X S 
A A E E GIN M P LOR T X S 
A A E E GIN M P LOR T X S 
A A E E GIN M P LOR T X S 
A A E E G I M N P LOR T X S 
A A E E G I M N P LOR T X S 
A A E E GIL M N P 0 R T X S 
A A E E GIL M N 0 P R T X S 
A A E E G L M N 0 P R T X S 
A A E E G L M N 0 P R T X S 
A A E E GIL M N 0 P R T X S 
A A E E GIL M N 0 P R S T X 
A A E E G J L M N 0 P R S T X 

Figure 6.9 
Shell sort example 

Sorting a file by 13-sorting (top), 
then 4-sorting (center); then 1
sorting (bottom) does not involve 
many comparisons (as indicated by 
the unshaded elements). The final 
pass is just insertion sort, but no el
ement has to move far because of 
the order in the file due to the first 
two passes. 
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Program 6.5 Shellsort 

If we do not use sentinels and then replace every occurrence of "1" by 
"h" in insertion sort, the resulting program h-sorts the file. Adding 
an outer loop to change the increments leads to this compact shellsort 
implementation, which uses the increment sequence 1 41340121 364 
1 093 3280 9841 .... 

void she11sort(Item a[], int 1, int r) 
{ int i, j, h; 

for (h = 1; h <= (r-l)/9; h = 3*h+1) 
for ( ; h > 0; h /= 3) 

for (i l+h; i <= r; i++) 
{ int j = i; Item v = a[i]; 

while (j >= l+h && 1ess(v, a[j-h])) 
{a[j] a[j-h]; j -= h; } 

a[j] = v; 
} 

} 

consider arithmetical interactions among the increments such as the 
size of their common divisors and other properties. 

The practical effect of finding a good increment sequence is lim
ited to perhaps a 25% speedup, but the problem presents an intriguing 
puzzle that provides a good example of the inherent complexity in an 
apparently simple algorithm. 

The increment sequence 1 4 13 40 121 364 1093 3280 9841 . .. that is 
used in Program 6.5, with a ratio between increments of about one
third, was recommended by Knuth in 1969 (see reference section). 
It is easy to compute (start with 1, generate the next increment by 
multiplying by 3 and adding 1) and leads to a relatively efficient sort, 
even for moderately large files, as illustrated in Figure 6.10. 

Many other increment sequences lead to a more efficient sort but 
it is difficult to beat the sequence in Program 6.5 by more than 20% 
even for relatively large N. One increment sequence that does so is 1 

82377281 1073419316577 ... , the sequence 4i+l + 3·2' + 1 for i > 0, 
which has provably faster worst-case behavior (see Property 6.10). 

Figure 6.12 shows that this sequence and Knuth's seq uence-and many 
other sequences-have similar dynamic characteristics for large files. 
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The possibility that even better increment sequences exist is still real. 
A few ideas on improved increment sequences are explored in the 
exerCIses. 

On the other hand, there are some bad increment sequences: for 
example 1 24816326412825651210242048 ... (the original sequence 
suggested by Shell when he proposed the algorithm in 1959 (see ref
erence section)) is likely to lead to bad performance because elements 
in odd positions are not compared against elements in even positions 
until the final pass. The effect is noticeable for random files, and is 
catastrophic in the worst case: The method degenerates to require 
quadratic running time if, for example, the half of the elements with 
the smallest values are in even positions and the half of the elements 
with the largest values are in the odd positions (See Exercise 6.36.) 

Program 6.5 computes the next increment by dividing the current 
one by 3, after initializing to ensure that the same sequence is always 
used. Another option is just to start with h = N/3 or with some other 
function of N. It is best to avoid such strategies, because bad sequences 
of the type described in the previous paragraph are likely to turn up 
for some values of N. 

Our description of the efficiency of shellsort is necessarily im
precise, because no one has been able to analyze the algorithm. This 
gap in our knowledge makes it difficult not only to evaluate different 
increment sequences, but also to compare shellsort with other meth
ods analytically. Not even the functional form of the running time 
for shellsort is known (furthermore, the form depends on the incre
ment sequence). Knuth found that the functional forms N(log N)2 
and N1.25 both fit the data reasonably well, and later research suggests 

that a more complicated function of the form is involved 
for some sequences. 

We conclude this section by digressing into a discussion of sev
eral facts about the analysis of shellsort that are known. Our primary 
purpose in doing so is to illustrate that even algorithms that are ap
parently simple can have complex properties, and that the analysis of 
algorithms is not just of practical importance but also can be intellec
tually challenging. Readers intrigued by the idea of finding a new and 
improved shell sort increment sequence may find the information that 
follows useful; other readers may wish to skip to Section 6.7. 



Figure 6.10 
Shellsorting a random permu

tation 
The effect of each of the passes 
in Shel/sort is to bring the file as 
a whole closer to sorted order. 
The file is first 40-sorted, then 
13-sorted, then 4-sorted, then 1
sorted. Each pass brings the file 
closer to sorted order. 
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Property 6.7 The result of h-sorting a file that is k-ordered is a file 
that is both h- and k-ordered. 

This fact seems obvious, but is tricky to prove (see Exercise 6.47). _ 

Property 6.8 Shellsort does less than N(h l)(k 1)/.9 comparisons 
to g-sort a file that is h- and k-ordered, provided that hand k are 
relatively prime. 

The basis for this fact is illustrated in Figure 6.11. No element farther 
than (h - l)(k - 1) positions to the left of any given element;J; can be 
greaterthanx, if hand k are relatively prime (see Exercise 6.43). When 
g-sorting, we examine at most one out of every 9 of those elements. _ 

Property 6.9 Shellsort does less than O(N3/2) comparisons for the 
increments 1 41340121364109332809841 .... 

For large increments, there are h subfiles of size about N / h, for a worst
case cost about N2 / h. For small increments, Property 6.8 implies that 
the cost is about Nh. The result follows if we use the better of these 
bounds for each increment. It holds for any relatively prime sequence 
that grows exponentially. _ 

Property 6.10 Shellsort does less than O(N4/3) comparisons for the 
increments 1 82377 281 10734193 16577 .... 

The proof of this property is along the lInes of the proof of Property 6.9. 
The property analogous to Property 6.8 implies that the cost for small 
increments is about Nhl/2. Proof of this property requires number 
theory that is beyond the scope of this book (see reference section). _ 

The increment sequences that we have discussed to this point 
are effective because successive elements are relatively prime. Another 
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Figure 6.11 

A 4- and 13- ordered file. 


I I I I IlL I 1111111111111.1 11111.IIIIILJ 1II I I 1 I I I 
39 26 13 6 4 

family of increment sequences is effective precisely because successive 
elements are not relatively prime. 

In particular, the proof of Property 6.8 implies that, in a file that 
is 2-ordered and 3-ordered, each element moves at most one position 
during the final insertion sort. That is, such a file can be sorted with 
one bubble~sort pass (the extra loop in insertion sort is not needed). 
]\;ow, if a file is 4-ordered and 6-ordered, then it also follows that each 
element moves at most one position when we are 2-sorting it (because 
each subfile is 2-ordered and 3-ordered); and if a file is 6-ordered and 
9-ordered, each element moves at most one position when we are 3
sorting it. Continuing this line of reasoning, we are led to the following 
idea, which was developed by Pratt in 1971 (see reference section). 

Property 6.II Shellsort does less than O(N(logN)2) comparisons 
for the increments 1 2346981218271624365481 .... 

Consider the following triangle of increments, where each number in 
the triangle is two times the number above and to the right of it and 
also three times the number above and to the left of it. 

1 


2 3 


4 6 9 


8 12 18 27 


16 24 36 54 81 


32 48 72 108 162 243 


64 96 144 216 324 486 729 


If we use these numbers from bottom to top and right to left as a 
shellsort increment sequence, then every increment x a fter the bottom 
row is preceded by 2x and 3x, so every subfile is 2-ordered and 3~ 
ordered, and no element moves more than one position during the 

The bottom row depicts an ar
ray, with shaded boxes depicting 
those items that must be smaller 
than or equal to the item at the far 
right, if the array is both 4- and 
I3-ordered. The four rows at top 
depict the origin of the pattern. If 
the item at right is at array pOSition 
i, then 4-ordering means that items 
at array positions i-4, i-8, -i 12, 
... are smaller or equal (top); 13
ordering means that the item at 
i 13, and, therefore, because 
of 4-ordering, the items at i - 17, 
i 21, i - 25, ... are smaller 
or equal (second from top); also, 
the item at i - 26, and, therefore, 
because of 4-ordering, the items at 
i-30, i - 34, i - 38, ... are smaller 
or equal (third from top); and so 
forth. The white squares remain
ing are those that could be larger 
than the item at left; there are at 
most 18 such items (and the one 
that is farthest away is at i 36). 
Thus, at most 18N comparisons 
are required for an insertion sort of 
a 13-ordered and 4-ordered file of 
size N. 
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Table 6.2 Empirical study of shellsort increment sequences 

Shellsort is many times faster than the other elementary methods even 
when the increments are powers of 2, but some increment sequences can 
speed it up by another factor of 5 or more. The three best sequences in 
this table are totally different in design. Shell sort is a practical method 
even for large files, particularly by contrast with selection SOrt, insertion 
sort, and bubble sort (see Table 6.1). 

N 0 K G S P 

12500 

25000 

50000 

100000 

200000 

16 

37 

102 

303 

817 

6 

13 

31 

77 

178 

6 

11 

30 

60 

137 

5 

12 

27 

63 

139 

6 

15 

38 

81 

180 

6 

10 

26 

58 

126 

Key: 
o 124816326412825651210242048 ... 

K 1 4 1340 121 364 1093 3280 9841 ... (Property 6.9) 

G 1 24 102351 113249548 1207 2655 5843 ... (Exercise 6.40) 

S 182377 2811073419316577 ... (Property 6.10) 

P 1 784956643433924485122401 2744 ... (Exercise 6.44) 


151941 10920950592921613905 ... (Exercise 6.45) 

--..--...--.-------~-.-------------

entire sort! The number of increments in the triangle that are less than 
N is certainly less than (log2 N)2 .• 

Pratt's increments tend not to work as well as the others in prac
tice, because there are too many of them. We can use the same principle 
to build an increment sequence from any two relatively prime numbers 
hand k. Such sequences do well in practice because the worst-case 
bounds corresponding to Property 6.11 overestimate the cost for ran
dom files. 

The problem of designing good increment sequences for shell sort 
provides an excellent example of the complex behavior of a simple al
gorithm. We certainly will not be able to focus at this level of detail on 
all the algorithms that we encounter (not only do we not have the space, 
but also, as we did with shel1sort, we might encounter mathematical 
analysis beyond the scope of this book, or even open research prob



279 ELEMENTARY SORTING METHODS §6.6 

lems). However, many of the algorithms in this book are the product 
of extensive analytic and empirical studies by many researchers over 
the past several decades, and we can benefit from this work. This re
search illustrates that the quest for improved performance can be both 
intellectually challenging and practically rewarding, even for simple 
algorithms. Table 6.2 gives empirical results that show that several 
approaches to designing increment sequences work well in practice; 
the relatively short sequence 1 82377 2811073 419316577 ... is among 
the simplest to use in a shellsort implementation. 

Figure 6.13 shows that shellsort performs reasonably well on 
a variety of kinds of files, rather than just on random ones. Indeed, 
constructing a file for which shell sort runs slowly for a given increment 
sequence is a challenging exercise (see Exercise 6.42). As we have 
mentioned, there are some bad increment sequences for which shellsort 
may require a quadratic number of comparisons in the worst case (see 
Exercise 6.36), but much lower bounds have been shown to hold for 
a wide variety of sequences. 

Shellsort is the method of choice for many sorting applications 
because it has acceptable running time even for moderately large files 
and requires a small amount of code that is easy to get working. In 
the next few chapters, we shall see methods that are more efficient, 
but they are perhaps only twice as fast (if that much) except for large 
N, and they are significantly more complicated. In short, if you need 
a quick solution to a sorting problem, and do not want to bother 
with interfacing to a system sort, you can use shellsort, then determine 
sometime later whether the extra work required to replace it with a 
more sophisticated method will be worthwhile. 

Exercises 

I> 6.33 Is shell sort stable? 

6.34 Show how to implement a shellsort with the increments 1 823 77 281 
1073419316577 ... , with direct calculations to get successive increments in a 
manner similar to the code given for Knuth's increments. 

I> 6.35 Give diagrams corresponding to Figures 6.8 and 6.9 for the keys E A S 
YQU ESTI ON. 

6.36 Find the running time when you use shellsort with the increments 1 2 
4 8 16 32 64 128 256 512 1024 2048 ... to sort a file consisting of the integers 
1,2, ... , IV in the odd positions and IV +1, IV +2, ... )2IV in the even positions. 

Figure 6.I2 

Dynamic characteristics of 
shellsort (two different in
crement sequences) 

In this representation of shelfsort 
in operation, it appears as though 
a rubber band, anchored at the 
corners, is pulling the points to
ward the diagonal. Two increment 
sequences are depicted: 121 40 
1341 (left) and 209 10941 19 
5 1 (right). The second requires 
one more pass than the first, but is 
faster because each pass is more 
efficient. 
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Figure 6.I3 
Dynamic characteristics of 

shellsort for various types 
of files 

These diagrams show shel/sort, 
with the increments 209 109 41 19 
5 1, in operation on files that are 
random, Gaussian, nearly ordered, 
nearly reverse-ordered, and ran
domly ordered with 10 distinct key 
values (left to right, on the top). 
The running time for each pass de
pends on how well ordered the file 
is when the pass begins. After a 
few passes, these files are similarly 
ordered; thus, the running time is 
not particularly sensitive to the in
put. 
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6,37 Write a driver program to compare increment sequences for shellsort. 
Read the sequences from standard input, one per line, then use them all to sort 
10 random files of size N for N 100, 1000, and 10000. Count comparisons, 
or measure actual running times . 

• 6.38 Run experiments to determine whether adding or deleting an increment 
can improve the increment sequence 1 82377 281 1073419316577 ... for 
N = 10000 . 

• 6.39 Run experiments to determine the value of x that leads to the lowest 
running time for random files when the 13 is replaced by x in the increment 
sequence 1 4 13 40 121 364 1093 3280 9841 . .. used for N = 10000. 

6.40 Run experiments to determine the value of a that leads to the lowest 
running time for random files for the increment sequence 1, La2 J, La3 J, 
La4J, ... ; for N 10000 . 

• 604I 	 Find the three-increment sequence that uses as small a number of com
parisons as you can find for random files of 1000 elements. 
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•• 6.42 Construct a file of 100 elements for which shellsort, with the increments 
1 82377, uses as large a number of comparisons as you can find . 

• 	6.43 Prove that any number greater than or equal to (h l)(k - 1) can be 
expressed as a linear combination (with nonnegative coefficients) of hand k, 
if hand k are relatively prime. Hint: Show that, if any two of the first h 1 
multiples of k have the same remainder when divided by h, then hand k must 
have a common factor. 

6.44 Run experiments to determine the values of hand k that lead to the 
lowest running times for random files when a Pratt-like sequence based on h 
and k is used for sorting 10000 elements. 

6.45 The increment sequence 1 5 1941 109209505929 2161 3905 ... is based 
on merging the sequences g. 4' - g. 2' -r 1 and 4' 3· 2i -r 1 for i O. Compare 
the results of using these sequences individually and using the merged result, 
for sorting 10000 elements. 

6.46 We derive the increment sequence 1 3721 48 112336861 19684592 
13776 ... by starting with a base sequence of relatively prime numbers, say 1 3 
7 1641 101, then building a triangle, as in Pratt's sequence, this time generating 
the ith row in the triangle by multiplying the first element in the i-1st row 
by the ith element in the base sequence; and multiplying every element in the 
i 1st row by the i+ 1st element in the base sequence. Run experiments to find 
a base sequence that improves on the one given for sorting 10000 elements . 

• 6.47 Complete the proofs of Properties 6,7 and 6.8 . 

• 6.48 Implement a shellsort that is based on the shaker sort algorithm of 
Exercise 6.30, and compare with the standard algorithm. Note: Your incre
ment sequences should be substantially different from those for the standard 
algorithm. 

6.7 Sorting of Other Types of Data 

Although it is reasonable to learn most algorithms by thinking of them 
as simply sorting arrays of numbers into numerical order or characters 
into alphabetical order, it is also worthwhile to recognize that the 
algorithms are largely independent of the type of items being sorted, 
and that is not difficult to move to a more general setting. We have 
talked in detail about breaking our programs into independent modules 
to implement data types, and abstract data types (see Chapters 3 and 4); 
in this section, we consider ways in which we can apply the concepts 
discussed there to make our sorting implementations useful for various 
types of data. 
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Program 6.6 Sort driver for arrays 

This driver for basic array sorts uses two explicit interfaces: one for the 
functions that initialize and print (and sort!) arrays, and the other for 
a data type that encapsulates the operations that we perform on generic 
items. The first allows us to compile the functions for arrays separately 
and perhaps to use them in other drivers; the second allows us to SOrt 

other types of data with the same sort code. 

#include <stdlib.h> 

#include "Item.ho 

#include "Array.h" 

main(int argc, char *argv[]) 

{ int i, N atoi(argv[l]), sw = atoi(argv[2]); 

Item *a malloc(N*sizeof(Item)); 

if (sw) randinit(a, N); else scaninit(a, &N); 

sort(a, 0, N-l); 

show(a, 0, N-l); 
} 

Specifically, we consider implementations, interfaces, and client 
programs for: 

• Items, or generic objects to be sorted 

• Arrays of items 

The item data type provides us with a way to use our sort code for 
any type of data for which certain basic operations are defined. The 
approach is effective both for simple data types and for abstract data 
types, and we shall consider numerous implementations. The array 
interface is less critical to our mission; we include it to give us an 
example of a mutiple-module program that uses multiple data types. 
We consider just one (straightforward) implementation of the array 
interface. 

Program 6.6 is a client program with the same general function
ality of the main program in Program 6.1, but with the code for ma
nipulating arrays and items encapsulated in separate modules, which 
gives us, in particular, the ability to test various sort programs on var
ious different types of data, by substituting various different modules, 
but without changing the client program at alL To complete the imple
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Program 6.7 Interface for array data type 

This Array.h interface defines high-level functions for arrays of abstract 
items: initialize random values, initialize values read from standard 
input, print the contents, and sort the contents. The item types are 
defined in a separate interface (see Program 6.9). 

void randinit (Item [], int); 
void scaninit (Item [J, int *) ; 

void show(Item [J, int, int) ; 
void sort (Item [J, int, int); 

mentation, we need to define the array and item data type interfaces 
precisely, then provide implementations. 

The interface in Program 6.7 defines examples of high-level op
erations that we might want to perform on arrays. We want to be 
able to initialize an array with key values, either randomly or from 
the standard input; we want to be able to sort the entries (of course!); 
and we want to be a ble to print out the contents. These are but a few 
examples; in a particular application, we might want to define vari
ous other operations. With this interface, we can substitute different 
implementations of the various operations without having to change 
the client program that uses the interface-main in Program 6.6, in 
this case. The various sort implementations that we are studying can 
serve as implementations for the sort function. Program 6.8 has sim
ple implementations for the other functions. Again, we might wish to 
substitute other implementations, depending on the application. For 
example, we might use an implementation of show that prints out only 
part of the array when testing sorts on huge arrays. 

In a similar manner, to work with particular types of items and 
keys, we define their types and declare all the relevant operations on 
them in an explicit interface, then provide implementations of the 
operations defined in the item interface. Program 6.9 is an example 
of such an interface for floating point keys. This code defines the 
operations that we have been using to compare keys and to exchange 
items, as well as functions to generate a random key, to read a key from 
standard input, and to print out the value of a key. Program 6.10 has 
implementations of these functions for this simple example. Some of 
the operations are defined as macros in the interface, which approach 
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Program 6.8 Implementation of array data type 

This code provides implementations of the functions defined in Pro
gram 6.7, again using the item types and basic functions for processing 
them that are defined in a separate interface (see Program 6.9). 

#inc1ude <stdio.h> 
#inc1ude <std1ib.h> 
#inc1ude "Item.h" 
#inc1ude "Array.h" 
void randinit(Item a[], int N) 

{ int i; 
for (i = 0; i < N; i++) a[i] ITEMrand() ; 

} 

void scaninit(Item a[], int *N) 
{ int i = 0; 

for (i = 0; i < *N; i++) 
if (ITEMscan(&a[i]) EOF) break; 

*N = i; 
} 

void show(itemType a[], int 1, int r) 
{ int i; 

for (i = 1; i <= r; i++) ITEMshow(a[i]); 
printf("\n"); 

} 

is generally more efficient; others are C code in the implementation, 
which approach is generally more flexible. 

Programs 6.6 through 6.10 together with any of the sorting rou
tines as is in Sections 6.2 through 6.6 provide a test of the sort for 
floating-point numbers. By providing similar interfaces and imple
mentations for other types of data, we can put our sorts to use for 
a variety of data-such as long integers (see Exercise 6.49), complex 
numbers (see Exercise 6.50), or vectors (see Exercise 6.55)-without 
changing the sort code at all. For more complicated types of items, 
the interfaces and implementations have to be more complicated, but 
this implementation work is completely separated from the algorithm
design questions that we have been considering. We can use these same 
mechanisms with most of the sorting methods that we consider in this 
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Program 6.9 Sample interface for item data type 

The file Item. h that is included in Programs 6.6 and 6.8 defines the 
data representation and associated operations for the items to be sorted. 
In this example, the items are floating-point keys. We use macros for 
the key, less, exch, and compexch data type operations for use by 
our sorting programs; we could also define them as functions to be 
implemented separately, like the three functions ITEMrand (return a 
random key), ITEMscan (read a key from standard input) and ITEMsholl 
(print the value of a key). 

typedef double Item; 
#define key (A) (A) 
#define less(A, B) (key(A) < key(B)) 
#define exch(A, B) { Item t = A; A B; B = t; } 
#define compexch(A, B) if (less(8, A)) exch(A, B) 
Item ITEMrand(void); 
int ITEMscan(Item *); 

chapter and with those that we shall study in Chapters 7 through 9, as 
welL We consider in detail one important exception in Section 6.IQ
it leads to a whole family of important sorting algorithms that have to 
be packaged differently, the subject of Chapter IO. 

The approach that we have discussed in this section is a middle 
road between Program 6.I and an industrial-strength fully abstract 
set of implementations complete with error checking, memory man
agement, and even more general capabilities. Packaging issues of this 
sort are of increasing importance in some modern programming and 
applications environments. We will necessarily leave some questions 
unanswered. Our primary purpose is to demonstrate, through the 
relatively simple mechanisms that we have examined, that the sorting 
implementations that we are studying are widely applicable. 

Exercises 

6.49 Write an interface and implementation for the generic item data type 
(similar to Programs 6.9 and 6.IO) to support having the sorting methods 
sort long integers. 

6.50 Write an interface and implementation for the generic item data type 
to support having the sorting methods sort complex numbers x + iy using the 
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Program 6.10 Sample implementation for item data type 

This code implements the three functions ITEMrand, ITEMs can, and 
ITEMshoW' that are declared in Program 6.9. In this code, we refer to 
the type of the data directly with double, use explicit floating-point 
options in scanf and printf, and so forth. We include the interface 
file Item.h so that we will discover at compile time any discrepancies 
between interface and implementation. 

#include <stdio.h> 
#include <stdlib.h> 
#include "Item.h" 
double ITEMrand(void) 

{ return 1.0*rand()/RAND_MAX; } 
int ITEMscan(double *x) 

{ return scanf ("%f", x); } 
void ITEMshow(double x) 

{ printfC"%7.5f n, x); } 

magnitude Jx 2 + y2 for the key. Note: Ignoring the square root is likely to 
improve efficiency. 

o 6.5 I Write an interface that defines a first-class abstract data type for generic 
items (see Section 4.8), and provide an implementation where the items are 
floating point numbers. Test your program with Programs 6.3 and 6.6. 

1>6.52 Add a function check to the array data type in Programs 6.8 and 6.7, 
which tests whether or not the array is in sorted order . 

• 6.53 Add a function testinit to the array data type in Programs 6.8 
and 6.7, which generates test data according to distributions similar to those 
illustrated in Figure 6.13. Provide an integer argument for the client to use to 
specify the distribution . 

• 6.54 Change Programs 6.7 and 6.8 to implement an abstract data type. 
(Your implementation should allocate and maintain the array, as in our imple
mentations for stacks and queues in Chapter 3.) 

6.55 Write an interface and implementation for the generic item data type 
for use in having the sorting methods sort multidimensional vectors of d in
tegers, putting the vectors in order by first component, those with equal first 
component in order by second component, those with equal first and second 
components in order by third component, and so forth. 

http:printfC"%7.5f
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6.8 Index and Pointer Sorting 

The development of a string data type implementation similar to Pro
grams 6.9 and 6.IO is of particular interest, because character strings 
are widely used as sort keys. Using the C library string-comparison 
function, we can change the first three lines in Program 6.9 to 

typedef char *Item; 
#define key (A) (A) 
#define less(A, B) (strcmp(key(A) , key(B» < 0) 

to convert it to an interface for strings. 
The implementation is more challenging than Program 6. IO be

cause, when working with strings in C, we must be aware of the 
allocation of memory for the strings. Program 6.Il uses the method 
that we examined in Chapter 3 (Program 3.17), maintaining a buffer 
in the data-type implementation. Other options are to allocate mem-

Program 6.II Data-type implementation for string items 

This implementation allows us to use our sorting programs to sort 
strings. A string is a pointer to a character, so a sort will process an array 
of pointers to characters, rearranging them so the indicated strings are in 
alphanumeric order. We statically allocate the storage buffer containing 
the string characters in this module; dynamic allocation is perhaps more 
appropriate. The ITEMrand implementation is omitted. 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include "Item.h" 

static char buf[100000]; 

static int cnt = 0; 

int ITEMscan(char **x) 


{ 	 int t; 
*x = &:buf[cnt]; 
t = scanf("%s", *x); cnt += strlen(*x)+l; 
return t; 

} 


void ITEMshow(char *x) 

{ printf("%s x); }
tI, 
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ory dynamically for each string, or to keep the buffer in the client 
program. We can use this code (along with the interface described in 
the previous paragraph) to sort strings of characters, using any of the 
sort implementations that we have been considering. Because strings 
are represented as pointers to arrays of characters in C, this program 
is an example of a pointer sort, which we shall consider shortly. 

We are faced with memory-management choices of this kind 
any time that we modularize a program. Who should be responsible 
for managing the memory corresponding to the concrete realization 
of some type of object: the client, the data-type implementation, or 
the system? There is no hard-and-fast answer to this question (some 
programming-language designers become evangelical when the ques
tion is raised). Some modern programming systems (not C) have 
general mechanisms for dealing with memory management automat
ically. We will revisit this issue in Chapter 9, when we discuss the 
implementation of a more sophisticated abstract data type. 

One simple approach for sorting without (intermediate) moves 
of items is to maintain an index array with keys in the items accessed 
only for comparisons. Suppose that the items to be sorted are in an 
array data [0], ... , data [N-i], and that we do not wish to move 
them around, for some reason (perhaps they are huge). To get the 
effect of sorting, we use a second array a of item indices. We begin 
by initializing a [i] to i for i =0, ... , N-1. That is, we begin with 
a[O] having the index of the first data item, a[i] having the index of 
the second data item, and so on. The goal of the sort is to rearrange 
the index array a such that a [0] gives the index of the data item with 
the smallest key, a[1] gives the index of the data item with the second 
smallest key, and so on. Then we can achieve the effect of sorting by 
accessing the keys through the indices-for example, we could print 
out the array in sorted order in this way. 

Now, we take advantage of the fact that our sort routines access 
data only through less and exch. In the item-type interface definition, 
we specify the type of the items to be sorted to be integers (the indices 
in a) with typedef int Item; and leave the exchange as before, but 
we change less to refer to the data through the indices: 

#define less(A, B) (data[A] < data[B]). 

For simplicity, this discussion assumes that the data are keys, rather 
than full items. We can use the same principle for larger, more compli
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cated items, by modifying less to access specific keys in the items. The 
sort routines rearrange the indices in a, which carry the information 
that we need to access the keys. An example of this arrangement, with 
the same items sorted by two different keys, is shown in Figure 6.14. 

This index-array approach to indirection will work in any pro
gramming language that supports arrays. Another possibility, espe
cially attractive in C, is to use pointers. For example, defining the data 
type 

typedef dataType *Item; 

and then initializing a with 

for (i = 0; i < N; i++) a[i] &data[i] ; 

and doing comparisons indirectly with 

#define less(A, B) (*A < *B) 

is equivalent to using the strategy described in the preceding paragraph. 
This arrangement is known as a pointer sort. The string data-type 
implementation that we just considered (Program 6.II) is an example 
of a pointer sort. For sorting an array of fixed-size items, a pointer sort 
is essentially equivalent to an index sort, but with the address of the 
array added to each index. But a pointer sort is much more general, 
because the pointers could point anywhere, and the items being sorted 
do not need to be fixed in size. As is true in index sorting, if a is an 
array of pointers to keys, then a call to sort will result in the pointers 
being rearranged such that accessing them sequentially will access the 
keys in order. We implement comparisons by following pointers; we 
implement exchanges by exchanging the pointers. 

The standard C library sort function qsort is a pointer sort (see 
Program 3.17). The function takes four arguments: the array; the 
number of items to be sorted; the size of the items; and a pointer 
to a function that compares two items, given pointers to them. For 
example, if Item is char*, then the following code implements a string 
sort that adheres to our conventions: 

int compare(void *i, void *j) 

{ return strcmp(*(Item *)i, *(Item *)j); } 


void sort(Item a[], int 1, int r) 

{ qsort(a, r-l+1, sizeof(Item) , compare); } 


The underlying algorithm is not specified in the interface, but quicksort 
(see Chapter 7) is widely used. In Chapter 7 we shall consider many of 

0 10 9 Wilson 63 
1 4 2 Johnson 86 
2 5 1 Jones 87 
3 6 0 Smith 90 
4 8 4 Washington 84 
5 7 8 Thompson 65 
6 2 3 Brown 82 
7 3 10 Jackson 61 
8 9 6 White 76 
9 0 5 Adams 86 
10 7 Black 71 

Figure 6.14 
Index sorting example 

By manipulating indices, rather 
than the records themselves, we 
can sort an array simultaneously 
on several keys. For this sample 
data that might represent students' 
names and grades, the second col
umn is the result of an index sort 
on the name, and the third column 
is the result of an index sort on the 
grade. For example, Wilson is last 
in alphabetic order and has the 
tenth highest grade, while Adams 
is first in alphabetic order and has 
the sixth highest grade. 

A rearrangement of the N dis
tinct nonnegative integers less 
than N is called a permutation in 
mathematics: an index sort com
putes a permutation. In mathe
matics, permutations are normally 
defined as rearrangements of the 
integers 1 through N; we shall use 
o through N - 1 to emphasize the 
direct relationship between permu
tations and C array indices. 
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Program 6.12 Data-type interface for record items 

The records have two keys: a string key (for example, a name) in the 
first field, and an integer key (for example, a grade) in the second field. 
The comparison less is defined as a function, rather than as a macro, 
so we can change sort keys by changing implementations, 

struct record { char name (30] ; int num; }; 
typedef struct record* Item; 
#define exch(A, B) { Item t = A; A = B; B = t; } 
#define compexchCA, B) if Cless(B, A)) exch(A, B); 
int lessCItem, Item); 

Item ITEMrand 0 ; 
int ITEMscan(Item *); 

void ITEMshow(Item); 

the reasons why this is true. We also, in this chapter and in Chapters 7 

through II, develop an understanding of why other methods might 
be more appropriate for some specific applications, and we explore 
approaches for speeding up the computation when the sort time is a 
critical factor in an application. 

The primary reason to use indices or pointers is to avoid intruding 
on the data being sorted. We can "sort" a file even if read-only access 
is all that is available. Moreover, with multiple index or pointer arrays, 
we can sort one file on multiple keys (see Figure 6.14). This flexibility 
to manipulate the data without actually changing them is useful in 
many applications. 

A second reason for manipulating indices is that we can avoid 
the cost of moving full records. The cost savings is significant for files 
with large records (and small keys), because the comparison needs 
to access just a small part of the record, and most of the record is 
not even touched during the sort. The indirect approach makes the 
cost of an exchange roughly equal to the cost of a comparison for 
general situations involving arbitrarily large records (at the cost of 
the extra space for the indices or pointers). Indeed, if the keys are 
long, the exchanges might even wind up being less costly than the 
comparisons. When we estimate the running times of methods that sort 
files of integers, we are often making the assumption that the costs of 
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Program 6.I3 Data-type implementation for record items 

These implementations of the ITEMscan and ITEMshoy functions for 
records operate in a manner similar to the string data-type implementa
tion of Program 6.1 I, in that they allocate and maintain the memory for 
the records. We keep the implementation of less in a separate file, so 
that we can substitute different implementations, and therefore change 
sort keys, without changing any other code. 

struct record data [maxN] ; 
int Nrecs = 0; 
int ITEMscan(struct record **x) 

{ 

*x = &data[Nrecs] ; 
return scanf("%30s %d\n", 

data [Nrecs] .name, &data[Nrecs++] .num); 
} 

void ITEMshow(struct record *x) 

{ printf ("%3d %-30s\n", x->num, x->name); } 


comparisons and exchanges are not much different. Conclusions based 
on this assumption are likely to apply to a broad class of applications, 
if we use pointer or index sorts. 

In typical applications, the pointers are used to access records that 
may contain several possible keys. For example, records consisting of 
students' names and grades or people's names and ages: 

struct record { char[30] name; int num; } 

Programs 6.12 and 6.13 provide an example of a pointer sort interface 
and implementation that can allow us to sort them using either of the 
fields as key. We use an array of pointers to records, and declare less 
as a function, rather than a macro. Then we can provide different 
implementations of less for different sort applications. For example, 
if we compile Program 6. I 3 together with a file containing 

#include "Item.h" 
int less(Item a, Item b) 

{ return a->num < b->num; } 

then we get a data type for the items for which any of our sort im
plementations will do a pointer sort on the integer field. Alternatively, 
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we might choose to use the string field of the records for the sort keys. 
If we compile Program 6.13 together with a file containing 

#include <string.h> 
#include "Item.h" 
int less(Item a, Item b) 

{ return strcmp(a->name, b->name) < 0; } 

then we get a data type for the items for which any of our sort 
implementations will do a pointer sort on the string field. 

For many applications, the data never need to be rearranged 
physically to match the order indicated by the indices, and we can 
simply access them in order using the index array. If this approach is 
not satisfactory for some reason, we are led to a classic programming 
exercise: How do we rearrange a file that has been sorted with an 
index sort? The code 

for (i = 0; i < N; i++) datasorted[i] = data[a[i]]; 

is trivial, but requires extra memory sufficient for another copy of the 
array. What about the situation when there is not enough room for an
other copy of the file? We cannot blindly set data [i] = data [a [i] ] , 
because that would overwrite the previous value of data [i], perhaps 
prematurely. 

Figure 6.I 5 illustrates how we can solve this problem, still using 
a single pass through the file. To move the first element where it 
belongs, we move the element at that position to where it belongs, and 
so forth. Continuing this reasoning, we eventually find an element 
to move to the first position, at which point we have shifted a cycle 
of elements into position. Then, we move to the second element and 
perform the same operation for its cycle, and so forth (any elements 
that we encounter that are already in position (a[i] =i) are on a cycle 
of length 1 and are not moved). 

Specifically, for each value of i, we save the value of data [i] 
and initialize an index variable k to i. Now, we think of a hole in 
the array at i, and seek an element to fill the hole. That element is 
data [a [k]] -in other words, the assignment data [k] = data [a [k]] 
moves the hole to a [k]. Now the hole is at data [a [k] ], so we set 
k to a [k]. Iterating, we eventually get to a situation where the hole 
needs to be filled by data (i], which we have saved. When we move 
an element into position we update the a array to so indicate. Any 
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Program 6. I4 In-place sort 

The array data [0], ... , data [N-1] is to be rearranged in place as 
directed by the index array a [OJ, ... , a [N-lJ. Any element with a [i] 
== i is in place and does not need to be touched again. Otherwise, save 
data [i] as v and work through the cycle a [i], a [a [i] ], a [a [a [[ [i] ]], 
and so on, until reaching the index i again. We follow the process again 
for the next element which is not in place, and continue in this manner, 
ultimately rearranging the entire file, moving each record only once. 

insitu(dataType data[], int a[], int N) 
{ int i, j, k; 

for (i = 0; i < Nj i++) 

{ dataType v = data[i]; 
for (k = i; a[k] ! i; k = a[j], aU] j) 

{ j = k; data[k] = data[a[k]J; } 
data[k] = v; a[k] = k; 
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element in position has a [i] equal to i, and the process just outlined 
is a no-op in that case. Continuing through the array, starting a new 
cycle each time that we encounter an element not yet moved, we move 
every element at most once. Program 6.14 is an implementation of 
this process. 

This process is called in situ permutation, or in-place rearrange
ment of the file. Again, although the algorithm is interesting, it is 
unnecessary in many applications, because accessing the data indi
rectly often suffices. Also, if the records are huge relative to their 
number, the most efficient option may be simply to rearrange them 
with a conventional selection sort (see Property 6.5). 

Indirect sorting requires extra space for the index or pointer array 
and extra time for the indirect comparisons. In many applications, 
these costs are a small price to pay for the flexibility of not having to 
move the data at all. For files consisting of large records, we will almost 
always choose to use an indirect sort, and for many applications, we 
will find that it is not necessary to move the data at all. In this book, we 
normally will access data directly_ In a few applications, however, we 
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-Af4: E E GCOL M N amP R S T X 
A A E E GIL M N 0 P R S T X 

Figure 6.15 
In-place sort 

To rearrange an array in place, we 
move from left to right, moving el
ements that need to be moved in 
cycles. Here, there are four cycles: 
The first and last are single-element 
degenerate cases. The second cy
cle starts at 1. The S goes into a 
temporary variable, leaving a hole 
at 1. Moving the second A there 
leaves a hole at 10. This hole is 
filled by P, which leaves a hole at 
12. That hole is to be filled by the 
element at position 1, so the re
served S goes into that hole, com
pleting the cycle 1 1012 that puts 
those elements in position. Simi
larly, the cycle 2 8 6 13 4 7 11 3 
14 9 completes the sort. 
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do use pointers or index arrays to avoid data movement, for precisely 
the reasons mentioned here. 

Exercises 
6.56 Give an implementation of a data type for items where the items are 
records, rather than pointers to records. This arrangement might be preferable 
to Programs 6.12 and 6.13 for small records. (Remember that C supports 
structure assignment.) 

06.57 	 Show how to use qsort to solve the sorting problem that is addressed 
in Programs 6.12 and 6.13. 

t>6.58 Give the index array that results when the keys E A S Y QUE S T ION 
are index sorted. 

t> 6,59 Give the sequence of data moves required to permute the keys E AS Y 
QUE S T , 0 N in place after an index sort (see Exercise 6. 5 8). 

6.60 Describe a permutation of size N (a set of values for the array a) that 
maximizes the number of times that a[i] ! i during Program 6.14. 

6.61 Prove that we are guaranteed to return to the key with which we started 
when moving keys and leaving holes in Program 6.14. 

6.62 Implement a program like Program 6.14 corresponding to a pointer 
sort. Assume that the pointers point into an array of N records, of type Item. 

6.9 Sorting of Linked Lists 

As we know from Chapter 3, arrays and linked lists provide two of 
the most basic ways to structure data, and we considered an imple
mentation of insertion sort for linked lists as a list-processing example 
in Section 3.4 (Program 3.II). The sort implementations that we have 
considered to this point all assume that the data to be sorted is in an 
array, and are not directly applicable if we are working within a system 
that uses linked lists to organize data. In some cases, the algorithms 
may be useful, but only if they process data in the essentially sequential 
manner that we can support efficiently for linked lists. 

Program 6.15 gives an interface, which is similar to Program 6.7, 
for a linked-list data type. With Program 6.15, the driver program 
corresponding to Program 6.6 is a one-liner: 

main(int argc, char *argv[]) 
{ show(sort(init(atoi(argv[l])))); } 

Most of the work (including allocation of memory) is left to the linked
list and sort implementations. As we did with our array driver, we 
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Program 6.I5 Linked-list-type interface definition 

This interface for linked lists can be contrasted with the one for arrays 
in Program 6.7. The ini t function builds the list, including storage 
allocation. The show function prints out the keys in the list. Sorting 
programs use less to compare items and manipulate pointers to rear
range the items. We do not specify here whether or not lists have head 
nodes. 

typedef struct node *link; 
struct node { Item item; link next; }; 
link NEW(Item, link); 
link init(int); 
void show(link); 
link sort(link); 

want to initialize the list (either from standard input or with random 
values), to show the contents of the list, and, of course, to sort it. As 
usual, we use an Item for the data type of the items being sorted, just 
as we did in Section 6.7. The code to implement the routines for this 
interface is standard for linked lists of the kind that we examined in 
detail in Chapter 3, and left as an exercise. 

There is a ground rule for manipulating linked structures that is 
critical in many applications, but is not evident from this code. In a 
more complex environment, it could be the case that pointers to the 
list nodes that we are manipulating are maintained by other parts of 
the applications system (i.e., they are in multilists). The possibility that 
nodes could be referenced through pointers that are maintained outside 
the sort means that our programs should change only links in nodes, 
and should not alter keys or other information. For example, when we 
want to do an exchange, it would seem simplest just to exchange items 
(as we did when sorting arrays). But then any reference to either node 
with some other link would find the value changed, and probably will 
not have the desired effect. We need to change the links themselves 
such that the nodes appear in sorted order when the list is traversed 
via the links we have access to, without affecting their order when 
accessed via any other links. Doing so makes the implementations 
more difficult, but usually is necessary. 



Figure 6.16 
Linked-list selection sort 

This diagram depicts one step of 
selection sort for linked lists. We 
maintain an input list, pointed to 
by h->next, and an output list, 
pointed to by out (top). We scan 
through the input list to make max 
point to the node before (and t 
point to) the node containing the 
maximum item. These are the 
pointers we need to remove t from 
the input list (reducing its length 
by 1) and put it at the front of the 
output list (increasing its length by 
1), keeping the output list in order 
(bottom). Iterating, we eventually 
exhaust the input list and have the 
nodes in order in the output list. 
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We can adapt insertion, selection, and bubble sort to linked

list implementations, although each one presents amusing challenges. 
Selection sort is straightforward: We maintain an input list (which 
initially has the data) and an output list (which collects the sorted 
result), and simply scan through the list to find the maximum element 

in the input list, remove it from the list, and add it to the front of the 
output list (see Figure 6.16). Implementing this operation is a simple 
exercise in linked-list manipulation, and is a useful method for sorting 
short lists. An implementation is given in Program 6.16. We leave the 
other methods for exercises. 

In some list-processing situations, we may not need to explicitly 
implement a sort at all. For example, we could choose to keep the list 
in order at all times, inserting new nodes into the list as in insertion 
sort. This approach comes at little extra cost if insertions are relatively 
rare or the list is small, and in certain other situations. For example, 
we might need to scan the whole list for some reason before inserting 
new nodes (perhaps to check for duplicates). We shall discuss an 
algorithm that uses ordered linked lists in Chapter 14, and we shall see 
numerous data structures that gain efficiency from order in the data in 

Chapters 12 and 14. 
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Program 6.I6 Linked-list selection sort 

Selection sort of a linked list is straightforward, but differs slightly 
from the array version because it is easier to insert at the front of a 
list. We maintain an input list (pointed to by h->next), and an output 
list (pointed to hy out). While it is nonempty, we scan the input list 
to find the maximum remaining element, then remove that element 
from the input list and insert it at the front of the output list. This 
implementation uses an auxiliary routine findmax, which returns a link 
to the node whose link points to the maximum element on a list (see 
Exercise 3.34). 

link listselection(link h) 
{ link max, t, out = NULL; 

while (h->next! NULL) 
{ 

max = findmax(h); 
t = max->next; max->next t->next; 
t->next = out; out = t; 

} 

h->next out; 

Exercises 
r>6.63 Give the contents of the input list and output list as Program 6.16 is 

used for the keys A S 0 R TIN G E XAMP LE. 

6.64 Provide an implementation for the linked-list interface given in Pro
gram 6.15. 

6.65 Implement a performance-driver client program for linked-list sorts (see 
Exercise 6.9). 

6.66 Implement bubble sort for a linked list. Caution: exchanging two 
adjacent elements on a linked list is more difficult than it seems at first. 

r> 6.67 Package the insertion-sort code in Program 3. r r such that it has the 
same functionality as Program 6.r6. 

6.68 The insertion-sort method used in Program 3.rr makes the linked-list 
insertion sort run significantly slower than the array version for sOme input 
files. Describe one such file, and explain the problem . 

• 	6.69 Implement a linked-list version of shell sort that does not use signifi
cantly more time or space than the array version for large random files. Hint: 
Use bubble sort. 
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•• 6.70 Implement an ADT for sequences, which allows us to use a single driver 
program to debug both linked-list and array sort implementations, for example 
with the following code: 

#include "Item.h" 

#include "SEQ.h" 

main(int argc, char *argv[]) 


{ 	int N = atoiCargv [1.]), SOl = atoiCargv [2]) ; 
if (SOl) SEQrandinit(N); else SEQscaninit(&N); 
SEQsortO; 
SEQshow() ; 

} 

That is, client programs can create a sequence with N items (either gener
ated randomly or filled from standard input), sort the sequence, or show its 
contents. Provide one implementation that uses an array representation and 
another that uses a linked-list representation. Use selection sort. 

•• 6.7I Extend your implementation from Exercise 6.70 such that it is a first
class ADT. 

6.10 Key-Indexed Counting 

A number of sorting algorithms gain efficiency by taking advantage 
of special properties of keys. For example, consider the following 
problem: Sort a file of N items whose keys are distinct integers between 
oand N -1. We can solve this problem immediately, using a temporary 
array b, with the statement 

for (i = 0; i < N; i++) b[key(a[i])] = a[i]; 

That is, we sort by using the keys as indices, rather than as abstract 
items that are compared. In this section, we consider an elementary 
method that uses key indexing in this way to sort efficiently when the 
keys are integers in a small range. 

If all the keys are 0, sorting is trivial, but now suppose that there 
are two distinct key values 0 and 1. Such a sorting problem might 
arise when we want to separate out the items in a file that satisfy some 
(perhaps complicated) acceptance test: we take the key 0 to mean 
"accept" and the key 1 to mean "reject." One way to proceed is to 

count the number of Os, then to make a second pass through the input 
a to distribute its items to the temporary array b, using an array of 
two counters, as follows. We start with 0 in ent (0] and the number 
of 0 keys in the file ent [1], to indicate that there are no keys that are 
less than 0 and ent [1J keys that are less than 1 in the file. Clearly, 
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we can fill in the b array by putting Os at the beginning (starting at 
b [[cnt [0]], or b [0]) and 1s starting at b [cnt [1J. That is, the code 

for (i = 0; i < N; i++) b[cnt[a[iJJ++J = a[iJ; 

serves to distribute the items from a to b. Again, we get a fast sort by 
using the keys as indices (to pick between cnt [oJ and cnt [1]). We 
could use an if statement to choose between the two counters in this 
simple case, but the approach of using keys as indices generalizes 
immediately to handle more than two key values (more than two 
counters). 

Specifically, a more realistic problem in the same spirit is this: 
Sort a file of N items whose keys are integers between 0 and Al -1. We 
can extend the basic method in the previous paragraph to an algorithm 
called key-indexed counting, which solves this problem effectively if 
Ai is not too large. Just as with two key values, the idea is to count 
the number of keys with each value, and then to use the counts to 
move the items into position on a second pass through the file. First, 
we count the number of keys of each value: then, we compute partial 
sums to get counts of the number of keys less than or equal to each 
value. Then, again just as we did when we had two key values, we use 
these counts as indices for the purpose of distributing the keys. For 
each key, we view its associated count as an index pointing to the end 
of the block of keys with the same value, use the index to distribute 
the key into b, and decrement. The critical factor that makes this 
algorithm efficient is that we do not need to go through a chain of 
if statements to determine which counter to access-using the key as 
index, we immediately find the right one. This process is illustrated in 
Figure 6.17. An implementation is given in Program 6.17. 

Property 6.12 Key-indexed counting is a linear-time sort, provided 
that the range of distinct key values is within a constant factor of the 
file size. 

Each item is moved twice, once for the distribution and once to be 
moved back to the original array; and each key is referenced twice, 
once to do the counts and once to do the distribution. The two 
other for loops in the algorithm involve building the counts, and will 
contribute insignificantly to the running time unless the number of 
counts becomes significantly larger than the file size. _ 
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Figure 6.17 
Sorting by key-indexed count

ing. 

First; we determine how many 
keys of each value there are in the 
file: In this example there are six 
Os, four 1s, two 2s, and three 3s. 
Then, we take partial sums to find 
the number of keys less than each 
key: 0 keys are less than 0, 6 keys 
are less than 1, 10 keys are less 
than 2, and 12 keys are less than 
3 (table in middle). Then, we use 
the partial sums as indices in plac
ing the keys into position: The 0 
at the beginning of the file is put 
into location 0; we then increment 
the pointer corresponding to 0, to 
point to where the next 0 should 
go. Then, the 3 from the next po
sition on the left in the file is put 
into location 12 (since there are 12 

keys less than 3); its corresponding 
count is incremented; and so forth. 
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Program 6.17 Key-indexed counting 

The first for loop initializes the counts to 0; the second for loop sets 
the second counter to the number of Os, the third counter to the number 
of 1s, and so forth. Then, the third for loop simply adds these numbers 
to produce counts of the number of keys less than or equal to the one 
corresponding to the count. These numbers now give the indices of the 
end of the part of the file where keys belong. The fourth for loop moves 
the keys into an auxiliary array b according to these indices, and the final 
loop moves the sorted file back into a. The keys must be integers less 
than Mfor this code to work, although we can easily modify it to extract 
such keys from more complex items (see Exercise 6.75). 

void disteount(int a[], int 1, int r) 
{ int i, j, ent [M] ; 

int b[maxN] ; 
for (j 0; j < M', j++) ent [j] = 0; 
for (i -1; i <= r; i++) ent [a [I] +1] ++; 

for (j 1 ; j < M', j++) ent [j] += ent[j-1] ; 
for (i 1 ; i <= r; i++) b Cent [a[i]] ++] = a[i]; 
for (i l', i <= r; i++) aU] = b[i-l]; 

} 

If huge files are to be sorted, the auxiliary array b can present 
memory-allocation problems. We can modify Program 6.17 to com
plete the sort in place (avoiding the need for an auxiliary array), using 
a method similar to that used in Program 6.1+ This operation is 
closely related to the basic methods that we shall be discussing in 
Chapters 7 and 10, so we defer it to Exercises 12.16 and 12.17 in 
Section 12.3. As we shall see in Chapter 12, this space savings comes 
at the cost of the stability property of the algorithm, and thus limits 
the algorithm'S utility because applications involving large numbers of 
duplicate keys often have other associated keys, whose relative order 
should be preserved. We shall see a particularly important example of 
such an application in Chapter 10. 

Exercises 

06.72 	 Give a specialized version of key-indexed counting for sorting files 
where elements can take on only one of three values (a, b, or c). 
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6.73 Suppose that we use insertion sort on a randomly ordered file where 
elements have only one of three values. Is the running time linear, quadratic, 
or something in between? 

1>6.74 Show how key-indexed counting sorts the file A BRA CAD A BRA. 

6.75 Implement key-indexed counting for items that are potentially large 
records with integer keys from a small range. 

6.76 Implement key-indexed counting as a pointer sort. 





CHAPTER SEVEN 

Quicksort 

T HE SUBJECT OF this chapter is the sorting algorithm that is 
probably used more widely than any other, quicksort. The basic 

algorithm was invented in 1960 by C. A. R. Hoare, and it has been 
studied by many people since that time (see reference section). Quick
sort is popular because it is not difficult to implement, works well for a 
variety of different kinds of input data, and consumes fewer resources 
than any other sorting method in many situations. 

The quicksort algorithm has the desirable features that it is in
place (uses only a small auxiliary stack), requires requires time only 
proportional to N log N on the average to sort N items, and has an 
extremely short inner loop. Its drawbacks are that it is not stable, 
takes about N 2 operations in the worst case, and is fragile in the sense 
that a simple mistake in the implementation can go unnoticed and can 
cause it to perform badly for some files. 

The performance of quicksort is well understood. The algorithm 
has been subjected to a thorough mathematical analysis, and we can 
make precise statements about its performance. The analysis has been 
verified by extensive empirical experience, and the algorithm has been 
refined to the point where it is the method of choice in a broad va
riety of practical sorting applications. It is therefore worthwhile for 
us to look more carefully than for other algorithms at ways of im
plementing quicksort efficiently. Similar implementation techniques 
are appropriate for other algorithms; with quicksort, we can use them 
with confidence, because we know precisely how they will affect per
formance. 

30 3 
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It is tempting to try to develop ways to improve quicksort: A 
faster sorting algorithm is computer science's "better mousetrap," and 
quicksort is a venerable method that seems to invite tinkering. Al
most from the moment Hoare first published the algorithm, improved 
versions have been appearing in the literature. Many ideas have been 
tried and analyzed, but it is easy to be deceived, because the algorithm 
is so well balanced that the effects of improvements in one part of the 
program can be more than offset by the effects of bad performance in 
another part of the program. We examine in detail three modifications 
that do improve quicksort substantially. 

A carefully tuned version of quicksort is likely to run signifi
cantly faster on most computers than will any other sorting method, 
and quicksort is widely used as a library sort utility and for other seri
ous sorting applications. Indeed, the standard C library'S sort is called 
qsort, since quicksort is typically the underlying algorithm used in 
implementations. However, the running time of quicksort depends on 
the input, ranging from linear to quadratic in the number of items to be 
sorted, and people are sometimes surprised by undesirable and unex
pected effects for some inputs, particularly in highly tuned versions of 
the algorithm. 1£ an application does not justify the work required to 
be sure that a quicksort implementation is not flawed, shellsort might 
well be a safer choice that will perform well for less implementation 
investment. For huge files, however, quicksort is likely to run five to 
ten times as fast as shell sort, and it can adapt to be even more efficient 
for other types of files that might occur in practice. 

7. I The Basic Algorithm 

Quicksort is a divide-and-conquer method for sorting. It works by 
partitioning an array into two parts, then sorting the parts indepen
dently. As we shall see, the precise position of the partition depends 
on the initial order of the elements in the input file. The crux of the 
method is the partitioning process, which rearranges the array to make 
the following three conditions hold: 

• The element a [i] is in its final place in the array for some i. 
• None of the elements in a [1], .. , , a [i -1] is greater than a [i] . 

• None of the elements in a [i+1J, ' .. , a [rJ is less than a [iJ . 



QUICKSORT 

Program 7. I Quicksort 

If the array has one or fewer elements, do nothing, Otherwise, the array 
is processed by a partition procedure (see Program 7.2), which puts 
a [iJ into position for some i between 1 and r inclusive, and rearranges 
the other elements such that the recursive calls properly finish the sort, 

int partition(Item a[], int 1, int r); 

void quicksort (Item a[], int 1, int r) 


{ 	 int i; 

if (r <= 1) return; 

i = partition(a, 1, r); 

quicksort(a, 1, i-1); 

quicksort (a, i+l, r); 


} 

We achieve a complete sort by partitioning, then recursively applying 
the method to the subfiles, as depicted in Figure 7, I, Because the 
partitioning process always puts at least one element into position, 
a formal proof by induction that the recursive method constitutes a 
proper sort is not difficult to develop. Program 7. I is a recursive 
program that implements this idea. 

We use the following general strategy to implement partitioning. 
First, we arbitrarily choose a [r] to be the partitioning element-the 
one that will go into its final position. Next, we scan from the left 
end of the array until we find an element greater than the partitioning 
element, and we scan from the right end of the array until we find 
an element less than the partitioning element. The two elements that 
stopped the scans are obviously out of place in the final partitioned 
array, so we exchange them. Continuing in this way, we ensure that no 
array elements to the left of the left pointer are greater than the parti
tioning element, and no array elements to the right of the right pointer 
are less than the partitioning element, as depicted in the following 
diagram: 
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Figure 7.I 
Quicksort example 

Quicksort is a recursive partition
ing process: We partition a file by 
putting some element (the parti
tioning element) in place! and rear
ranging the array such that smaller 
elements are to the left of the par
titioning element and larger ele
ments to its right. Then, we sort 
the left and right parts of the ar
ray recursively, Each line in this 
diagram depicts the result of parti
tioning the displayed subfile using 
the circled element The end result 
is a fully sorted file, 
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Figure 7.2 
Quicksort partitioning 

Quicksort partitioning begins with 
the (arbitrary) choice of a partition
ing element. Program 7.2 uses the 
rightmost element E. Then, it scans 
from the left over smaller elements 
and from the right over larger el
ements, exchanges the elements 
that stop the scans, continuing un
til the scan pointers meet. First 
we scan from the left and stop at 
the S, then we scan from the right 
and stop at the A, and then we ex
change the S and the A. Next, we 
continue the scan from the left un
til we stop at the 0, and continue 
the scan from the right until we 
stop at the E, then exchange the °and the E. Next, our scanning 
pointers cross: We continue the 
scan from the left until we stop at 
the R, then continue the scan from 
the right (past the R) until we stop 
at the E. To finish the process, we 
exchange the partitioning element 
(the E at the right) with the R. 
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Here, v refers to the value of the partitioning element, i to the left 
pointer, and j to the right pointer. As indicated in this diagram, it 
is best to stop the left scan for elements greater than or equal to the 
partitioning element and the right scan for elements less than or equal 
to the partitioning element, even though this policy might seem to cre
ate unnecessary exchanges involving elements equal to the partitioning 
element (we shall examine the reasons for this policy later in this sec
tion). When the scan pointers cross, all that we need to do to complete 
the partitioning process is to exchange a [r] with the leftmost element 
of the right subfile (the element pointed to by the left pointer). Pro
gram 7.2. is an implementation of this process, and Figures 7·2. and 7.3 

depict examples. 
The inner loop of quicksort increments a pointer and compares 

an array element against a fixed value. This simplicity is what makes 
quicksort quick: It is hard to envision a shorter inner loop in a sorting 
algorithm. 

Program 7.2. uses an explicit test to stop the scan if the partition
ing element is the smallest element in the array. It might be worthwhile 
to use a sentinel to avoid this test: The inner loop of quicksort is so 
small that this one superfluous test could have a noticeable effect on 
performance. A sentinel is not needed for this implementation when 
the partitioning element is the largest element in the file, because the 
partitioning element itself is at the right end of the array to stop the 
scan. Other implementations of partitioning discussed later in this 
section and elsewhere in this chapter do not necessarily stop the scan 
on keys equal to the partitioning element-we might need to add a test 
to stop the pointer from running off the right end of the array in such 
an implementation. On the other hand, the improvement to quicksort 
that we discuss in Section 7.5 has the side benefit of needing neither 
the test nor a sentinel at either end. 

The partitioning process is not stable, because any key might be 
moved past a large number of keys equal to it (which have not even 
been examined yet) during any exchange. No easy way to make an 
array-based quicksort stable is known. 

The partitioning procedure must be implemented carefully. 
Specifically, the most straightforward way to guarantee that the re
cursive program terminates is that it (i) does not call itself for files of 
size 1 or less; and (ii) calls itself for only files that are strictly smaller 
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Program 7.2 Partitioning 

The variable v holds the value of the partitioning element a [r], and i 
and j are the left and right scan pointers, respectively. The partitioning 
loop increments i and decrements j, while maintaining the invariant 
property that no elements to the left of i are greater than v and no 
elements to the right of j are smaller than v. Once the pointers meet, 
we complete the partitioning by exchanging a [i] and a [r], which puts 
v into a [i] , with no larger elements to v's right and no smaller elements 
to its left. 

The partitioning loop is implemented as an infinite loop, with a 
break when the pointers cross. The test j ~= 1 protects against the 
case that the partitioning element is the smallest element in the file. 

int partition(Item a[], int 1, int r) 

{ int i = 1-1, j r; Item v = a[r]; 


for (;;) 

{ 

while (less(a[++i], v)) 

while (less(v, a[--j]» if (j 1) break; 

if (i >= j) break; 

exch(a[i], a[j]); 


} 


exch(a[i], a[r]); 

return i; 


than given as input. These policies may seem obvious, but it is easy to 
overlook a property of the input that can lead to a spectacular failure. 
For instance, a common mistake in implementing quicksort is not en
suring that one element is always put into position, then falling into 
an infinite recursive loop when the partitioning element happens to be 
the largest or smallest element in the file. 

When duplicate keys are present in the file, the pointer crossing 
is subtle. We could improve the partitioning process slightly by ter
minating the scans when j < i, and then using j, rather than i -1, 

to delimit the right end of the left subfile for the first recursive call. 
Letting the loop iterate one more time in this case is an improvement, 
because, whenever the scanning loops terminate with j and i referring 
to the same element, we end up with two elements in their final posi



Figure 7.3 
Dynamic characteristics of 

quicksort partitioning 

The partitioning process divides a 
fife into two sub files that can be 
sorted independently. None of 
the elements to the left of the left 
scan pointer is larger; so there are 
no dots above and to its left; and 
none of the elements to the right 
of the right scan pointer is smaller; 
so there are no dots below and to 
its right. As shown in these two 
examples, partitioning a random 
array divides it into two smaller 
random arrays, with one element 
(the partitioning element) ending 
up on the diagonal. 
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tions: the element that stopped both scans, which must therefore be 
equal to the partitioning element, and the partitioning element itself. 
This case would occur, for example, if R were E in Figure 7.2. This 
change is probably worth making, because, in this particular case, the 
program as given leaves a record with a key equal to the partitioning 
key in a [r], and that makes the first partition in the call quicksort (a, 
i+l, r) degenerate, because its rightmost key is its smallest. Sepa
rating partitioning out as in Programs 7.1 and 7.2 makes quicksort a 
bit easier to understand, however, so we refer to the combination as 
the basic quicksort algorithm. If significant numbers of duplicate keys 
might be present, other factors come into pia y. We consider them next. 

There are three basic strategies that we could adopt with respect 
to keys equal to the partitioning element: have both pointers stop 
on such keys (as in Program 7.2); have one pointer stop and the 
other scan over them; or have both pointers scan over them. The 
question of which of these strategies is best has been studied in detail 
mathematically, and results show that it is best to have both pointers 
stop, primarily because this strategy tends to balance the partitions in 
the presence of many duplicate keys, whereas the other two can lead to 
badly unbalanced partitions for some files. We also consider a slightly 
more complicated and much more effective method for dealing with 
duplicate keys in Section 7.6. 

Ultimately, the efficiency of the sort depends on how well the 
partitioning divides the file, which in turn depends on the value of 
the partitioning element. Figure 7.2 shows that partitioning divides a 
large randomly ordered file into two smaller randomly ordered files, 
but that the actual split could be anywhere in the file. We would 
prefer to choose an element that would split the file near the middle, 
but we do not have the necessary information to do so. If the file is 
randomly ordered, choosing a [r] as the partitioning element is the 
same as choosing any other specific element, and will give us a split 
near the middle 011 the average. In Section 7.4 we consider the analysis 
of the algorithm that allows us to see how this choice compares to 
the ideal choice. In Section 7.5 we see how the analysis guides us in 
considering choices of the partitioning element that make the algorithm 
more efficient. 
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Exercises 

[> 7.1 Show, in the style of the example given here, how quicksort sorts the 
file E A S Y QUE S T rON. 

7.2 Show how the file 1 00 1 1 1 000001 01 00 is partitioned, using both 
Program 7.2 and the minor modifications suggested in the text. 

7.3 Implement partitioning without using a break statement or a goto 
statement . 

• 7.4 Develop a stable quicksort for linked lists. 

07.5 	 What is the maximum number of times during the execution of quick
sort that the largest element can be moved, for a file of N elements? 

7.2 Performance Characteristics of Quicksort 

Despite its many assets, the basic quicksort program has the definite 
liability that it is extremely inefficient on some simple files that can 
arise in practice. For example, if it is called with a file of size N that 
is already sorted, then all the partitions will be degenerate, and the 
program will call itself N times, removing just one element for each 
call. 

Property 7.1 Quicksort uses about N 2 /2 comparisons in the worst 
case. 

By the argument just given, the number of comparisons used for a file 
that is already in order is 

N + (N - 1) + (N - 2) + ... + 2 + 1 = (N + 1)N/2. 

All the partitions are also degenerate for files in reverse order, as well 
as for other kinds of files that are less likely to occur in practice (see 
Exercise 7.6).• 

This behavior means not only that the time required will be 
about N Z/2, but also that the space required to handle the recursion 
will be about N (see Section 7.3), which is unacceptable for large files. 
Fortunately, there are relatively easy ways to reduce drastically the 
likelihood that this worst case will occur in typical applications of the 
program. 

The best case for quicksort is when each partitioning stage divides 
the file exactly in half. This circumstance would make the number of 
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Figure 7.4 
Dynamic characteristics of 

quicksort on various types 
of files 

The choice of an arbitrary parti
tioning element in quicksort results 
in differing partitioning scenarios 
for different files. These diagrams 
illustrate the initial portions of sce
narios for files that are random, 
Gaussian, nearly ordered, nearly 
reverse ordered, and randomly 
ordered with 10 distinct key val
ues (left to right), using a relatively 
large value of the cutoff for small 
subfiles. Elements not involved in 
partitioning end up close to the di
agonal, leaving an array that could 
be handled easily by insertion sort. 
The nearly ordered files require an 
excessive number of partitions. 

CHAPTER SEVEN 
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comparisons used by quicksort satisfy the divide-and-conquer recur
rence 

CN 2CN/ 2 +N. 

The 2CN /2 covers the cost of sorting the two subfiles; the N is the cost 
of examining each element, using one partitioning pointer or the other. 
From Chapter 5, we know that this recurrence has the solution 

CN;::::: NlgN. 

Although things do not always go this well, it is true that the partition 
falls in the middle on the average. Taking into account the precise 
probability of each partition position makes the recurrence more com
plicated and more difficult to solve, but the final result is similar. 

Property 7.2 Quicksort uses about 2N In N comparisons on the av
erage. 

The precise recurrence formula for the number of comparisons used 
by quicksort for N randomly ordered distinct elements is 

1 
N + 1 + N L (Ck - 1 + CV-k) for N::O: 2, 

l~k~N 

with C l = Co O. The N + 1 term covers the cost of comparing the 
partitioning element with each of the others (two extra for where the 
pointers cross); the rest comes from the observation that each element 
k is likely to be the partitioning element with probability 11k, after 
which we are left with random files of size k 1 and N k. 

Although it looks rather complicated, this recurrence is actually 
easy to solve, in three steps. First, Co + C l + ... + CN-l is the same 
as CN-l + + ... + Co, so we have 

2 
C" = N + 1 + - '" 

jV N L..J 
19~N 

Second, we can eliminate the sum by multiplying both sides by Nand 
subtracting the same formula for N 1: 

(N - I)CN - 1 = N(N + 1) I)N + 2CN - 1 . 

This formula simplifies to the recurrence 

NCv = (N + I)CN + 2N. 
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Third, dividing both sides by N(N + 1) gives a recurrence that tele
scopes: 

eN eN~l 2--=--+-
N+l N N+l 

eN~2 2 2 
= +-+-

N-l N N+l 

This exact answer is nearly equal to a sum that is easily approximated 
by an integral (see Section 2.3): 

e 1 jN 1 
N ~ 2 L - ~ 2 -dx 21n N,

N+l k 1 X 
l~k<N 

which implies the stated result. Note that 2N In N ~ 1.39N Ig N, so 
the average number of comparisons is only about 39 percent higher 
than in the best case. _ 

This analysis assumes that the file to be sorted comprises ran
domly ordered records with distinct keys, but the implementation in 
Programs 7.1 and 7.2 can run slowly in some cases when the keys are 
not necessarily distinct and not necessarily in random order, as illus
trated in Figure 7+ If the sort is to be used a great many times or if it 
is to be used to sort a huge file (or, in particular, if it is to be used as a 
general-purpose library sort that will be used to sort files of unknown 
characteristics), then we need to consider several of the improvements 
discussed in Sections 7.5 and 7.6 that can make it much less likely 
that a bad case will occur in practice, while also reducing the average 
running time by 20 percent. 

Exercises 

7.6 Give six files of 10 elements for which quicksort (Program 7.r) uses 
the same number of comparisons as the worst-case file (when all the elements 
are in order). 

7.7 Write a program to compute the exact value of eN, and compare 
the exact value with the approximation 2N In N for N = 1000, 10000, and 
100000. 

07.8 	 About how many comparisons will quicksort (Program 7.1) make when 
sorting a file of N equal elements? 



QUICKSORT 

7.9 About how many comparisons will quicksort (Program 7.1) make when 
sorting a file consisting of N items that have just two different key values (k 
items with one value, N- k items with the other)? 

.7.10 Write a program that produces a best-case file for quicksort: a file of N 
distinct elements with the property that every partition will produce subfiles 
that differ in size by at most 1. 

7.3 Stack Size 

As we did in Chapter 3, we can use an explicit pushdown stack for 
quicksort, thinking of the stack as containing work to be done in 
the form of subfiles to be sorted. Any time that we need a subfile 
to process, we pop the stack. When we partition, we create two 
subfiles to be processed and push both on the stack. In the recursive 
implementation in Program 7.1, the stack maintained by the system 
holds this same information. 

For a random file, the maximum size of the stack is proportional 
to log N (see reference section), but the stack can grow to size propor
tional to N for a degenerate case, as illustrated in Figure 7.5. Indeed, 
the very worst case is when the input file is already sorted. The po
tential for stack growth proportional to the size of the original file is a 
subtle but real difficulty with a recursive implementation of quicksort: 
There is always an underlying stack, and a degenerate case on a large 
file could cause the program to terminate abnormally because of lack 
of memory-behavior obviously undesirable for a library sorting rou
tine. (Actually, we likely would run out of time before running out of 
space.) It is difficult to provide a guarantee against this behavior, but 
we shall see in Section 7.5 that it is not difficult to provide safeguards 
that make such degenerate cases extremely unlikely to occur. 

Program 7.3 is a nonrecursive implementation that addresses 
this problem by checking the sizes of the two subfiles and putting the 
larger of the two on the stack first. Figure 7.6 illustrates this policy. 
Comparing this example with Figure 7.1, we see that the subfiles are 
not changed by this policy; only the order in which they are processed 
is changed. Thus, we save on space costs without affecting time costs. 

The policy of putting the larger of the small subfiles on the stack 
ensures that each entry on the stack is no more than one-half of the 
size of the one below it, so that the stack needs to contain room for 

Figure 7.5 
Stack size for quicksort 

The recursive stack for quicksort 
does not grow large for random 
files, but can take excessive space 
for degenerate files. The stack sizes 
for two random files (left, center) 
and that for a partially ordered file 
(right) are plotted here. 
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Figure 7.6 
Quicksort example (sorting 

the smaller subfile first) 

The order in which the subfiles 
are processed does not affect the 
correct operation of the quicksort 
algorithm, or the time taken, but 
might affect the size of the push
down stack underlying the recur
sive structure. Here the smaller of 
the two subfiles is processed first 
after each partition. 
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Program 7.3 N onrecursive quicksort 

This nonrecursive implementation (see Chapter 5) of quicksort uses 
an explicit pushdown stack, replacing recursive calls with stack pushes 
(of the parameters) and the procedure calVexit with a loop that pops 
parameters from the stack and processes them as long as the stack is 
nonempty. We put the larger of the two subfiles on the stack first to 
ensure that the maximum stack depth for sorting IV elements is 19 IV 
(see Property 7.3). 

#define push2(A, B) push(B); push(A); 

void quicksort(Item a[], int 1, int r) 


{ 	 int i; 

stackinit(); push2(1, r); 

while (!stackempty()) 


{ 


1 = pope); r popO; 

if (r <= 1) continue; 

i = partition(a, 1, r); 

if (i-l > r-i) 


{ push2(1, i-i); push2(i+i, r); } 
else 

{ push2(i+i, r); push2(1, i-i); } 
} 

} 

only about 19 N entries. This maximum stack usage occurs when the 
partition always falls at the center of the file. For random files, the 
actual maximum stack size is much lower; for degenerate files it is 
likely to be small. 

Property 7.3 If the smaller of the two subfiles is sorted first, then the 
stack never has more than 19 N entries when quicksort is used to sort 
N elements. 

The worst-case stack size must be less than TN, where TN satisfies the 
recurrence T~v TLN/2J 1 with Tl = To = O. This recurrence is a 
standard one of the type considered in Chapter 5 (see Exercise 7.13). 

• 
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This technique does not necessarily work in a truly recursive im
plementation, because it depends on end- or tail-recursion removal. If 
the last action of a procedure is to call another procedure, some pro
gramming environments will arrange things such that local variables 
are cleared from the stack before, rather than after, the call. Without 
end-recursion removal, we cannot guarantee that the stack size will be 
small for quicksort. For example, a call to quicksort for a file of size N 
that is already sorted will result in a recursive call to such a file of size 
N 1, in turn resulting in a recursive call for such a file of size N 2, 
and so on, ultimately resulting in a stack depth proportional to N. This 
observation would seem to suggest using a nonrecursive implementa
tion to guard against excessive stack growth. On the other hand, some 
C compilers automatically remove end recursion, and many machines 
have direct hardware support for function calls-the nonrecursive im
plementation in Program 7.3 might therefore actually be slower than 
the recursive implementation in Program 7. I in such environments. 

Figure 7.7 further illustrates the point that the nonrecursive 
method processes the same subfiles (in a different order) as does the 
recursive method for any file. It shows a tree structure with the parti
tioning element at the root and the trees corresponding to the left and 
right subfiles as left and right children, respectively. Using the recur
sive implementation of quicksort corresponds to visiting the nodes of 
this tree in preorder; the nonrecursive implementation corresponds to 
a visit-the-smaller-subtree-first traversal rule. 

When we use an explicit stack, as we did in Program 7.3, we 
avoid some of the overhead implicit in a recursive implementation, 
although modern programming systems do not incur much overhead 
for such simple programs. Program 7.3 can be further improved. For 
example, it puts both subfiles on the stack, only to have the top one 
immediately popped off; we could change it to set the variables 1 and 
r directly. Also, the test for r <= 1 is done as subfiles come off the 
stack, whereas it would be more efficient never to put such subfiles on 
the stack (see Exercise 7.14). This case might seem insignificant, but 
the recursive nature of quicksort actually ensures that a large fraction 
of the subiiles during the course of the sort are of size 0 or 1. Next, we 

examine an important improvement to quicksort that gains efficiency 
by expanding upon this idea, handling all small subfiles in as efficient 
a manner as possible. 
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Figure 7.7 
Quicksort partitioning tree 

If we col/apse the partitioning di
agrams in Figures 7.1 and 7.6 by 
connecting each partitioning ele
ment to the partitioning element 
used in its two sub files, we get this 
static representation of the parti
tioning process (in both cases). In 
this binary tree, each subfile is rep
resented by its partitioning element 
(or by itselt if it is of size 1), and 
the subtrees of each node are the 
trees representing the 5ubfiles after 
partitioning. For clarity, null sub
files are not shown here, although 
our recursive versions of the al
gorithm do make recursive cal/s 
with r < 1 when the partitioning 
element is the smallest or largest 
element in the file. The tree itself 
does not depend on the order in 
which the subfiles are partitioned. 
Our recursive implementation of 
quicksort corresponds to visiting 
the nodes of this tree in preorder; 
our nonrecursive implementation 
corresponds to a visit-the-smaller
subtree-first rule. 
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Exercises 

[>7.II Give, in the style of Figure 5.5, the stack contents after each pair of 
push and pop operations, when Program 7.3 is used to sort a file with the keys 
E A S Y QUE S T ION. 

[>7.12 Answer Exercise 7.11 for the case where we always push the right 
subfile, then the left subfile (as is the case in the recursive implementation). 

7.13 Complete the proof of Property 7.3, by induction. 

7.14 Revise Program 7.3 such that it never puts on the stack subfiles with r 
<= 1. 

[>7.15 Give the maximum stack size required by Program 7.3 when 1'1 = 271. 

7.16 Give the maximum stack sizes required by Program 7.3 when 1'1 = 
271 1 and 1'1 = 271 1. 

07.17 	 Would it be reasonable to use a queue instead of a stack for a nonre
cursive implementation of quicksort? Explain your answer. 

7.18 Determine and report whether your programming environment imple
ments end-recursion removal. 

.7.19 Run empirical studies to determine the average stack size used by the 
basic recursive quicksort algorithm for random files of 1'1 elements, for 1'1 = 
103 ,10\ 105

, and 106
• 

•• 7.20 Find the average number of subfiles of size 0, 1, and 2 when quicksort 
is used to sort a random file of 1'1 elements. 

7.4 Small Subfiles 

A definite improvement to quicksort arises from the observation that 
a recursive program is guaranteed to call itself for many small subfiles, 
so it should use as good a method as possible when it encounters small 
subfiles. One obvious way to arrange for it to do so is to change the 
test at the beginning of the recursive routine from a return to a call 
on insertion sort, as follows: 

if (r-1 <= M) insertion(a, 1, r)j 

Here, Af is some parameter whose exact value depends upon the im
plementation. We can determine the best value for AI either through 
analysis or with empirical studies. It is typical to find in such studies 
that the running time does not vary much for Ivl in the range from 
about 5 to about 25, with the running time for Ai in this range on 
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the order of 10 percent less than for the naive choice Al 1 (see 
Figure 7.8). 

A slightly easier way to handle small subfiles, which is also 
slightly more efficient than insertion sorting them as they are encoun
tered, is just to change the test at the beginning to 

if (r-l <= M) return; 

That is, we simply ignore small subfiles during partitIOning. In a 
nonrecursive implementation, we could do so by not putting any files 
of size less than Mon the stack, or, alternatively, by ignoring all files of 
size less than Mthat are found on the stack. After partitioning, what is 
left is a file that is almost sorted. As discussed in Section 6.), however, 
insertion sort is the method of choice for such files. That is, insertion 
sort will work about as well for such a file as for the collection of little 
files that it would get if it were being used directly. This method should 
be used with caution, because insertion sort is likely to work even if 
quicksort has a bug that causes it not to sort at all. Excessive cost may 
be the only sign that something went wrong. 

Figure 7.9 illustrates this process for a larger file. Even with 
a relatively large cutoff for small subfiles, the quicksort part of the 
process runs quickly because relatively few elements are involved in 
partitioning steps. The insertion sort that finishes the job also runs 
quickly because it starts with a file that is nearly in order. 

This technique can be used to good advantage whenever we are 
dealing with a recursive algorithm. Because of their very nature, we 
can be sure that all recursive algorithms will be processing small prob
lem instances for a high percentage of the time; we generally do have 
available a low-overhead brute-force algorithm for small cases; and 
we therefore generally can improve overall timings with a hybrid al
gorithm. 

Exercises 

7.21 Are sentinel keys needed if insertion sort is called directly from within 
quicksort? 

7.22 Instrument Program 7. I to give the percentage of the comparisons 
used in partitioning files of size less than 10, 100, and 1000, and print out the 
percentages when you sort random files of N elements, for N 103

, 104
, 105

, 

and 106 
• 

07.23 	 Implement a recursive quicksort with a cutoff to insertion sort for 
subfiles with less than 1.\1 elements, and empirically determine the value of M 

3 1 7 

Figure 7.8 
Cutoff for small subfiles 

Choosing the optimal value for the 
cutoff for small subfiles results in 
about a 10 percent improvement in 
the average running time. Choos
ing the value precisely is not crit
ical; values from a broad range 
(from about 5 to about 20) will 
work about as well for most im
plementations. The thick line (top) 
was obtained empirically; the thin 
line (bottom) was derived analyti
cally. 
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Figure 7.9 
Comparisons in quicksort 

Quicksort subfiles are processed 
independently. This picture shows 
the result of partitioning each 5ub
file during a sort of 200 elements 
with a cutoff for files of size 15 or 
less. We can get a rough idea of 
the total number of comparisons 
by counting the number of marked 
elements by column vertically. In 
this case, each array position is in
volved in only six or seven subfiles 
during the sort. 
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for which Program 7.4 runs fastest in lour comluting environment to sort 
random files of N elements, for N = 10 , 104

, 10 , and 10". 

7.24 Solve Exercise 7.23 using a nonrecursive implementation. 

7.25 Solve Exercise 7.23, for the case when the records to be sorted contain 
a key and b pointers to other information (but we are not using a pointer sort) . 

• 	7.26 Write a program that plots a histogram (see Program 3.7) of the subfile 
sizes left for insertion sort when you run quicksort for a file of size N with a 
cutoff for subfiles of size less than 1M. Run your program for lvi = 10, 100, 
and 1000 and N = 103

, 104
, 105

, and 106
• 

7.27 Run empirical studies to determine the average stack size used by quick
sort with cutoff for files of size 1\1, when sorting random files of N elements, 
for it! = 10, 100, and 1000 and N = 103

, 104
, 105

, and 106
• 

7.5 Median-of-Three Partitioning 

Another improvement to quicksort is to use a partitioning element 
that is more likely to divide the file near the middle. There are several 
possibilities here. A safe choice to avoid the worst case is to use a 
random element from the array for a partitioning element. Then, 
the worst case will happen with negligibly small probability. This 
method is a simple example of a probabilistic algorithm-one that 
uses randomness to achieve good performance with high probability, 
regardless of the arrangement of the input. We will see numerous 
examples later in the book of the utility of randomness in algorithm 
design, particularly when bias in the input is suspected. For quicksort, 
it may be overkill in practice to put in a full random-number generator 
just for this purpose: simple arbitrary choices can also be effective. 

Another well-known way to find a better partitioning element 
is to take a sample of three elements from the file, then to use the 
median of the three for the partitioning element. By choosing the 
three elements from the left, middle, and right of the array, we can 
incorporate sentinels into this scheme as well: sort the three elements 
(using the three-exchange method in Chapter 6), then exchange the one 
in the middle with a [r-l], and then run the partitioning algorithm on 
a [1+1] , ... , a [r-2]. This improvement is called the median-of-three 
method. 

The median-of-three method helps quicksort in three ways. First, 
it makes the worst case much more unlikely to occur in any actual 
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Figure 7.10 

Stack size for improved ver
sions of quicksort 

Sorting the smaller subfile first 
guarantees that the stack size will 
be logarithmic at worst. Plotted 
here are the stack sizes for the 
same files as in Figure 1.5, with 
the smaller of the subfiles sorted 
first during the sort (left) and with 
the median-of-three modification 
added (right). These diagrams are 
not indicative of running timei that 
variable depends on the size of 
the files on the stack, rather than 
only their number. For example, 
the third file (partially sorted) does 
not require much stack space, but 
leads to a slow sort because the 
subfi/es being processed are usu
ally large. 
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sort. For the sort to take N2 time, two out of the three elements 
examined must be among the largest or among the smallest elements 
in the file, and this event must happen consistently through most of 
the partitions. Second, it eliminates the need for a sentinel key for 
partitioning, because this function is served by one of the three elements 
that are examined before partitioning. Third, it reduces the total 
average running time of the algorithm by about 5 percent. 

The combination of using the median-of-three method with a 
cutoff for small subfiles can improve the running time of quicksort over 
the naive recursive implementation by 20 to 25 percent. Program 7.4 
is an implementation that incorporates all these improvements. 

We might consider continuing to improve the program by re
moving recursion, replacing the subroutine calls by inline code, using 
sentinels, and so forth. However, on modern machines, such proce
dure calls are normally efficient, and they are not in the inner loop. 
More important, the use of the cutoff for small subfiles tends to com
pensate for any extra overhead that may be involved (outside the inner 
loop). The primary reason to use a nonrecursive implementation with 
an explicit stack is to be able to provide guarantees on limiting the 
stack size (see Figure 7.10). 

Further algorithmic improvements are possible (for example, we 
could use the median of five or more elements), but the amount of time 
gained will be marginal for random files. We can realize significant time 
savings by coding the inner loops (or the whole program) in assembly 
or machine language. These observations have been validated on 
numerous occasions by experts with serious sorting applications (see 
reference section). 

For randomly ordered files, the first exchange in Program 7.4 is 
superfluous. We include it not just because it leads to optimal parti
tioning for files already in order, but also because it protects against 
anomalous situations that might occur in practice (see, for example, 
Exercise 7.33). Figure 7.II illustrates the effectiveness of involving the 
middle element in the partitioning decision, for various types of files. 

The median-of-three method is a special case of the general idea 
that we can sample an unknown file and use properties of the sample 
to estimate properties of the whole file. For quicksort, we want to 
estimate the median to balance the partitioning. It is the nature of the 
algorithm that we do not need a particularly good estimate (and may 
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Program 7.4 Improved quicksort 

Choosing the median of the first, middle, and final elements as the par
titioning element and cutting off the recursion for small subfiles can 
significantly improve the performance of quicksort. This implementa
tion partitions on the median of the first, middle, and final elements in 
the array (otherwise leaving these elements out of the partitioning pro
cess). Files of size 11 or smaller are ignored during partitioning; then, 
insertion from Chapter 6 is used to finish the sort. 

#define M 10 

void quicksort(Item a[], int 1, int r) 


{ 	 int i; 

if (r-1 <= M) return; 

exch(a[(1+r)!2], a[r-1]); 

compexch(a[l] , a[r-1]); 


compexch(a[l] , a[r]); 
compexch(a[r-1], a[r]); 


i = partition(a, 1+1, r-1); 

quicksort (a, 1, i-1); 

quicksort (a, i+1, r); 


} 


void sort(Item a[], int 1, int r) 

{ 

quicksort (a, 1, r); 

insertion(a, 1, r); 


} 


not want one if such an estimate is expensive to compute); we just want 
to avoid a particularly bad estimate. If we use a random sample of just 
one element, we get a randomized algorithm that is virtually certain to 
run quickly, no matter what the input. If we randomly choose three 
or five elements from the file, then use the median of that sample for 
partitioning, we get a better partition, but the improvement is offset 
by the cost of taking the sample. 

Quicksort is widely used because it runs well in a variety of situ
ations. Other methods might be more appropriate for particular cases 
that might arise, but quicksort handles more types of sorting problems 
than are handled by many other methods, and it is often significantly 
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Figure 7.II 
Dynamic characteristics of 

median-of-three quicksort 
on various types of files 

The median-of three modification 
(particularly, using the middle el
ement of the file) does a good job 
of making the partitioning process 
more robust. The degenerate types 
of files shown in Figure 7.4 are 
handled particularly well. Another 
option that achieves this same goal 
is to use a random partitioning ele
ment. 
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faster than alternative approaches. Table 7.1 gives empirical results in 
support of some of these comments. 

Exercises 

7.28 Our implementation of the median-of-three method is careful to ensure 
that the sampled elements do not participate in the partitioning process. One 
reason is that they can serve as sentinels. Give another reason. 

7.29 Implement a quicksort based on partitioning on the median of a random 
sample of five elements from the file. Make sure that the elements of the 
sample do not participate in partitioning (see Exercise 7.28). Compare the 
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Table 7.I Empirical study of basic quicksort algorithms 

Quicksort (Program 7. I) is more than twice as fast as shellsort (Pro
gram 6.6) for large randomly ordered files. A cutoff for small subfiles 
and the median-of-three improvement (Program 7.4) lower the running 
time by about 10 percent each. 

Basic quicksort Median-of-three quicksort 
-_.__......_--

N shell sort M =0 M 10 1'v1 =20 AI= 0 AI 10 M =20 

12500 6 2 2 2 3 2 3 

25000 10 5 5 5 5 4 6 

50000 26 11 10 10 12 9 14 

100000 58 24 22 22 25 20 28 

200000 126 53 48 50 52 44 54 

400000 278 116 105 110 114 97 118 

800000 616 255 231 241 252 213 258 
-~.~---- ~~---------- .------- ..-~------

performance of your algorithm with the median-of-three method for large 
random files. 

7.30 Run your program from Exercise 7.29 on large nonrandom files-for 
example, sorted files, files in reverse order, or files with all keys equal. How 
does its performance for these files differ from its performance for random 
files? 

•• 7.3 I Implement a quicksort based on using a sample of size 2k_ 1. First, 
sort the sample, then, arrange to have the recursive routine partition on the 
median of the sample and to move the two halves of the rest of the sample to 
each subfile, such that they can be used in the subfiles, without having to be 
sorted again. This algorithm, which uses about N 19 N comparisions when k 
is about 19 N 19 19 N, is called samplesort . 

•• 7.32 Run empirical studies to determine the best value of the sample size in 
samplesort (see Exercise 7.3 I), for N = 10" 104, 105, and 106. Does it matter 
whether quicksort o[ samplesort is used to sort the sample? 

.7.33 Show that Program 7.4, if changed to omit the first exchange and to 

scan over keys equal to the partitioning element, runs in quadratic time on a 
file that is in reverse order. 

3 2 3 
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7.6 Duplicate Keys 

Files with large numbers of duplicate sort keys arise frequently in 
applications. For example, we might wish to sort a large personnel file 
by year of birth, or even to use a sort to separate females from males. 

When there are many duplicate keys present in the file to be 
sorted, the quicksort implementations that we have considered do not 
have unacceptably poor performance, but they can be substantially 
improved. For example, a file that consists solely of keys that are 
equal (just one value) does not need to be processed further, but our 
implementations so far keep partitioning down to small subfiles, no 
matter how big the file is (see Exercise 7.8). In a situation where 
there are large numbers of duplicate keys in the input file, the recursive 
nature of quicksort ensures that subfiles consisting solely of items with 
a single key value will occur often, so there is potential for significant 
improvement. 

One straightforward idea is to partition the file into three parts, 
one each for keys smaller than, equal to, and larger than the partition
ing element: 

less than v than v 

1 

Accomplishing this partitioning is more complicated than the 
two-way partitioning that we have been using, and various different 
methods have been suggested for the task. It was a classical program
ming exercise popularized by Dijkstra as the Dutch National Flag 
problem, because the three possible key categories might correspond 
to the three colors on the flag (see reference section). For quicksort, 
we add the constraint that a single pass through the file must do the 
job-an algorithm that involves two passes through the data would 
slow down quicksort by a factor of two, even if there are no duplicate 
keys at all. 

A clever method invented by Bentley and McIlroy in 1993 for 
three-way partitioning works by modifying the standard partitioning 
scheme as follows: Keep keys equal to the partitioning element that 
are encountered in the left subfile at the left end of the file, and keep 
keys equal to the partitioning element that are encountered in the right 
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subfile at the right end of the file. During the partitioning process, we 
maintain the following situation: 

1 p q r 

Then, when the pointers cross and the precise location for the 
equal keys is known, we swap into position all the items with keys 
equal to the partitioning element. This scheme does not quite meet 
the requirement that three-way partitioning be accomplished in one 
pass through the file, but the extra overhead for duplicate keys is 
proportional to only the number of duplicate keys found. This fact 
has two implications: First, the method works well even if there are no 
duplicate keys, since there is no extra overhead. Second, the method is 
linear time when there is only a constant number of key values: Each 
partitioning phase removes from the sort all the keys with the same 
value as the partitioning element, so each key can be involved in at 
most a constant number of partitions. 

Figure 7.I2 illustrates the three-way partitioning algorithm on a 
sample file, and Program 7.5 is a quicksort implementation based on 
the method. The implementation requires the addition of just two if 

statements in the exchange loop, and just two for loops to complete 
partitioning by putting the keys equal to the partitioning element into 
posltlon. It seems to require less code than other alternatives for 
maintaining three partitions. More important, it not only handles 
duplicate keys in as efficient a manner as possible, but also incurs 
a minimal amount of extra overhead in the case that there are no 
duplicate keys. 

Exercises 

I> 7.34 Explain what happens when Program 7.5 is run on a randomly ordered 
tile with (i) two distinct key values, and (ii) three distinct key values. 

7.35 Modify Program 7. I to return if all keys in the subtile are equal. 
Compare the performance of your program to Program 7.1 for large random 
tiles with keys having t distinct values for t 2, 5, and 10. 

7.36 Suppose that we scan over keys equal to the partitioning element in 
Program 7.2 instead of stopping the scans when we encounter them. Show 
that the running time of Program 7.1 would be quadratic in this case. 
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Figure 7.12 
Three-way partitioning 

This diagram depicts the process of 
putting all keys equal to the parti
tioning element into position. As 
in Figure 7.2, we scan from the 
left 10 find an element that is not 
smaller than the partitioning el
ement and from the right to find 
an element that is not larger than 
the partitioning element, then ex
change them. If the element on the 
left after the exchange is equal to 
the partitioning element, we ex
change it to the left end of the ar
ray; we proceed similarly on the 
right. When the pointers cross, we 
put the partitioning element into 
position as before (next-to-bottom 
line), then exchange all the keys 
equal to it into position on either 
side of it (bottom line). 
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Program 7.5 Quicksort with three-way partitioning 

This program is based on partitioning the array into three parts: ele
ments smaller than the partitioning element (in a[l), ... , a[j]); ele
ments equal to the partitioning element (in a(j+1], ... , a [i-1]); and 
elements larger than the partitioning element (in a[i], ... , a[r]). Then 
the sort can be completed with two recursive calls, one for the smaller 
keys and one for the larger keys. 

To accomplish the objective, the program keeps keys equal to 
the partitioning element on the lefr between 1 and 11 and on the right 
between rr and r. In the partitioning loop, afrer the scan pointers stop 
and the items at i and j are exchanged, it checks each of those items to 
see whether it is equal to the partitioning element. If the one now on 
the left is equal to the partitioning element, it is exchanged into the left 
part of the array; if one now on the right is equal to the partitioning 
element, it is exchanged into the right part of the array. 

After the pointers cross, the two ends of the array with elements 
equal to the partitioning element are exchanged back to the middle. 
Then those keys are in position and can be excluded from the subfiles 
for the recursive calls. 

#define eq(A, B) (!less(A, B) && !less(B, A» 
void quicksort(Item a[], int 1, int r) 

{ int i, j, k, p, q; Item v; 
if (r <= 1) return; 
v = a[r]; i = 1-1; j = r; p 1-1; q r', 
for (;;) 

{ 

while (less(a[++i], v» 
while (less(v, a[--j]» if (j 1) break; 
if (i >= j) break; 
exch(a[i], a[j]); 
if (eq(a[i], v» { p++; exch(a[p], a[i]); } 
if (eq(v, a[j]» { q--; exch(a[q], a[j]); } 

} 

exch(a[i], a[r]); j = i-1; i = i+1; 

for (k = 1 ; k < p; k++, j--) exch(a[k], a[j]); 

for (k = r-1; k > q; k--, i++) exch(a[k], a[i]); 

quicksort (a, 1, j); 

quicksort (a, i, r); 


} 
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.7.37 Prove that the running time of the program in Exercise 7.36 is quadratic 
for all files with 0(1) distinct key values. 

7.38 Write a program to determine the number of distinct keys that occur 
in a file. Use your program to count the distinct keys in random files of N 
integers in the range ato M - 1, for M = 10, 100, and 1000, and for N = 103 

, 

10\ 105
, and 106

• 

7.7 Strings and Vectors 

When the sort keys are strings, we could use an abstract-string type 
implementation like Program 6. I I with the quicksort implementations 
in this chapter. Although this approach provides a correct and efficient 
implementation (faster than any other method we have seen so far, for 
large files), there is a hidden cost that is interesting to consider. 

The problem lies in the cost of the strcmp function, which always 
compares two strings by proceeding from left to right, comparing 
strings character by character, taking time proportional to the number 
of leading characters that match in the two strings. For the later 
partitioning stages of quicksort, when keys are close together, this 
match might be relatively long. As usual, because of the recursive 
nature of quicksort, nearly all the cost of the algorithm is incurred in 
the later stages, so examining improvements there is worthwhile. 

For example, consider a subfile of size 5 containing the keys 
discreet, discredit, discrete, discrepancy, and discretion. All 
the comparisons used for sorting these keys examine at least seven 
characters, when it would suffice to start at the seventh character, 
if the extra information that the first six characters are equal were 
available. 

The three-way partitioning procedure that we considered in Sec
tion 7.6 provides an elegant way to take advantage of this observation. 
At each partitioning stage, we examine just one character (say the one 
at position d), assuming that the keys to be sorted are equal in posi
tions 0 through d-1. We do a three-way partition with keys whose dth 
character is smaller than the dth character of the partitioning element 
on the left, those whose dth character is equal to the dth character of 
the partitioning element in the middle, and those whose dth charac
ter is larger than the dth character of the partitioning element on the 
right. Then, we proceed as usual, except that we sort the middle sub
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Table 7.2 Empirical study of quicksort variants 

This table gives relative costs for several different versions of quicksort 
on the task of sorting the first N words of Moby Dick. Using insertion 
sort directly for small subfiles, or ignoring them and insertion sorting the 
same file afterward, are equally effective strategies, but the cost savings 
is slightly less than for integer keys (see Table 7.r) because comparisons 
are more expensive for strings. If we do not stop on duplicate keys when 
partitioning, then the time to sort a file with all keys equal is quadratic; 
the effect of this inefficiency is noticeable on this example, because there 
are numerous words that appear with high frequency in the data. For 
the same reason, three-way partitioning is effective; it is 30 to 35 percent 
faster than the system sort. 

Iv V M Q X T 
-"~- --"--._-.--------

12500 8 7 6 10 7 6 

25000 16 14 13 20 17 12 

50000 37 31 31 45 41 29 

100000 91 78 76 103 113 68 

Key: 
V Quicksort (Program 7. r) 

Insertion sort for small subfiles 
M Ignore small subfiles, insertion sort afterward 
Q System qsort 
X Scan over duplicate keys (goes quadratic when keys all equal) 
T Three-way partitioning (Program 7.5) 

file, starting at character d+1. It is not difficult to see that this method 
leads to a proper sort on strings, which turns out to be very efficient 
(see Table 7.2). We have here a convincing example of the power of 
thinking (and programming) recursively. 

To implement the sort, we need a more general abstract type 
that allows access to characters of keys. The way in which strings are 
handled in C makes the implementation of this method particularly 
straightforward. However, we defer considering the implementation 
in detail until Chapter ro, where we consider a variety of techniques 
for sorting that take advantage of the fact that sort keys can often be 
easily decomposed into smaller pieces. 
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This approach generalizes to handle multidimensional sorts, 
where the sort keys are vectors and the records are to be rearranged 
such that the first components of the keys are in order, then those with 
first component equal are in order by second component, and so forth. 
If the components do not have duplicate keys, the problem reduces to 
sorting on the first component; in a typical application, however, each 
of the components may have only a few distinct values, and three-way 
partitioning (moving to the next component for the middle partition) 
is appropriate. This case was discussed by Hoare in his original paper, 
and is an important application. 

Exercises 

7.39 Discuss the possibility of improving selection, insertion, bubble, and 
shell sorts for strings. 

07-40 How many characters are examined by the standard quicksort algo
rithm (Program 7.1, using the string type in Program 6.1 I) when sorting a file 
consisting of IV strings of length t, all of which are equal? Answer the same 
question for the modification proposed in the text. 

7.8 Selection 

An important application related to sorting but for which a full sort is 
not required is the operation of finding the median of a set of numbers. 
This operation is a common computation in statistics and in various 
other data-processing applications. One way to proceed would be to 
sort the numbers and to look at the middle one, but we can do better, 
using the quicksort partitioning process. 

The operation of finding the median is a special case of the oper
ation of selection: finding the kth smallest of a set of numbers. Because 
an algorithm cannot guarantee that a particular item is the kth small
est without having examined and identified the k 1 elements that are 
smaller and the N k elements that are larger, most selection algo
rithms can return all the k smallest elements of a file without a great 
deal of extra calculation. 

Selection has many applications in the processing of experimental 
and other data. The use of the median and other order statistics to 

divide a file into smaller groups is common. Often, only a small part 
of a large file is to be saved for further processing; in such cases, a 
program that can select, say, the top 10 percent of the elements of the 
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Figure 7.13 
Selection of the median 

For the keys in our sorting exam
ple, partitioning-based selection 
uses only three recursive calfs to 
find the median, On the first call, 
we seek the eighth smallest in a 
file of size 75, and partioning gives 
the fourth smallest (the E); so on 
the second call, we seek the fourth 
smallest in a file of size 77, and 
partitioning gives the eighth small
est (the R); so on the third call, we 
seek the fourth smallest in a file of 
size 7, and find it (the M). The file 
is rearranged such that the median 
is in placet with smaller elements 
to the left and larger elements to 
the right (equal elements could be 
on either side), but it is not fully 
sorted 

Program 7.6 Selection 

This procedure partitions an array about the (k-l)th smallest element 
(the one in a[k]): It rearranges the array to leave a[l], ... , a[k-1] less 
than or equal to a[k], and a[k+1], ... , a[r] greater than or equal to 
a[k) . 

For example, we could call select (a, 0, N-1, N!2) to partition 
the array on the median value, leaving the median in a [N!2] . 

se1ect(Item a[J, int 1, int r, int k) 
{ int i; 

if (r <= 1) return; 
i = partition(a, 1, r); 
if (i > k) se1ect(a, 1, i-1, k); 
if (i < k) se1ect(a, i+1, r, k); 

} 

file might be more appropriate than a full sort. Another important 
example is the use of partitioning about the median as a first step in 
many divide-and-conquer algorithms. 

We have already seen an algorithm that we can adapt directly to 
selection. If k is extremely small, then selection sort (see Chapter 6) will 
work well, requiring time proportional to Nk: first find the smallest 
element, then find the second smallest by finding the smallest of the 
remaining items, and so forth. For slightly larger k, we shall see 
methods in Chapter 9 that we could adapt to run in time proportional 
to Nlogk. 

A selection method that runs in linear time on the average for 
all values of k follows directly from the partitioning procedure used in 
quicksort. Recall that quicksort'S partitioning method rearranges an 
array a [lJ , ... , a [rJ and returns an integer i such that a [1] through 
a [i-1J are less than or equal to a [iJ, and a [H1] through a [rJ are 
greater than or equal to a [i]. If k is equal to i, then we are done. 
Otherwise, if k < i, then we need to continue working in the left 
subfile; if k > i, then we need to continue working in the right subfile. 
This approach leads immediately to the recursive program for selection 
that is IJrogram 7.6. An example of this procedure in operation on a 
small file is given in Figure 7.13. 
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Program 7.7 Nonrecursive selection 

A nonrecursive implementation of selection simply does a partition, then 
moves the left pointer in if the partition fell to the left of the position 
sought, or moves the right pointer in if the partition fell to the right of 
the position sought. 

se1ect(Item a[], int 1, int r, int k) 

{ 


while (r > 1) 

{ 	 int i partition(a, 1, r); 

if (i >= k) r = i-l; 

if (i <= k) 1 = i+l; 


} 

} 

Program 7.7 is a nonrecursive version that follows directly from 
the recursive version in Program 7.6. Since that program always ends 
with a single call on itself, we simply reset the parameters and go back 
to the beginning. That is, we remove the recursion without needing a 
stack, also eliminating the calculations involving k by keeping k as an 
array index. 

Property 7.4 Quicksort-based selection is linear time on the average. 

As we did for quicksort, we can argue (roughly) that, on an extremely 
large file, each partition should roughly split the array in half, so the 
whole process should require about N + N /2 + N /4 + N /8 + . , , 2N 
comparisons. And, as it was for quicksort, this rough argument is 
not far from the truth. An analysis similar to, but significantly more 
complex than, that given in Section 7.2 for quicksort (see reference 
section) leads to the result that the average number of comparisons is 
about 

2N+2kln(N/k)+2(N k)ln(N/(N k)), 

which is linear for any allowed value of k. For k = N /2, this formula 
evaluates to give the result that about (2 + 21n 2)N comparisons are 
required to find the median. _ 

An example showing how this method finds the median in a large 
file is depicted in Figure 7.14. There is only one subfile, which is cut 
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Figure 7.14 
Selection of the median by 

partitioning 

The selection process involves par
titioning the subfile that contains 
the element sought; moving the 
left pointer to the right or the right 
pointer to the left depending on 
where the partition falls. 

CHAPTER SEVEN 

~1~MJ\W~~~lmtI 

~1~ttlJ\W~~\~f{{(1UI 

~\'~"~\"~1\YlJiIMlmJIt&WmjlltlJIIA!~:0:i2:;;;j;js: 

1\\lliIII1IM.il.Jltl.jn&\rM/A\rl/J!lI/lIll/II/;'2;~:~'l;/'f' 

l\\Il"\\\\\lI&'U~\I/JUUJJJI/JJJlIIlll>{i~,;;c':{?!'~~'i "l/'f 

<c· . ,\,;< ..~ J~\\ll\\U\\\\lll'Ull;. fiyibiU 

.... \'\\\\lAI\~i\\uU ; 
\l'~\I\"IIIIMm·l,!,·.J 

"llIlml~lb 
\;"11111111 

"·111111" 

'.' 11/,':' 

'\\.\\.\~~'\_\\l\\\\\\\\\\"1IImllllllllll/JIIfIIJI/JJJUI11I/J!lIl/I#JJl(WlfUI 

down in size by a constant factor on each call, so the procedure finishes 
in O(Iog N) steps. We can speed up the program with sampling, but 
we need to exercise care in doing so (see Exercise 7-45). 

The worst case is about the same as for quicksort-using this 
method to find the smallest element in a file that is already in sorted 
order would result in a quadratic running time. It is possible to modify 
this quicksort-based selection procedure such that its running time is 
guaranteed to be linear. These modifications, although theoretically 
important, are extremely complex and are not at all practical. 

Exercises 

7.41 About how many comparisons are required, on the average, to find the 
smallest of N elements using select? 

7.42 About how many comparisons are required, on the average, to find the 
aNth smallest element using select, for a = 0.1, 0.2, .. " O,g? 

7.43 How many comparisions are required in the worst case to find the 
median of N elements using select? 
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7.44 Write an efficient program to rearrange a file such that all the elements 
with keys equal to the median are in place, with smaller elements to the left 
and larger elements to the right . 

•• 7.45 Investigate the idea of using sampling to improve selection. Hint: Using 
the median may not always be helpful. 

.746 Implement a selection algorithm based on three-way partitioning for 
large random files with keys having t distinct values for t 2, 5, and 10. 
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Merging and Mergesort 

T HE QUICKSORT FAMILY of algorithms that we studied in 
Chapter 7 are based on the selection operation: finding the kth 

smallest element in a file. We saw that performing selection is akin to 
dividing a file into two parts, the k smallest elements and the N - k 
largest elements. In this chapter, we examine a family of sorting algo
rithms based on a complementary process, merging: combining two 
ordered files to make one larger ordered file. Merging is the basis for 
a straightforward divide-and-conquer (see Section 5.2) sorting algo
rithm, and for a bottom-up counterpart, both of which are easy to 
implement. 

Selection and merging are complementary operations in the sense 
that selection splits a file into two independent files, whereas merging 
joins two independent files to make one file. The contrast between 
these operations also becomes evident when we apply the divide-and
conquer paradigm to create a sorting method. We can rearrange the 
file such that, when two parts are sorted, the whole file is ordered; 
alternatively, we can break the file into two parts to be sorted, and 
then combine the ordered parts to make the whole ordered file. We 
have already seen what happens in the first instance: that is quicksort, 
which consists of a selection procedure followed by two recursive 
calls. In this chapter, we shall look at mergesort, which is quicksort'S 
complement in that it consists of two recursive calls followed by a 
merging procedure. 

One of mergesort's most attractive properties is that it sorts a file 
of N elements in time proportional to N log N, no matter what the 
input. In Chapter 9, we shall see another algorithm that is guaranteed 
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to finish in time proportional to N log N; it is called heapsort. The 
prime disadvantage of mergesort is that extra space proportional to 
N is needed in straightforward implementations. We can overcome 
this handicap, but doing so is sufficiently complicated and costly that 
it is generally not worthwhile in practice, particularly in light of the 
heapsort alternative. Mergesort is no more difficult to code than is 
heapsort, and the length of the inner loop is between those of quicksort 
and heapsort, so mergesort is worth considering if speed is of the 
essence, bad worst-case performance cannot be tolerated, and extra 
space is available. 

A guaranteed N log N running time can be a liability. For ex
ample, in Chapter 6, we saw that there are methods that can adapt 
to run in linear time in certain special situations, such as when there 
is a significant amount of order in the file, or when there are only a 
few distinct keys. By contrast, the running time of merge sort depends 
primarily on only the number of input keys, and is virtually insensitive 
to their order. 

Mergesort is a stable sort, and this feature tips the balance in its 
favor for applications where stability is important. Competitive meth
ods such as quicksort and heapsoIt are not stable. Various techniques 
to make such methods stable tend to require extra space; mergesoIt's 
extra-space requirement thus becomes less significant if stability is a 
prime consideration. 

Another feature of mergesort that is important in certain situa
tions is that mergesort is normally implemented such that it accesses 
the data primarily sequentially (one item after the other). For exam
ple, mergesort is the method of choice for sorting a linked list, where 
sequential access is the only kind of access available. For similar rea
sons, as we shall see in Chapter II, merging is often chosen as the 
basis for sorting on special-purpose and high-performance machines, 
because it is often the case that sequential access to data is fastest in 
such environments. 

8.I Two-Way Merging 

Given two ordered input files, we can combine them into one ordered 
output file simply by keeping track of the smallest element in each file 
and entering a loop where the smaller of the two elements that are 
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Program 8.I Merging 

To combine two ordered arrays a and b into an ordered array c, we use a 
for loop that puts an element into c at each iteration. If a is exhausted, 
the element comes from bi if b is exhausted, the element comes from a; 
and if items remain in both, the smallest of the remaining elements in 
a and b goes to c. Beyond the implicit assumption that the arrays are 
ordered, this implementation assumes that the array c is disjoint from 
(that is, does not overlap or share storage with) a and b. 

mergeAB(Item c[J, Item a[J, int N, Itemb[J. int M ) 
{ int i, j, k; 

for (i 0, j 0, k = 0; k < N+M; k++) 
{ 

if (i == N) { c[k] = b[j++J; continue; } 
if (j == M) { c[k] = a[i++J; continue; } 
c[k] = (less(a[iJ, b~J» ? a[i++J : b[j++]; 

smallest in their files is moved to the output, continuing until both 
input files are exhausted. We shall look at several implementations of 
this basic abstract operation in this and the next section. The running 
time is linear in the number of elements in the output, as long as 
we can perform the operation of finding the next smallest element in 
a file in constant time, which is certainly the case for files that are 
in sorted order and represented with a data structure that supports 
constant-time sequential access, such as an array or a linked list. This 
procedure is two-way merging; in Chapter II, we shall look in detail 
at multiway merging, when more than two files are involved. The 
most important application of multiway merging is external sorting, 
which is discussed in detail in that chapter. 

To begin, let us suppose that we have two disjoint ordered arrays 
a [OJ, ..., a [N-1J and b [0], .. "' b [M-1J of integers that we wish to 

merge into a third array c [OJ, " . " , c [N+M-1J. The obvious strategy, 
which is easily implemented, is to choose successively for c the smallest 
remaining element from a and b, as shown in Program 8.L This 
implementation is simple, but it has two important characteristics that 
we shall now examine. 



§8.1 CHAPTER EIGHT 

First, the implementation assumes that the arrays are disjoint. In 
particular, if a and b are huge arrays, then a third (also huge) array c is 
needed to hold the output. Instead of using extra space proportional 
to the size of the merged file, it would be desirable to have an in
place method, so that, for example, we could combine the ordered 
files a [1], ... , a [m] and a [m+1J, ... , a [r] into a single ordered file 
by moving the elements around within a [1], ... , a [r], without using 
a significant amount of other extra space. It is a worthwhile exercise to 
pause momentarily to consider how we might do that. This problem 
seems to be one that must be simple to solve; actuaUy, however, the 
solutions that are known are complicated, especially by comparison to 

Program 8.L Indeed, it is not easy to develop an algorithm for in-place 
merging that can outperform the alternative of using an in-place sort. 
We shall return to this issue in Section 8.2. 

Merging has specific applications in its own right. For example, 
in a typical data-processing environment, we might need to maintain 
a large (ordered) data file, to which we will need to regularly add new 
entries. One approach is to batch each group of new entries-append 
them to the (much larger) main file, then resort the whole file. This 
situation is tailor-made for merging: A much more efficient strategy 
is to sort the (small) batch of new entries, then to merge the resulting 
small file with the large main file. Merging has many other similar 
applications that make its study worthwhile. Our prime interest in 
this chapter will be the sorting methods that are based on merging. 

Exercises 
8.1 Suppose that an ordered file of size N is to be combined with an un
ordered file of size lvt, with At much smaller than N. How many times faster 
than resorting is the suggested merge-based method, as a function of M, for 
N = 103 

, 106 
, and 109 ? Assume that you have a sorting program that takes 

about Cj N 19 N seconds to sort a file of size N and a merging program that 
takes about c2(N + tv1) seconds to merge a file of size N with one of size AI, 
with CI "'" C2. 

8.2 How does the strategy of using insertion sort for the whole file compare 
with the two methods postulated in Exercise 8. I? (Assume that the small file 
is random, so each insertion goes about halfway into the large file, and the 
running time is about C31\t N /2, with C3 approximately the same as the other 
constants.) 

8.3 Describe what happens if you try to use Program 8.1 for an in-place 
merge, by using the call merge (a, a, N/2, a+N/2, N-N/2) for the keys A E 
OS U Y E I N as T. 
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08.4 	 Does Program 8.1, called as described in Exercise 8.3, produce proper 
output if and only if the two input subarrays are in sorted order? Prove your 
answer, or provide a counterexample. 

8.2 Abstract In-place Merge 

Although implementing a merge seems to require extra space, we still 
find the abstraction of an in-place merge useful in the implementations 
of sorting methods that we examine here. In our next implementa
tion of merging, we shall emphasize this point by using the interface 
merge (a, 1, m, r) to indicate that the merge subroutine will put the 
result of merging a [lJ , ... , a [mJ and a [m+ 1J , ... , a [rJ into a single 
ordered file, leaving the result in a [lJ , ... , a [rJ. We could implement 
this merge routine by first copying everything to an auxiliary array and 
then using the basic method of Program 8. I; instead we shall consider 
an improvement to that approach. Although the extra space for the 
auxiliary array seems to be a fixed practical cost, we shall consider in 
Section 8.4 further improvements that allow us to avoid the the extra 
time required to copy the array. 

The second characteristic of the basic merge that is worthy of 
note is that the inner loop includes two tests to determine whether the 
ends of the two input arrays have been reached. Of course, these two 
tests usually fail, and the situation thus cries out for the use of sentinel 
keys to allow the tests to be removed. That is, if elements with a key 
value larger than those of all the other keys are added to the ends of 
the a and aux arrays, the tests can be removed, because, when the a 
(b) array is exhausted, the sentinel causes the next elements for the c 
array to be taken from the b (a) array until the merge is complete. 

As we saw in Chapters 6 and 7, however, it is not always easy to 
use sentinels, either because it might not be easy to know the largest 
key value or because space might not be available conveniently. For 
merging, there is a simple remedy, which is illustrated in Figure 8.1. 
The method is based on the following idea: Given that we are resigned 
to copying the arrays to implement the in-place abstraction, we simply 
put the second array in reverse order when it is copied (at no extra 
cost), so that its associated pointer moves from right to left. This 
arrangement leads to the largest element-in whichever array it is 
serving as sentinel for the other array. Program 8.2 is an efficient 

A R S T G I N 
A R S T N I G 

R S T N I G A 
R S T N I A G 
R S T N A G I 
R S T A G I N 

S T A G I N R 
T A G N R S 

A G N R S T 

Figure 8.1 
Merging without sentinels 

To merge two ascending files, we 
copy into an auxiliary array, with 
the second file in reverse order im
mediately following the first. Then, 
we follow this simple rule: Move 
the left or right item, whichever 
has the smaller key, to the output. 
The largest key serves as a sen
tinel for the other file, no matter in 
which file the key is. This figure il
lustrates how the files A R STand 
GIN are merged. 



340 

is 

§8.2 	 CHAPTER EIGHT 

r---~-------. 

Program 8.2 Abstract in~place merge 

This program merges without using sentinels by copying the second 
array into aux in reverse order back to back with the first (putting aux 
in bitonic order). The first for loop moves the first array and leaves i 
pointing to 1, ready to begin the merge. The second for loop moves the 
second array, and leaves j pointing to r. Then, in the merge (the third 
for loop), the largest element serves as the sentinel in whichever array 
it is. The inner loop of this program is short (move to aux, compare, 
move back to a, increment i or j, increment and test k). 

Item aux[maxN] ; 

merge(Item a[], int 1, int m, int r) 


{ 	 int i, j, k; 
for (i m+l; i > 1; i--) aux[i-l] a[i-l] ; 
for (j m; j < r; j++) aux[r+m-j] a[j+l]; 
for (k 1; k <= r; k++) 

if (less(aux[j], aux[i])) 
a[k] = aux[j--]; else ark] aux 

} 

implementation of the abstract in-place merge based on this idea; it 
serves as the basis for the sorting algorithms that we discuss later in 
this chapter. It still uses an auxiliary array of size proportional to 
the merge output, but it is more efficient than the straightforward 
implementation because it avoids the tests for the ends of the arrays. 

A sequence of keys that increases, then decreases (or decreases, 
then increases) is referred to as a bitonic sequence. Sorting bitonic 
sequences is equivalent to merging, but it is sometimes convenient to 
cast a merging problem as a bitonic sorting problem; this method of 
avoiding sentinel tests is a simple example. 

An important property of Program 8.1 is that the merge is stable: 
It preserves the relative order of duplicate keys. This characteristic is 
easy to verify, and it is often worth making sure that stability is main
tained when we implement an abstract in-place merge, because a stable 
merge leads immediately to stable sorting methods, as we shall see in 
Section 8.3. It is not always easy to maintain stability: for example, 
Program 8.1 is not stable (see Exercise 8.6). This consideration further 
complicates the problem of developing a true in-place merge. 
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Exercises 

[> 8.S Show how the keys A E Q S UYE I NOS T are merged using Program 8.2, 
in the style ofthe example diagrammed in Figure 8.1. 

o 8.6 Explain why Program 8.2 is not stable, and develop a version that is 
stable. 

8.7 What is the result when Program 8.2 is used for the keys E A S YQUE 
S T ION? 

08.8 	 Does Program 8.2 produce proper output if and only if the two input 
subarrays are in sorted order? Prove your answer, or provide a counterexam
ple. 

8.3 Top-Down Mergesort 

Once we have a merging procedure, it is not difficult to use that proce
dure as the basis for a recursive sorting procedure. To sort a given file, 
we divide it in half, recursively sort the two halves, and then merge 
them. An implementation is given in Program 8.3; an example is de
picted in Figure 8.2. As mentioned in Chapter 5, this algorithm is one 
of the best-known examples of the utility of the divide-and-conquer 
paradigm for efficient algorithm design. 

Program 8.3 Top-down mergesort 

This basic mergesort implementation is a prototypical divide-and
conquer recursive program. It sorts the array a[l], ... , a [r] by dividing 
it into two parts a [1], ... , a [m] and a [m+1], ... , a [r], sorting them 
independently (via recursive calls), and merging the resulting ordered 
subfiles to produce the final ordered result. The merge function may 
need to use an auxiliary array big enough to hold a copy of the input, 
but it is convenient to consider the abstract operation as an in place 
merge (see text). 

void mergesort(Item a[], int 1, int r) 
{ int m = (r+1)/2; 

if (r <= 1) return; 
mergesort(a, 1, m); 
mergesort(a, m+l, r); 
merge(a, 1, m, r); 

} 
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Figure 8.2 
Top-down mergesort example 

Each line shows the result of a call 
on merge during top-down merge
sort. First, we merge A and 5 to 
get A 5; then, we merge 0 and 
R to get 0 R; then, we merge 0 
R with A 5 to get A 0 R S. Later, 
we merge I T with G N to get G 
I N T, then merge this result with 
A 0 R 5 to get A GIN 0 R 5 T, 
and 50 on. The method recursively 
builds up small sorted files into 
larger ones. 
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Top-down mergesort is analogous to a top-down management 
style, where a manager gets an organization to take on a big task by 
dividing it into pieces to be solved independently by underlings. If each 
manager operates by simply dividing the given task in half, then putting 
together the solutions that the subordinates develop and passing the 
result up to a superior, the result is a process like mergesort. Not much 
real work gets done until someone with no subordinates gets a task (in 
this case, merging two files of size 1); but management does much of 
the work, putting together solutions. 

Mergesort is important because it is a straightforward optimal 
sorting method (it runs in time proportional to N log N) that can be 
implemented in a stable manner. These facts are relatively easy to 

prove. 
As we have seen in Chapter 5 (and, for quicksort, in Chapter 7), 

we can use tree structures to help us to visualize the recursive call 
structure of a recursive algorithm, to help us to understand variants 
of the algorithm, and to expedite the analysis of the algorithm. For 
mergesort, the recursive call structure depends only upon the size of the 
input. For any given N, we define a tree, called a divide-and-conquer 
tree, that describes the sizes of the subfiles that are processed during 
the operation of Program 8.3 (see Exercise 5.73): If N is 1, the tree 
is a single node with label 1; otherwise, the tree is a node containing 
the file size N as the root, the tree for lN /2J as the left subtree, and 
the tree for rN /21 as the right subtree. Each node in the tree thus 
corresponds to a call on mergesort, with the label giving the problem 
size corresponding to the recursive call. When N is a power of 2, this 
construction leads to a complete balanced tree with powers of 2 in all 
the nodes and 1s in all the external nodes. When N is not a power of 2, 
the tree is more complicated. Examples of both cases are illustrated in 
Figure 8.3. We have enountered such trees before, when considering 
an algorithm with the same recursive call structure as mergesort, in 
Section 5.2. 

Structural properties of divide-and-conquer trees are directly rel
evant to the analysis of merge sort. For example, the total number of 
comparisons used by the algorithm is precisely the sum of all the node 
labels. 

Property 8. I Mergesort requires about N 19 N comparisons to sort 
any file of N elements. 
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In the implementations in Sections 8.1 and 8.2, each (N/2)-by-(N/2) 
merge will require N comparisons (this amount could vary by 1 or 
2, depending on how sentinels are used). The total number of com
parisons for the full sort is therefore described by the standard divide
and-conquer recurrence: IvIN AflN/2J + 2\,1rN/21 + N, with 1'11 O. 
The recurrence also descrihes the sum of the node labels and the ex
ternal path length of a divide-and-conquer tree with N nodes (see 
Exercise 5.73). The stated result is easy to verify when N is a power 
of 2 (see Formula 2.4) and to prove by induction for general N. Exer
cises 8.12 through 8.14 describe a direct proof. _ 

Property 8.2 Mergesort uses extra space proportional to N. 

This fact is clear from the discussion in Section 8.2. We can take some 
steps to reduce the extra space used at the expense of making the algo
rithm considerably more complicated (for example, see Exercise 8.21). 
As we shall see in Section 8.7, mergesort is also effective when the file 
to be sorted is organized as a linked list. In this case, the property 
still holds, but the extra space is used for the links. For arrays, as we 
noted in Section 8.2 and shall discuss in Section 8.4, it is possible to 
do merges in place, although this strategy is unlikely to be worthwhile 
in practice. _ 

Property 8.3 Mergesort is stable, if the underlying merge is stable. 

This fact is easy to verify by induction. For merge implementations 
such as Program 8.1, it is easy to show that the relative position of 

Figure 8.3 
Divide-and-conquer trees 

These tree diagrams depict the 
sizes of the subproblems created 
by top-down mergesort. Unlike 
the trees corresponding to quick
sort, for example, these patterns 
are dependent on only the initial 
file size, rather than on the val
ues of the keys in the file. The top 
diagram shows how a file of 32 el
ements is sorted. We (recursively) 
sort two files of 16 elements, then 
merge them. We sort the files of 
16 elements by (recursively) sorting 
files of 8 elements, and so forth. 
For file sizes that are not a power 
of 2, the pattern is more intricate, 
as indicated by the bottom dia
gram. 
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duplicate keys is undisturbed by merging. However, the more intricate 
the algorithm, the higher the chance that stability is disturbed (see 
Exercise 8.6). _ 

Property 8.4 The resource requirements ofmergesort are insensitive 
to the initial order of its input. 

In our implementations, the input determines only the order in which 
elements are processed in the merges. Each pass requires space and a 
number of steps proportional to the subfile size, because of the costs of 
moving to the auxiliary array. The two branches of if statements may 
take slightly different amounts of time in the compiled code, which 
could lead to a slight input-dependent variation in running time, but 
the number of comparisons and other operations on the input is not 
dependent on how it is ordered. Note that this is not the same as saying 
that the algorithm is nonadaptive (see Section 6.I}-the sequence of 
comparisons does depend on the input order. _ 

Exercises 

[> 8.9 Show the merges that Program 8.3 does to sort the keys E AS Y QUE 
STION. 

8.10 Draw divide-and-conquer trees for N = 16, 24, 31, 32, 33, and 39 . 

• 8.1 I Implement a recursive mergesort on arrays, using the idea of doing 
three-way, rather than two-way, merges. 

08.12 	 Prove that all the nodes labeled 1 in a divide-and-conquer tree are on 
the bottom two levels. 

08.13 	 Prove that the labels on the nodes on each level in the divide-and
conquer tree of size N sum to N, except possibly for the bottom leveL 

o 8.I4 Using Exercises 8.12 and 8.13, prove thatthe number of comparisons 
required by mergesort is between N 19 Nand N 19 N + N . 

• 8.15 	 Find and prove a relationship between the number of comparisons used 
by mergesort and the number of bits in the pg Nl-bit positive numbers less 
than N. 

8.4 Improvements to the Basic Algorithm 

As we saw with quicksort, we can improve most recursive algorithms 
by handling small cases differently. The recursion guarantees that the 
method will be used often for small cases, so improvements in handling 
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Program 8.4 Mergesort with no copying 

This recursive program is set up to sort b, leaving the result in a. Thus, 
the recursive calls are written to leave their result in b, and we use 
Program 8.1 to merge those files from b into a. In this way, all the data 
movement is done during the course of the merges. 

Item aux [maxN] ; 
void mergesortABr(Item a[], Item b[], int 1, int r) 

{ int m = (1+r)/2; 
if (r-1 <= 10) { insertion(a, 1, r); return; } 
mergesortABr(b, a, 1, m); 
mergesortABr(b, a, m+l, r); 
mergeAB(a+1, b+1, m-1+1, b+m+l, r-m); 

} 

void mergesortAB(Item a[], int 1, int r) 
{ int i; 

for (i = 1; i <= r; i++) aux[i] = a[i]; 

them lead to improvements in the whole algorithm. Thus, just as it 
did with quicksort, switching to insertion sort for small subfiles will 
improve the running time of a typical mergesort implementation by 10 
to 15 percent. 

A second improvement that is reasonable to consider for merge
sort is to eliminate the time taken to copy to the auxiliary array used 
for merging. To do so, we arrange the recursive calls such that the 
computation switches the roles of the input array and the auxiliary 
array at each leveL One way to proceed is to implement two versions 
of the routines-one taking its input in aux and its output in a, and the 
other taking its input in a and its output in aux-then having the two 
versions call each other. A different approach is shown in Program 8.4, 
which makes one copy of the array at the beginning, then uses Pro
gram 8.! and switches arguments in the recursive calls to eliminate 
the explicit array copy operation. Instead, we switch back and forth 
between putting the merged output in the auxiliary array and putting 
it in the input array. (This program is a tricky one.) 
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This technique eliminates the array copy at the expense of putting 
back into the inner loop the tests for whether the input arrays are 
exhausted. (Recall that our technique for eliminating those tests in 
Program 8.2 involved making the array bitonic during the copy.) That 
loss can be regained via a recursive implementation of the same idea: 
We implement routines for both merge and mergesort, one each for 
putting arrays in increasing order and in decreasing order. With this 
strategy, it is possible to bring back the bitonic strategy, and thus to 
arrange that the inner loop for the merge never needs sentinels. 

Given that it uses up to four copies of the basic routines and some 
mindbending recursive argument switchery, this superoptimization is 
only recommended for experts (or students!), but it does speed up 
mergesott considerably. The experimental results that we discuss in 
Section 8.6 indicate that the combination of all these improvements 
speeds up mergesort by a factor of about 40 percent, but still leaves 
mergesort about 25 percent slower than quicksort. These numbers 
are dependent on the implementation and on the machine, but similar 
results are likely in a variety of situations. 

Other implementations of merging that involve an explicit test for 
the first file being exhausted may lead to a greater variation of running 
time depending on the input, but not to much of one. In random files, 
the size of the other subfile when the first subfile exhausts will be small, 
and the cost of moving to the auxiliary array still will be proportional 
to the subfile size. We might consider improving the performance of 
mergesort when a great deal of order is present in the file by skipping 
the call on merge when the file is already in sorted order, but this 
strategy is not effective for many types of files. 

Exercises 

8. I6 Implement an abstract in-place merge that uses extra space proportional 
to the size of the smaller of the two arrays to be merged. (Your method should 
cut in half the space requirement for mergesort.) 

8.17 Run mergesort for large random files, and make an empirical determi
nation of the average length of the other subfile when the first subfile exhausts, 
as a function of N (the sum of the two subfile sizes for a given merge). 

8.I8 Suppose that Program 8.3 is modified to skip the call on merge when 
arm] <a[m+1]. How many comparisons does this alternative save when the file 
to be sorted is already in sorted order? 
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8.19 Run the modified algorithm suggested in Exercise 8. I 8 for large ran
dom files. Determine empirically the average number of times the merge is 
skipped, as a function of N (the original file size for the sort), 

8.20 Suppose that mergesort is to be run on h-sorted files for small h. How 
would you change the merge routine to take advantage of this property of the 
input? Experiment with shellsort-mergesort hybrids based on this routine. 

8.21 Develop a merge implementation that reduces the extra space require
ment to max(lvf, N/M), based on the following idea. Divide the array into 
N/lv! blocks of size M (for simplicity in this description, assume that N is a 
multiple of lv1). Then, (i) considering the blocks as records with their first key 
as the sort key, sort them using selection sort; and (ii) run through the array 
merging the first block with the second, then the second block with the third, 
and so forth. 

8.22 Prove that the method of Exercise 8.21 runs in linear time. 

8.23 Implement bitonic mergesort with no copying. 

8.5 Bottom-Up Mergesort 

As we discussed in Chapter 5, every recursive program has a non
recursive analog that, although equivalent, may perform computa
tions in a different order. As prototypes of the divide-and-conquer 
algorithm-design philosophy, nonrecursive implementations of merge
sort are worth studying in detail. 

Consider the sequence of merges done by the recursive algorithm. 
In the example given in Figure 8.2, we saw that a file of size 15 is sorted 
by the following sequence of merges: 

I-by-l I-by-l 2-by-2 I-by-l I-by-l 2-by-2 4-by-4 

I-by-l I-by-l 2-by-2 I-by-l 2-by-l 4-by-3 8-by-7. 

This order of the merges is determined by the recursive structure of 
the algorithm. However, the subfiles are processed independently, 
and merges can be done in different sequences. Figure 8.4 shows 
the bottom-up strategy for the same example, where the sequence of 
merges is 

I-by-l I-by-l I-by-l I-by-l I-by-l I-by-l I-by-l 

2-by-2 2-by-2 2-by-2 2-by-l 4-by-4 4-by-3 8-by-7. 

In both cases, there are seven I-by-l merges, three 2-by-2 merges, a 
2-by-l merge, a 4-by-4 merge, a 4-by-3 merge, and an 8-by-7 merge, 
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Figure 8.4 
Bottom-up mergesort example 

Each line shows the result of a call 
on merge during bottom-up merge
sort. The l-by-l merges are done 
first: A and S are merged to give 
A S; then, 0 and R are merged to 
give 0 R; and so forth. Since the 
file size is odd, the last E is not in
volved in a merge. On the second 
pass, the 2-by-2 merges are done: 
We merge A S with 0 R to get A 
o R S, and so forth, finishing with 
a 2-by-l merge. The sort is com
pleted with a 4-by-4 merge, a 4
by-3 merge, and, finally, an 8-by-7 
merge. 

CHAPTER EIGHT 

Program 8.5 Bottom-up mergesort 

Bottom-up mergesort consists of a sequence of passes over the whole 
file doing m-by-m merges, doubling m on each pass. The final subfile is of 
size m only if the file size is an even multiple of m, so the final merge is 
an m-by-x merge, for some x less than or equal to m. 

#define min(A, B) (A < B) ? A : B 

void mergesortBU(Item a[], int 1, int r) 


{ int i, m; 

for (m = 1; m <= r-1; m = m+m) 


for (i 1; i <= r-m; i += m+m) 

merge(a, i, i+m-1, min(i+m+m-1, r)); 


} 

but the merges are done in different orders. The bottom-up strategy is 
to merge the smallest remaining files, passing from left to right through 
the array. 

The sequence of merges done by the recursive algorithm is deter
mined by the divide-and-conquer tree shown in Figure 8.3: We simply 
traverse the tree in postorder. As we saw in Chapter 3, a nonrecursive 
algorithm using an explicit stack can be developed that gives the same 
sequence of merges. But there is no need to restrict to postorder: Any 
tree traversal that traverses the subtrees of a node before it visits the 
node itself will give a proper algorithm. The only restriction is that 
files to be merged must have been sorted first. For mergesort, it is 
convenient to do all the 1-by-1 merges first, then all the 2-by-2 merges, 
then all the 4-by-4 merges, and so forth. This sequence corresponds to 
a level-order traversal, working up from the bottom of the recursion 
tree. 

We saw in several examples in Chapter 5 that, when we are think
ing in a bottom-up fashion, it is worthwhile to reorient our thinking 
towards a combine-and-conquer strategy, where we take solutions to 
small subproblems and combine them to get a solution to a larger 
problem. Specifically, we get the combine-and-conquer nonrecursive 
version of mergesort in Program 8.5 as follows: We view all the ele
ments in a file as ordered sublists of size 1. Then, we scan through 
the list performing 1-by-1 merges to produce ordered sublists of size 
2; then, we scan through the list performing 2-by-2 merges to produce 
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ordered sublists of size 4; then, we do 4-by-4 merges to get ordered 
sublists of size 8; and so on, until the whole list is ordered. 

If the file size is a power of 2, the set of merges done by bottom-up 
mergesort is precisely the same as that done by the recursive merge
sort, but the sequence of merges is different. Bottom-up merges art 
corresponds to a level-order traversal of the divide-and-conquer tree, 
from bottom to top. By contrast, we have referred to the recursive al
gorithm as top-down mergesort because the postorder traversal works 
from the top of the tree down. 

If the file size is not a power of 2, the bottom-up algorithm does 
a different set of merges, as shown in Figure 8.5. The bottom-up algo
rithm corresponds to a combine-and-conquer tree (see Exercise 5.75), 
which is different from the divide-and-conquer tree related to the top
down algorithm. It is possible to arrange for the sequence of merges 
made by a recursive method to be the same as that for a nonrecursive 
method, but there is no particular reason to do so, because differences 
in cost are slight relative to total cost. 

Properties 8.1 through 8.4 hold for bottom-up mergesort, and 
we have the following additional properties: 

Property 8.5 All the merges in each pass of a bottom-up mergesort 
involve file sizes that are a power of 2, except possibly the final file 
size. 

This fact is easy to prove by induction. _ 

Property 8.6 The number of passes in a bottom-up mergesort of N 
elements is precisely the number of bits in the binary representation of 
N (ignoring leading 0 bits). 

Each pass in a bottom-up mergesort doubles the size of the ordered 
subfiles, so the size of the sublists after k passes is 2k. Thus, the 
number of passes to sort a file of N elements is the smallest k for which 

Figure 8.5 
Bottom-up mergesort file sizes 

The merging patterns for bottom-up 
mergesort are completely different 
from those for top-down mergesort 
(Figure 8.3) when the file size is 
not a power of 2. For bottom-up 
mergesort, all file sizes except pos
Sibly the final one are a power of 
2. These differences are of interest 
in understanding the basic struc
ture of the algorithms, but have 
little influence on performance. 
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Figure 8.6 
Bottom-up mergesort 
We need to do only seven passes 
to sort a file of 200 elements us
ing bottom-up mergesort. Each 
pass halves the number of sorted 
sub files and doubles the subfi/es' 
lengths (except possibly that of the 
final one). 
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2k 2: N, which is precisely pg Nl, the number of bits in the binary 
representation of N. We could also prove this result by induction or 
by analyzing structural properties of combine-and-conquer trees. _ 

The operation of bottom-up mergesort on a larger file is given in 
Figure 8.6. We can sort 1 million elements in 20 passes through the 
data, 1 billion elements in 30 passes through the data, and 50 forth. 

In summary, bottom-up and top-down mergesort are two 
straightforward sorting algorithms that are based upon the operation 
of merging two ordered 5ubfiles into a combined ordered output file. 
The algorithms are closely related and indeed perform the same set 
of merges when the file size is a power of 2, but they are certainly 
not identical. Figure 8.7 is an illustration of their differing dynamic 
performance characteristics on a large file. Either algorithm might 
be used for practical applications when space is not at premium and 
a guaranteed worst-case running time is desirable. Both algorithms 
are of interest as prototypes of the general divide-and-conquer and 
combine-and-conquer algorithm design paradigms. 

Exercises 

8.24 Show the merges that bottom-up mergesort (Program 8.5) does for the 
keys E A S YQUE S T ION. 

8.25 Implement a bottom-up mergesort that starts by sorting blocks of I\;! 
elements with insertion sort. Determine empirically the value of 111 for which 
your program runs fastest to sort random files of N elements, for N = 103 

, 

10\ 105
, and 106

• 

8.26 Draw trees that summarize the merges that Program 8.5 performs, for 
N = 16,24,31,32, 33, and 39. 
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8.27 Write a recursive merge sort that performs the same merges that bottom
up mergesort does. 

8.28 Write a bottom-up mergesort that performs the same merges that top
down mergesort does. (This exercise is much more difficult than is Exer
cise 8.27.) 

8.29 Suppose that the file size is a power of 2. Remove the recursion from 
top-down mergesort to get a nonrecursive mergesort that performs the same 
sequence of merges. 

8.30 Prove that the number of passes taken by top-down mergesort is also 
the number of bits in the binary representation of N (see Property 8.6). 

8.6 Performance Characteristics of Mergesort 

Table 8.1 shows the relative effectiveness of the various improvements 
that we have examined. As is often the case, these studies indicate 
that we can cut the running time by half or more when we focus on 
improving the inner loop of the algorithm. 

In addition to netting the improvements discussed in Section 8.2, 
we might achieve further gains by ensuring that the smallest elements 
in the two arrays are kept in simple variables or machine registers, to 
avoid unnecessary array accesses. Thus, the inner loop of mergesort 
can basically be reduced to a comparison (with conditional branch), 
two pointer increments (k and either i or j), and a test with conditional 
branch for loop completion. The total number of instructions in the 
inner loop is slightly higher than that for quicksort, but the instruc
tions are executed only N 19 N times, where quicksort'S are executed 
39 percent more often (or 29 percent with the median-of-three mod
ification). Careful implementation and detailed analysis are required 
for more precise comparison of the algorithms in particular environ
ments; nonetheless, we do know that mergesort has an inner loop that 
is slightly longer than that of quicksort. 

As usual, we must add the caveat that pursuit of improvements 
of this nature, although irresistible to many programmers, can some
times lead to marginal gains and should be taken on only after more 
important considerations have been resolved. In this case, mergesort 
has the clear advantages over quicksort that it is stable and is guaran
teed to run fast (no matter what the input), and the clear disadvantage 
that it uses extra space proportional to the size of the array. If these 
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Figure 8.7 
Bottom-up versus top-down 

mergesort 

Bottom-up mergesort (left) consists 
of a series of passes through the 
file that merge together sorted sub
files, until just one remains. Every 
element in the file. except possi
bly a few at the end, is involved in 
each pass. By contrast, top-down 
mergesort (right) sorts the first half 
of the file before proceeding to the 
second half (recursively), so the 
pattern of its progress is decidedly 
different. 
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Table 8.1 Empirical study of mergesort algorithms 

These relative timings for various sorts on random files of floating point 
numbers, for various values of N, indicate that standard quicksort is 
about twice as fast as standard mergesort; that adding a cutoff for small 
files lowers the running times of both bottom-up and top-down merge
sort by about 15 percent; that top-down mergesort is about 10 percent 
faster than bottom-up mergesort for these file sizes; and that even elimi
nating the cost of the file copy leaves mergesort 50 to 60 percent slower 
than plain quicksort for randomly ordered files (see Table 7.1). 

top-down bottom-up 
----~~-~---------~-

N Q T T* 0 B B* 

12500 2 5 4 4 5 4 

25000 5 12 8 8 11 9 

50000 11 23 20 17 26 23 

100000 24 53 43 37 59 53 

200000 52 111 92 78 127 110 

400000 109 237 198 168 267 232 

800000 241 524 426 358 568 496 
-~~--~-------~-~-----------"--"---------------

Key: 
Q Quicksort, standard (Program 7. I) 

T Top-down mergesort, standard (Program 8.1) 

T* Top-down mergesort with cutoff for small files 

o Top-down mergesort with cutoff and no array copy 
B Bottom-up mergesort, standard (Program 8.5) 
B* Bottom-up mergesort with cutoff for small files 

------.---------------- 

factors point to the use of mergesort (and speed is important), then the 

improvements that we have suggested may be worth considering. Fur
thermore, it may be worthwhile to study carefully the code produced 
by compilers, the special properties of the machine architecture, and 
so forth. 

On the other hand, we must also add the usual caveat that pro
grammers should always have one eye on performance, to avoid costs 
that are completely unnecessary. All programmers (and authors!) have 
suffered the embarrassment of having a simple unnoticed characteristic 
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Figure 8.8 
Sorting of various types 

of files with bottom-up 
mergesart 

The running time for mergesort 
is insensitive to the input. These 
diagrams illustrate that the num
ber of passes taken by bottom-up 
mergesort for files that are random, 
Gaussian, nearly ordered, nearly 
reverse ordered, and randomly or
dered with 10 distinct key values 
(left to right) depends only on the 
file size, no matter what the in
put values are. This behavior is in 
sharp contrast to that of quicksort 
and to that of many other algo
rithms. 

~!lfW1
, ' 
I 
,~-..... 
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of an implementation dominate all that implementation's other sophis
ticated mechanisms. It is not unusual for a factor-of-2 improvement in 
running time to be found when implementations are examined care
fully in this way. Frequent testing is the most effective defense against 
last-minute surprises of this type. 

We discussed these points at length in Chapter 5, but the allure of 
premature optimization is so strong that it is worthwhile to reinforce 
them each time that we study techniques for performance improve
ment at this level of detail. For mergesort, we are comfortable with 



354 CHAPTER EIGHT 

optimizing because Properties 8.1 through 8.4 essentially characterize 
the performance, and hold for all the implementations that we have 
examined: Their running time is proportional to N log N, and is insen
sitive to the input (see Figure 8.8); they use extra space; and they can be 
implemented in a stable manner. Maintaining these while improving 
the running time is generally not difficult. 

Exercises 

8.31 Implement bottom-up mergesort with no array copy. 

8,32 Develop a three-level hybrid sort that uses quicksort, mergesort, and 
insertion sort to get a method that is as fast as the most efficient quicksort 
(even on small files), but can guarantee better than quadratic performance in 
the worst case. 

8.7 Linked-List Implementations of Mergesort 

Extra space appears to be required for a practical implementation of 
mergesort, so we may as well consider a linked-list implementation. 
In other words, rather than use the extra space for an auxiliary array, 
we can use it for links. Or, we might be presented with the problem of 
sorting a linked list in the first place (see Section 6.9). In fact, mergesort 
turns out to be well-suited to linked lists. A full implementation of 
the merge function for linked lists is given in Program 8.6. Note that 
the code for the actual merge is just about as simple as the code for 
array-based merge (Program 8.2). 

Given this merge function, a top-down recursive-list merge sort 
is easy to derive. Program 8.7 is a direct recursive implementation 
of a function that takes as input a pointer to an unordered list, and 
returns as its value a pointer to a list comprising the same elements, 
in sorted order. The program does its work by rearranging the nodes 
of the list: No temporary nodes or lists need to be allocated. It might 
be convenient to pass the list length as a parameter to the recursive 
program or to store the length with the list; Program 8.7 uses a trick 
to find the middle of the list. This program is simple to understand in 
a recursive formulation, even though it is a sophisticated algorithm. 

We can also use a bottom-up combine-and-conquer approach 
for linked-list mergesort, although details of keeping track of links 
make this implementation more challenging than it might seem. As 
we discussed when considering bottom-up array-based methods in 
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Program 8.6 Linked-list merge 

This program merges the list pointed to by a with the list pointed to 
by b, with the help of an auxiliary pointer c. The key comparison in 
merge includes equality, so that the merge will be stable, if the b list is 
considered to follow the a list. For simplicity, we adopt the convention 
that all lists end with NULL. Other conventions for ending the list would 
work as well (see Table 3.r). More important, we do not use list head 
nodes, to avoid proliferation of them. 

link merge(link a, link b) 
{ struct node head; link c = &head; 

while «a != NULL) && (b != NULL)) 
if (less(a->item, b->item)) 

{ c->next a; c = a; a = a->next; } 
else 

{ c->next = b; c = b; b = b->next; } 
c->next = (a == NULL) ? b a; 
return head.next; 

} 

Section 8.3, there is no particular reason to adhere precisely to the set 
of merges performed by the recursive or array-based versions when we 
are developing a bottom-up list merge sort. 

An amusing algorithm is available in this case that is simple to 
explain and is not difficult to implement: Put the items in a circular list, 
then proceed through the list, merging together pairs of ordered subfiles 
until done. This method is conceptually simple, but (as with most low
level programs involving linked lists) it can be tricky to implement (see 
Exercise 8.36). Another approach, given in Program 8.8, is to keep all 
the lists to be merged on a queue ADT. This method is also conceptually 
simple, but (as with many high-level programs involving ADTs) it can 
also be tricky to implement. 

One important feature is that this method takes advantage of 
any order that might be already present in the file. Indeed, the number 
of passes through the list is not rig Nl, but rather is pg Sl, where S 
is the number of ordered subfiles in the original array. The method 
is sometimes called natural mergesort. For random files, it offers no 
great advantage, because only a pass or two is likely to be saved (in 
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Program 8.7 Top-down list mergesort 

This program sorts by splitting the list pointed to by c into two halves 
pointed to by a and b, sorting the two halves recursively, and then using 
merge to produce the final result. The input list must end with NULL 

(and therefore so does the b list), and the explicit instruction that sets 
c->next to NULL puts NULL at the end of the a list. 

link merge(link a, link b); 
link mergesort(link c) 

{ link a, b; 
if (c == NULL I I c->next == NULL) return c; 
a = c; b = c->next; 
while «b != NULL) && (b->next != NULL» 

{ c = c->next; b = b->next->next; } 
b = c->next; c->next = NULL; 
return merge (merge sort (a) , mergesort(b»; 

} 

fact, the method is likely to be slower than the top-down method, 
because of the extra cost of checking for order in the file), but it is not 
uncommon for a file to consist of blocks of ordered subfiles, and this 
method will be effective in such situations. 

Exercises 

.8.33 Develop an implementation of top-down list merge sort that carries the 
list length as a parameter to the recursive procedure and uses it to determine 
how to split the lists . 

• 8.34 	 Develop an implementation of top-down list mergesort that works with 
lists that carry their length in header nodes and uses the lengths to determine 
how to split the lists. 

8.35 Add a cutoff for small subfiles to Program 8.7. Determine the extent 
to which proper choice of the cutoff value speeds up the program. 

08.36 	 Implement bottom-up mergesort using a circular linked list, as de
scri bed in the text. 

8,37 Add a cutoff for small subfiles to your bottom-up circular-list mergesort 
from Exercise 8.36. Determine the extent to which proper choice of the cutoff 
value speeds up the program. 

8.38 Add a cutoff for small subfiles to Program 8.8. Determine the extent 
to which proper choice of the cutoff value speeds up the program. 
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Program 8.8 Bottom-up list mergesort 

This program uses a queue ADT (Program 4.1 8, with QUEUE replaced by 
Qin identifiers, for brevity) to implement a bottom-up mergesort. Queue 
elements are ordered linked lists. After initializing the queue with lists of 
length 1, the program simply removes two lists from the queue, merges 
them, and puts the result back on the queue, continuing until there is 
only one list. This corresponds to a sequence of passes through all the 
elements, doubling the length of the ordered lists on each pass, as in 
bottom-up mergesort. 

link mergesort(link t) 
{ link u; 

for (Qinit(); t != NULL; t = u) 
{ u = t->next; t->next NULL; Qput(t); } 

t = QgetO; 
while (!Qempty(» 

return t; 
________{__Q_P_ut_(_t~)~;~t.__=__me_r_g_e_(Q_g_e_t_(_)_'~Qg.e.t"~(»;•} 

} 
L 

08.39 	 Draw combine and conquer trees that summarize the merges that Pro
gram 8.8 performs, for N = 16,24,31,32,33, and 39. 

8.40 Draw combine and conquer trees that summarize the merges that 
circular-list mergesort (Exercise 8.38) performs, for N 16, 24, :31, 32, 
33, and 39. 

8.4I Run empirical studies to develop a hypothesis about the number of 
ordered subfiles in an array of N random 32-bit integers . 

• 	8.42 Empirically determine the number of passes needed in a natural merge
sort for random 64-bit keys with N = 103

, 104
, 105

, and 106
• Hint: You do 

not need to implement a sort (or even generate full 64-bit keys) to complete 
this exercise . 

• 	8.43 Convert Program 8.8 into a natural mergesort, by initially populating 
the queue with the ordered subfiles that occur in the input. 

08,44 Implement an array-based natural merge sort. 

8.8 Recursion Revisited 

The programs of this chapter, and quicksort from the previous chapter, 
are typical of implementations of divide-and-conquer algorithms. We 
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shall see several algorithms with similar structure in later chapters, so 
it is worthwhile to take a more detailed look at basic characteristics of 
these implementations. 

Quicksort might perhaps more properly be called a conquer-and
divide algorithm: In a recursive implementation, most of the work for 
a particular activation is done before the recursive calls. On the other 
hand, the recursive merge sort has more the spirit of divide and conquer: 
First, the file is divided into two parts; then, each part is conquered 
individually. The first problem for which mergesort does processing is 
a small one; at the finish, the largest subfile is processed. Quicksort 
starts with processing on the largest subfile, and finishes up with the 
small ones. It is amusing to contrast the algorithms in the context of 
the management analogy mentioned at the beginning of this chapter: 
quicksort corresponds to each manager investing effort to make the 
right decision on how to divide up the task, so the job is complete 
when the subtasks are done, whereas mergesort corresponds to each 
manager making a quick arbitrary choice to divide the task in half, 
then needing to work to cope with the consequences after the subtasks 
are done. 

This difference is manifest in the nonrecursive implementations 
of the two methods. Quicksort must maintain a stack, because it has 
to save large subproblems that are divided up in a data-dependent 
manner. Mergesort admits a simple nonrecursive version because the 
way in which it divides the file is independent of the data, so we can 
rearrange the order in which it processes subproblems to give a simpler 
program. 

We might argue that quicksort is more naturally thought of as a 
top-down algorithm, because it does work at the top of the recursion 
tree, then proceeds down to finish the sort. We could contemplate a 
nonrecursive quicksort that traverses the recursion tree in level order 
from top to bottom. Thus, a sort makes multiple passes through the 
array, partitioning files into smaller subfiles. For arrays, this method 
is not practical, because of the bookkeeping cost of keeping track of 
the subfiles; for linked lists, however, it is analogous to bottom-up 
mergesort. 

We have noted that mergesort and quicksort differ on the issue 
of stability. For mergesort, if we assume that the subfiles have been 
sorted stably, then we need be sure only that the merge is done in a 
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stable manner, which is easy to arrange. The recursive structure of 
the algorithm leads immediately to an inductive proof of stability. For 
an array-based implementation of quicksort, no easy way of doing 
the partitioning in a stable manner suggests itself, so the possibility 
of stability is foreclosed even before the recursion comes into play. 
The straightforward implementation of quicksort for linked lists is, 
however, stable (see Exercise 7.4). 

As we saw in Chapter 5, algorithms with one recursive call es
sentially reduce to a loop, but algorithms with two recursive calls, like 
merge sort and quicksort, open up the world of divide-and-conquer 
algorithms and tree structures, where many of our best algorithms are 
found. Mergesort and quicksort are worthy of careful study, not just 
because of their practical importance as sorting algorithms, but also 
because of the insights they give into the nature of recursion, which 
can serve us well in developing and understanding other recursive al
gorithms. 

Exercises 

.8.45 Suppose that mergesort is implemented to split the file at a random 
position, rather than exactly in the middle. How many comparisons are used 
by such a method to sort IV elements, on the average? 

• 	8.46 Study the performance of mergesort when it is sorting strings. How 
many character comparisons are involved when a large file is sorted, on the 
average? 

.8.47 Run empirical studies to compare the performance of quicksort for 
linked lists (see Exercise 7.4) and top-down mergesort for linked lists (Pro
gram 8.7). 
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Priority Queues and Heapsort 


M ANY APPLICATIONS require that we process records with 
keys in order, but not necessarily in full sorted order and not 

necessarily all at once. Often, we collect a set of records, then process 
the one with the largest key, then perhaps collect more records, then 
process the one with the current largest key, and so forth. An appro
priate data structure in such an environment supports the operations 
of inserting a new element and deleting the largest element. Such a 
data structure is called a priority queue. Using priority queues is sim
ilar to using queues (delete the oldest) and stacks (delete the newest), 
but implementing them efficiently is more challenging. The priority 
queue is the most important example of the generalized queue ADT 
that we discussed in Section 4.6. In fact, the priority queue is a proper 
generalization of the stack and the queue, because we can implement 
these data structures with priority queues, using appropriate priority 
assignments Exercises 9.3 and 9.4). 

Definition 9.1 A priority queue is a data structure ofitems with keys 
that supports two basic operations: insert a new item, and delete the 
item with the largest key. 

Applications of priority queues include simulation systems, 
where the keys might correspond to event times, to be processed in 
chronological order; job scheduling in computer systems, where the 
keys might correspond to priorities indicating which users are to be 
served first; and numerical computations, where the keys might be 
computational errors, indicating that the largest should be dealt with 
first. 
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We can use any priority queue as the basis for a sorting algorithm 
by inserting all the records, then successively removing the largest to get 
the records in reverse order. Later on in this book, we shall see how to 
use priority queues as building blocks for more advanced algorithms. 
In Part 5, we shall develop a file-compression algorithm using routines 
from this chapter; and in Part 7, we shall see how priority queues are 
an appropriate abstraction for helping us understand the relationships 
among several fundamental graph-searching algorithms. These are but 
a few examples of the important role played by the priority queue as 
a basic tool in algorithm design. 

In practice, priority queues are more complex than the simple 
definition just given, because there are several other operations that 
we may need to perform to maintain them under all the conditions 
that might arise when we are using them. Indeed, one of the main 
reasons that many priority queue implementations are so useful is 
their flexibility in allowing client application programs to perform a 
variety of different operations on sets of records with keys. We want to 
build and maintain a data structure containing records with numerical 
keys (priorities) that supports some of the following operations: 

• Construct a priority queue from N given items. 
• Insert a new item. 
• Delete the maximum item. 
• Change the priority of an arbitrary specified item. 
• Delete an arbitrary specified item. 
• Join two priority queues into one large one. 

If records can have duplicate keys, we take "maximum" to mean "any 
record with the largest key value." As with many data structures, we 
also need to add standard initialize, test if empty, and perhaps destroy 
and copy operations to this set. 

There is overlap among these operations, and it is sometimes 
convenient to define other, similar operations. For example, certain 
clients may need frequently to find the maximum item in the prior
ity queue, without necessarily removing it. Or, we might have an 
operation to replace the maximum item with a new item. We could 
implement operations such as these using our two basic operations 
as building blocks: Find the maximum could be delete the maximum 
followed by insert, and replace the maximum could be either insert 
followed by delete the maximum or delete the maximum followed by 
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Program 9.1 Basic priority-queue ADT 

This interface defines operations for the simplest type of priority queue: 
initialize, test if empty, add a new item, remove the largest item. Elemen
tary implementations of these functions using arrays and linked lists can 
require linear time in the worst case, but we shall see implementations in 
this chapter where all operations are guaranteed to run in time at most 
proportional to the logarithm of the number of items in the queue. The 
argument to PQini t specifies the maximum number of items expected 
in the queue. 

void PQinit(int); 
int PQemptyO; 

void PQinsert(Item); 
Item PQdelmax() ; 
----------..---------~----------' 

insert. We normally get more efficient code, however, by implementing 
such operations directly, provided that they are needed and precisely 
specified. Precise specification is not always as straightforward as it 
might seem. For example, the two options just given for replace the 
maximum are quite different: the former always makes the priority 
queue grow temporarily by one item, and the latter always puts the 
new item on the queue. Similarly, the change priority operation could 
be implemented as a delete followed by an insert, and construct could 
be implemented with repeated uses of insert. 

For some applications, it might be slightly more convenient to 
switch around to work with the minimum, rather than with the maxi
mum. We stick primarily with priority queues that are oriented toward 
accessing the maximum key. When we do need the other kind, we shall 
refer to it (a priority queue that allows us to delete the minimum item) 
as a minimum-oriented priority queue. 

The priority queue is a prototypical abstract data type (ADT) (see 
Chapter 4): It represents a well-defined set of operations on data, and 
it provides a convenient abstraction that allows us to separate appli
cations programs (clients) from various implementations that we will 
consider in this chapter. The interface given in Program 9.1 defines the 
most basic priority-queue operations; we shall consider a more com
plete interface in Section 9.5. Strictly speaking, different subsets of 
the various operations that we might want to include lead to different 
abstract data structures, but the priority queue is essentially charac
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terized by the delete-the-maximum and insert operations, so we shall 
focus on them. 

Different implementations of priority queues afford different per
formance characteristics for the various operations to be performed, 
and different applications need efficient performance for different sets 
of operations. Indeed, performance differences are, in principle, the 
only differences that can arise in the abstract-data-type concept. This 
situation leads to cost tradeoffs. In this chapter, we consider a vari
ety of ways of approaching these cost tradeoffs, nearly reaching the 
ideal of being able to perform the delete the maximum operation in 
logarithmic time and all the other operations in constant time. 

First, we illustrate this point in Section 9.I by discussing a few 
elementary data structures for implementing priority queues. Next, 
in Sections 9.2 through 9.4, we concentrate on a classical data struc
ture called the heap, which allows efficient implementations of all the 
operations but join. We also look at an important sorting algorithm 
that follows naturally from these implementations, in Section 9+ Fol
lowing this, we look in more detail at some of the problems involved 
in developing complete priority-queue ADTs, in Sections 9.5 and 9.6. 
Finally, in Section 9.7, we examine a more advanced data structure, 
called the binomial queue, that we use to implement all the operations 
(including join) in worst-case logarithmic time. 

During our study of all these various data structures, we shall 
bear in mind both the basic tradeoffs dictated by linked versus sequen
tial memory allocation (as introduced in Chapter 3) and the problems 
involved with making packages usable by applications programs. In 
particular, some of the advanced algorithms that appear later in this 
book are client programs that make use of priority queues. 

Exercises 

I> 9.1 A letter means insert and an asterisk means delete the maximum in the 
sequence 

P RIO * R * • I * T * Y • * * QUE' * * U * E. 

Give the sequence of values returned by the delete the maximum operations. 

1>9.2 Add to the conventions of Exercise 9.I a plus sign to mean join and 
parentheses to delimit the priority queue created by the operations within 
them. Give the contents of the priority queue after the sequence 

( ( ( P RIO *) + ( R' IT' Y • ) ) * * • ) + ( QUE' •• U' E ). 
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09.3 Explain how to use a priority queue ADT to implement a stack ADT. 

09.4 Explain how to use a priority queue ADT to implement a queue ADT. 

9. I Elementary Implementations 

The basic data structures that we discussed in Chapter 3 provide us 
with numerous options for implementing priority queues. Program 9.2 
is an implementation that uses an unordered array as the underlying 
data structure. The find the maximum operation is implemented by 
scanning the array to find the maximum, then exchanging the maxi
mum item with the last item and decrementing the queue size. Fig
ure 9.1 shows the contents of the array for a sample sequence of oper
ations. This basic implementation corresponds to similar implementa
tions that we saw in Chapter 4 for stacks and queues (see Programs 4.4 
and 4.II), and is useful for small queues. The significant difference 
has to do with performance. For stacks and queues, we were able to 
develop implementations of all the operations that take constant time; 
for priority queues, it is easy to find implementations where either the 
insert or the delete the maximum functions takes constant time, but 
finding an implementation where both operations will be fast is a more 
difficult task, and is the subject of this chapter. 

We can use unordered or ordered sequences, implemented as 
linked lists or as arrays. The basic tradeoff between leaving the items 
unordered and keeping them in order is that maintaining an ordered 
sequence allows for constant-time delete the maximum and find the 
maximum but might mean going through the whole list for insert, 
whereas an unordered sequence allows a constant-time insert but might 
mean going through the whole sequence for delete the maximum and 
find the maximum. The unordered sequence is the prototypical lazy 
approach to this problem, where we defer doing work until necessary 
(to find the maximum); the ordered sequence is the prototypical eager 
approach to the problem, where we do as much work as we can 
up front (keep the list sorted on insertion) to make later operations 
efficient. We can use an array or linked-list representation in either 
case, with the basic tradeoff that the (doubly) linked list allows a 
constant-time delete (and, in the unordered case join), but requires 
more space for the links. 
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Figure 9.1 

Priority-queue example (un


ordered array representa
tion) 

This sequence shows the result of 
the sequence of operations in the 
left column (top to bottom), where 
a letter denotes insert and an aster
isk denotes delete the maximum. 
Each line displays the operation, 
the letter deleted for the delete
the-maximum operations, and the 
contents of the array after the oper
ation. 
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Program 9.2 Array implementation of a priority queue 

This implementation, which may be compared with the array imple
mentation for stacks and queues that we considered in Chapter 4 (see 
Program 4.4), keeps the items in an unordered array. Items are added 
to and removed from the end of the array, as in a stack. 

#include <stdlib.h> 

#include "Item.h" 

static Item *pq; 

static int N; 

void PQinit(int maxN) 


{ pq = malloc(maxN*sizeof(Item)); N O;} 

int PQemptyO 

{ return N == 0; } 


void PQinsert(Item v) 

{ pq[N++) = v; } 


Item PQdelmax 0 

{ int j, max = 0; 


for (j = 1; j < N; j ++ ) 


if (less(pq[max) , pq(j))) max j; 

exch(pq(max] , pq(N-l)); 
return pq(--N]; 

} 

The worst-case costs of the various operations (within a constant 
factor) on a priority queue of size N for various implementations are 
summarized in Table 9.1. 

Developing a full implementation requires paying careful atten
tion to the interface-particularly to how client programs access nodes 
for the delete and change priority operations, and how they access pri
ority queues themselves as data types for the join operation. These 
issues are discussed in Sections 9.4 and 9.7, where two full implemen
tations are given: one using doubly-linked unordered lists, and another 
using binomial queues. 

The running time of a client program using priority queues de
pends not just on the keys, but also on the mix of the various opera
tions. It is wise to keep in mind the simple implementations because 
they often can outperform more complicated methods in many practi
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Table 9.1 Worst-case costs of priority queue operations 

Implementations of the priority queue ADT have widely varying perfor
mance characteristics, as indicated in this table of the worst-case time 
(within a constant factor for large N) for various methods. Elementary 
methods (first four lines) require constant time for some operations and 
linear time for others; more advanced methods guarantee logarithmic
or constant-time performance for most or all operations. 

delete find change 
insert maximum delete maximum priority join 

ordered array N 1 N 1 N N 
ordered list N 1 1 1 N N 

unordered array 1 N 1 N 1 N 
unordered list 1 N 1 N 1 1 

heap IgN IgN IgN 1 IgN N 
binomial queue IgN IgN IgN IgN IgN IgN 

best in theory 1 IgN IgN 1 1 1 

cal situations. For example, the unordered-list implementation might 
be appropriate in an application where only a few delete the maximum 
operations are performed, as opposed to a huge number of insertions, 
whereas an ordered list would be appropriate if a huge number of find 
the maximum operations are involved, or if the items inserted tend to 
be larger than those already in the priority queue. 

Exercises 

I> 9.5 Criticize the following idea: To implement find the maximum in con
stant time, why not keep track of the maximum value inserted so far, then 
return that value for find the maximum? 

I> 9.6 Give the contents of the array after the execution of the sequence of 
operations depicted in Figure 9.I. 

9.7 Provide an implementation for the basic priority queue interface that 
uses an ordered array for the underlying data structure. 

9.8 Provide an implementation for the basic priority queue interface that 
uses an unordered linked list for the underlying data structure. Hint: See 
Programs 4.5 and 4.10. 
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9.9 Provide an implementation for the basic priority queue interface that 
uses an ordered linked list for the underlying data structure. Hint: See Pro
gram 3.11. 

o 9.IO Consider a lazy implementation where the list is ordered only when a 
delete the maximum or a find the maximum operation is performed. Insertions 
since the previous sort are kept on a separate list, then are sorted and merged 
in when necessary. Discuss advantages of such an implementation over the 
elementary implementations based on unordered and ordered lists . 

• 	9.II Write a performance driver client program that uses PQinsert to fill a 
priority queue, then uses PQdelmax to remove half the keys, then uses PQinsert 
to fill it up again, then uses PQdelmax to remove all the keys, doing so multiple 
times on random sequences of keys of various lengths ranging from small to 
large; measures the time taken for each run; and prints out or plots the average 
running times . 

• 	9.12 Write a performance driver client program that uses PQinsert to fill a 
priority queue, then does as many PQdelmax and PQinsert operations as it 
can do in 1 second, doing so multiple times on random sequences of keys of 
various lengths ranging from small to large; and prints out or plots the average 
number of PQdelmax operations it was able to do. 

9.I3 Use your client program from Exercise 9. I 2 to compare the unordered
array implementation in Program 9.2 with your unordered-list implementa
tion from Exercise 9.8. 

9.14 Use your client program from Exercise 9.I2 to compare your ordered
array and ordered-list implementations from Exercises 9.7 and 9.9. 

• 9.I5 Write an exercise driver client program that uses the functions in our 
priority-queue interface Program 9.1 on difficult or pathological cases that 
might turn up in practical applications. Simple examples include keys that are 
already in order, keys in reverse order, all keys the same, and sequences of keys 
having only two distinct values. 

9.16 (This exercise is 24 exercises in disguise.) Justify the worst-case bounds 
for the four elementary implementations that are given in Table 9.I, by ref
erence to the implementation in Program 9.2 and your implementations from 
Exercises 9.7 through 9.9 for insert and delete the maximum; and by infor
mally describing the methods for the other operations. For delete, change 
priority, and join, assume that you have a handle that gives you direct access 
to the referent. 

9.2 Heap Data Structure 

The main topic of this chapter is a simple data structure called the 
heap that can efficiently support the basic priority-queue operations. 
In a heap, the records are stored in an array such that each key is 
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guaranteed to be larger than the keys at two other specific positions. 
In turn, each of those keys must be larger than two more keys, and so 
forth. This ordering is easy to see if we view the keys as being in a 
binary tree structure with edges from each key to the two keys known 
to be smaller. 

Definition 9.2 A tree is heap-ordered if the key in each node is 
larger than or equal to the keys in all of that node's children (if any). 
Equivalently, the key in each node of a heap-ordered tree is smaller 
than or equal to the key in that node's parent (if any). 

Property 9.I No node in a heap-ordered tree has a key larger than 
the key at the root. 

We could impose the heap-ordering restriction on any tree. It is 
particularly convenient, however, to use a complete binary tree. Recall 
from Chapter 3 that we can draw such a structure by placing the 
root node and then proceeding down the page and from left to right, 
connecting two nodes beneath each node on the previous level until 
N nodes have been placed. We can represent complete binary trees 
sequentially within an array by simply putting the root at position 1, 
its children at positions 2 and 3, the nodes at the next level in positions 
4, 5, 6 and 7, and so on, as illustrated in Figure 9.2. 

Definition 9.3 A heap is a set of nodes with keys arranged in a 
complete heap-ordered binary tree, represented as an array. 

We could use a linked representation for heap-ordered trees, but 
complete trees provide us with the opportunity to use a compact array 
representation where we can easily get from a node to its parent and 
children without needing to maintain explicit links. The parent of 
the node in position i is in position li/2J, and, conversely, the two 
children of the node in position i are in positions 2i and 2i + 1. This 
arrangement makes traversal of such a tree even easier than if the tree 
were implemented with a linked representation, because, in a linked 
representation, we would need to have three links associated with each 
key to allow travel up and down the tree (each element would have 
one pointer to its parent and one to each child). Complete binary trees 
represented as arrays are rigid structures, but they have just enough 
flexibility to allow us to implement efficient priority-queue algorithms. 

1 2 3 4 5 6 7 8 9 101112 
X TOG S M N A ERA I 

Figure 9.2 
Array representation of a 

heap-ordered complete 
binary tree 

Considering the element in posi
tion li/2J in an array to be the 
parent of the element in position 
i, for 2 :::: i :::: N (or, equiva
lently, considering the ith element 
to be the parent of the 2ith ele
ment and the (2i + 1)st element), 
corresponds to a convenient rep
resentation of the elements as a 
tree. This correspondence is equiv
alent to numbering the nodes in a 
complete binary tree (with nodes 
on the bottom as far left as possi
ble) in level order. A tree is heap
ordered if the key in any given 
node is greater than or equal to 
the keys of that node's children. A 
heap is an array representation of a 
complete heap-ordered binary tree. 
The Hh element in a heap is larger 
than or equal to both the 2ith and 
the (2i + l)st elements. 
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We shall see in Section 9,3 that we can use heaps to implement 
all the priority queue operations (except join) such that they require 
logarithmic time in the worst case. The implementations all operate 
along some path inside the heap (moving from parent to child toward 
the bottom or from child to parent toward the top, but not switching 
directions). As we discussed in Chapter 3, all paths in a complete tree 
of N nodes have about 19 N nodes on them: there are about N/2 nodes 
on the bottom, N /4 nodes with children on the bottom, N /8 nodes 
with grandchildren on the bottom, and so forth. Each generation has 
about one-half as many nodes as the next, and there are at most 19 N 
generations. 

We can also use explicit linked representations of tree structures 
to develop efficient implementations of the priority-queue operations. 
Examples include triply-linked heap-ordered complete trees (see Sec
tion 9,5), tournaments (see Program 5.19), and binomial queues (see 
Section 9,7). As with simple stacks and queues, one important rea
son to consider linked representations is that they free us from having 
to know the maximum queue size ahead of time, as is required with 
an array representation. We also can make use of the flexibility pro
vided by linked structures to develop efficient algorithms, in certain 
situations. Readers who are inexperienced with using explicit tree 
structures are encouraged to read Chapter 12 to learn basic methods 
for the even more important symbol-table ADT implementation be
fore tackling the linked tree representations discussed in the exercises 
in this chapter and in Section 9.7. However, careful consideration of 
linked structures can be reserved for a second reading, because our 
primary topic in this chapter is the heap (Iinkless array representation 
of the heap-ordered complete tree). 

Exercises 
t> 9.17 Is an array that is sorted in descending order a heap? 

09,18 The largest element in a heap must appear in position 1, and the second 
largest element must be in position 2 or position 3. Give the list of positions in 
a heap of size 15 where the kth largest element (i) can appear, and (ii) cannot 
appear, for k = 2.3,4 (assuming the values to be distinct) . 

• 9.19 Answer Exercise 9.18 for general k, as a function of iV, the heap size . 

• 9.20 Answer Exercises 9.18 and 9.19 for the kth smallest element. 
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9.3 Algorithms on Heaps 

The priority-queue algorithms on heaps all work by first making a 
simple modification that could violate the heap condition, then trav
eling through the heap, modifying the heap as required to ensure that 
the heap condition is satisfied everywhere. This process is sometimes 
called heapifying, or just fixing the heap. There are two cases. When 
the priority of some node is increased (or a new node is added at the 
bottom of a heap), we have to travel up the heap to restore the heap 
condition. When the priority of some node is decreased (for example, 
if we replace the node at the root with a new node), we have to travel 
down the heap to restore the heap condition. First, we consider how 
to implement these two basic functions; then, we see how to use them 
to implement the various priority-queue operations. 

If the heap property is violated because a node's key becomes 
larger than that node's parent's key, then we can make progress toward 
fixing the violation by exchanging the node with its parent. After the 
exchange, the node is larger than both its children (one is the old 
parent, the other is smaller than the old parent because it was a child 
of that node) but may be still be larger than its parent. We can fix that 
violation in the same way, and so forth, moving up the heap until we 
reach a node with larger key, or the root. An example of this process is 
shown in Figure 9+ The code is straightforward, based on the notion 
that the parent of the node at position k in a heap is at position k/2. 

Program 9.3 is an implementation of a function that restores a possible 
violation due to increased priority at a given node in a heap by moving 
up the heap. 

If the heap property is violated because a node's key becomes 
smaller than one or both of that node's childrens' keys, then we can 
make progress toward fixing the violation by exchanging the node with 
the larger of its two children. This switch may cause a violation at 
the child; we that violation in the same way, and so forth, moving 
down the heap until we reach a node with both children smaller, or 
the bottom. An example of this process is shown in Figure 9 -4- The 
code again follows directly from the fact that the children of the node 
at position k in a heap are at positions 2k and 2k+1. Program 9.4 is 
an implementation of a function that restores a possible violation due 
to increased priority at a given node in a heap by moving down the 

37 I 
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Figure 9.3 
Bottom-up heapify 

The tree depicted on the top is 
heap-ordered except for the node 
T on the bottom level. If we ex
change T with its parent, the tree 
is heap-ordered, except possibly 
that T may be larger than its new 
parent. Continuing to exchange T 
with its parent until we encounter 
the root or a node on the path 
from T to the root that is larger 
than T, we can establish the heap 
condition for the whole tree. We 
can use this procedure as the basis 
for the insert operation on heaps, 
to reestablish the heap condition 
after adding a new element to a 
heap (at the rightmost position on 
the bottom level, starting a new 
level if necessary). 

Program 9.3 Bottom-up heapify 

To restore the heap condition when a node's priority is increased, we 
move up the heap, exchanging the node at position k with its parent (at 
position k/2) if necessary, continuing as long as a [k/2] <a [k] or until 
we reach the top of the heap. 

fixUp(Item a[], int k) 

{ 


while (k > 1 && less(a[k/2], ark])) 

{ exch(a[k], a[k/2]); k k/2;} 


} 

heap. This function needs to know the size of the heap (N) in order to 
be able to test when it has reached the bottom. 

These two operations are independent of the way that the tree 
structure is represented, as long as we can access the parent (for the 
bottom-up method) and the children (for the top-down method) of any 
node. For the bottom-up method, we move up the tree, exchanging 
the key in the given node with the key in its parent until we reach 
the root or a parent with a larger (or equal) key. For the top-down 
method, we move down the tree, exchanging the key in the given 
node with the largest key among that node's children, moving down 
to that child, and continuing down the tree until we reach the bottom 
or a point where no child has a larger key. Generalized in this way, 
these operations apply not just to complete binary trees, but also to 
any tree structure. Advanced priority-queue algorithms usually use 
more general tree structures, but rely on these same basic operations 
to maintain access to the largest key in the structure, at the top. 

If we imagine the heap to represent a corporate hierarchy, with 
each of the children of a node representing subordinates (and the 
parent representing the immediate superior), then these operations 
have amusing interpretations. The bottom-up method corresponds to 
a promising new manager arriving on the scene, being promoted up 
the chain of command (by exchanging jobs with any lower-qualified 
boss) until the new person encounters a higher-qualified boss. The top
down method is analogous to the situation when the president of the 
company is replaced by someone less qualified. If the president's most 
powerful subordinate is stronger than the new person, they exchange 
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Program 9.4 Top-down heapify 

To restore the heap condition when a node's priority is decreased, we 
move down the heap, exchanging the node at position k with the larger 
of that node's two children if necessary and stopping when the node at 
k is not smaller than either child or the bottom is reached. Note that if 
N is even and k is N/2, then the node at k has only one child-this case 
must be treated properly! 

The inner loop in this program has two distinct exits: one for the 
case that the bottom of the heap is hit, and another for the case that the 
heap condition i.s sati.sfied somewhere in the interior of the heap. It is a 
prototypical example of the need for the break construct. 

fixDown(Item a[]. int k, int N) 

{ int j; 


while (2*k <= N) 

{ j = 2*k; 


if (j < N && less(a[j], a[j+l])) j++; 
if (lless(a[k], a[j])) break; 
exchCa[k], a[j]); k j; 

} 

} 

jobs, and we move down the chain of command, demoting the new 
person and promoting others until the level of competence of the new 
person is reached, where there is no higher-qualified subordinate (this 
idealized scenario is rarely seen in the real world). Drawing on this 
analogy, we often refer to a movement up a heap as a promotion. 

These two basic operations allow efficient implementation of 
the basic priority-queue ADT, as given in Program 9.5. With the 
priority queue represented as a heap-ordered array, using the insert 
operation amounts to adding the new element at the end and moving 
that element up through the heap to restore the heap condition; the 
delete the maximum operation amounts to taking the largest value off 
the top, then putting in the item from the end of the heap at the top 
and moving it down through the array to restore the heap condition. 

Property 9.2 The insert and delete the maximum operations for 
the priority queue abstract data type can be implemented with heap
ordered trees such that insert requires no more than 19 N comparisons 

Figure 9.4 
Top-down heapify 
The tree depicted on the top is 
heap-ordered! except at the root. If 
we exchange the 0 with the larger 
of its two children [X)! the tree is 
heap-ordered! except at the sub
tree rooted at O. Continuing to ex
change 0 with the larger of its two 
children until we reach the bottom 
of the heap or a point where 0 is 
larger than both its children! we 
can establish the heap condition 
for the whole tree, We can use 
this procedure as the basis for the 
delete the maximum operation on 
heaps, to reestablish the heap con
dition after replacing the key at the 
root with the rightmost key on the 
bottom level. 
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Figure 9.5 
Top-down heap construction 

This sequence depicts the insertion 
of the keys AS 0 R TIN G into 
an initially empty heap. New items 
are added to the heap at the bot
tom, moving from left to right on 
the bottom level. Each insertion 
affects only the nodes on the path 
between the insertion point and 
the root, 50 the cost is proportional 
to the logarithm of the size of the 
heap in the worst case. 

Program 9.5 Heap-based priority queue 

To implement PQinsert, we increment N by 1, add the new element at 
the end of the heap, then use fixUp to restore the heap condition. For 
PQdelmax, the size of the heap has to decrease by 1, so we take the value 
to be returned from pq[l], then reduce the size of the heap by moving 
pq[N] to pq[l] and using fixDown to restore the heap condition. The 
implementations of PQinit and PQempty are trivial. The first position 
in the array, pq[O], is not used, but may be available as a sentinel for 
some implementations. 

#include <stdlib.h> 

#include "Item.h" 

static Item *pq; 

static int N; 

void PQinit(int maxN) 


{ pq = malloc«maxN+1)*sizeof(Item)); N 0; } 

int PQemptyO 
{ return N == 0; } 

void PQinsert(Item v) 
{ pq[++N] = v; fixUp(pq, N); } 

Item PQdelmax () 
{ 


exch(pq[l]. pq[N]); 

fixDown(pq, 1, N-1); 

return pq[N--]; 


} 

and delete the maximum no more than 2lg N comparisons, when per
formed on an N -item queue. 

Both operations involve moving along a path between the root and the 
bottom of the heap, and no path in a heap of size N includes more 
than IgN elements (see, for example, Property 5.8 and Exercise 5.77). 
The delete the maximum operation requires two comparisons for each 
node: one to find the child with the larger key, the other to decide 
whether that child needs to be promoted. _ 

Figures 9.5 and 9.6 show an example in which we construct a 
heap by inserting items one by one into an initially empty heap. In the 
array representation that we have been using, this process corresponds 
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to heap ordering the array by moving sequentially through the array, 
considering the size of the heap to grow by 1 each time that we move 
to a new item, and using fixUp to restore the heap order. The process 
takes time proportional to N log N in the worst case (if each new item 
is the largest seen so far, it travels all the way up the heap), but it turns 
out to take only linear time on the average (a random new item tends 
to travel up only a few levels). In Section 9.4 we shall see a way to 
construct a heap (to heap order an array) in linear worst-case time. 

The basic fixUp and fixDownoperations in Programs 9.3 and 9.4 
also allow direct implementation for the change priority and delete 
operations. To change the priority of an item somewhere in the middle 
of the heap, we use fixUp to move up the heap if the priority is 
increased, and f ixDown to go down the heap if the priority is decreased. 
Full implementations of such operations, which refer to specific data 
items, make sense only if a reference is maintained for each item to that 
item's place in the data structure. We shall consider implementations 
that do so in detail in Sections 9.5 through 9.7. 

Property 9.3 The change priority, delete, and replace the maximum 
operations for the priority queue abstract data type can be imple
mented with heap-ordered trees such that no more than 21g N com
parisons are required for any operation on an N -item queue. 

Since they require handles to items, we defer considering implementa
tions that support these operations to Section 9.6 (see Program 9.12 
and Figure 9.14). They all involve moving along one path in the heap, 
perhaps from top to bottom or bottom to top in the worst case .• 

Note carefully that the join operation is not included on this 
list. Combining two priority queues efficiently seems to require a 
much more sophisticated data structure. We shall consider such a data 
structure in detail in Section 9.7. Otherwise, the simple heap-based 
method given here suffices for a broad variety of applications. It uses 
minimal extra space and is guaranteed to run efficiently except in the 
presence of frequent and large join operations. 

As we have mentioned, we can use any priority queue to develop 
a sorting method, as shown in Program 9.6. We simply insert all the 
keys to be sorted into the priority queue, then repeatedly use delete 
the maximum to remove them all in decreasing order. Using a priority 
queue represented as an unordered list in this wa y corresponds to doing 

Figure 9.6 
Top-down heap construction 

(continued) 

This sequence depicts insertion of 
the keys E X AMP L E into the 
heap started in Figure 9.5. The to
tal cost of constructing a heap of 
size N is less than 

19 1 + 192 + ... + 19 N. 


which is less than N 19 N. 




Figure 9.7 
Sorting from a heap 

After replacing the largest element 
in the heap by the rightmost ele
ment on the bottom level, we can 
restore the heap order by sifting 
down along a path from the root to 
the bottom. 
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a selection sort; using an ordered list corresponds to doing an insertion 
sort. 

Figures 9.5 and 9.6 give an example of the first phase (the con
struction process) when a heap-based priority-queue implementation 
is used; Figures 9.7 and 9.8 show the second phase (which we refer 
to as the sortdown process) for the heap-based implementation. For 
practical purposes, this method is comparatively inelegant, because it 
unnecessarily makes an extra copy of the items to be sorted (in the 
priority queue). Also, using N successive insertions is not the most ef
ficient way to build a heap from N given elements. In the next section, 
we address these two points as we consider an implementation of the 
classical heapsort algorithm. 

Exercises 

[> 9.21 Give the heap that results when the keys E A S Y QUE S T ION are 
inserted into an initially empty heap. 

[> 9.22 Using the conventions of Exercise 9.1 give the sequence of heaps pro
duced when the operations 

PRIO*R**I*T*Y***QUE**'U*E 

are performed on an initially empty heap. 

9.23 Because the exch primitive is used in the heapify operations, the items 
are loaded and stored twice as often as necessary. Give more efficient imple
mentations that avoid this problem, a la insertion sort. 

9.24 Why do we not use a sentinel to avoid the j <N test in fixDown? 

09.25 	 Add the replace the maximum operation to the heap-based priority
queue implementation of Program 9.5. Be sure to consider the case when the 
value to be added is larger than all values in the queue. Note: Use of pq[O] 
leads to an elegant solution. 

9.26 What is the minimum number of keys that must be moved during a 
delete the maximum operation in a heap? Give a heap of size 15 for which the 
minimum is achieved. 

9.27 What is the minimum number of keys that must be moved during three 
successive delete the maximum operations in a heap? Give a heap of size 15 
for which the minimum is achieved. 

9.4 Heapsort 

We can adapt the basic idea in Program 9.6 to sort an array without 
needing any extra space, by maintaining the heap within the array to 
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Program 9.6 Sorting with a priority queue 

To sort a subarray a[l], .. , , a[r] using a priority-queue ADT, we 
simply use PQinsert to put all the elements on the priority queue, and 
then use PQdelmax to remove them, in decreasing order. This sorting 
algorithm runs in time proportional to N 19]1l, but uses extra space 
proportional to the number of items to be sorted (for the priority queue). 

void PQsort(Item a[], int 1, int r) 
{ int k; 

PQinitO; 
for (k 1; k <= r; k++) PQinsert(a[k]); 
for (k = r; k >= 1; k--) a[k] = PQdelmax(); 

} 

be sorted. That is, focusing on the task of sorting, we abandon the 
notion of hiding the representation of the priority queue, and rather 
than being constrained by the interface to the priority-queue ADT, we 
use fixUp and fixDown directly. 

Using Program 9.5 directly in Program 9.6 corresponds to pro
ceeding from left to right through the array, using fixUp to ensure 
that the elements to the left of the scanning pointer make up a heap
ordered complete tree. Then, during the sortdown process, we put the 
largest element into the place vacated as the heap shrinks. That is, the 
sortdown process is like selection sort, but it uses a more efficient way 
to find the largest element in the unsorted part of the array. 

Rather than constructing the heap via successive insertions as 
shown in Figures 9.5 and 9.6, it is more efficient to build the heap by 
going backward through it, making little subheaps from the bottom 
up, as shown in Figure 9.9. That is, we view every position in the 
array as the root of a small subheap, and take advantage of the fact 
that fixDown works as well for such subheaps as it does for the big 
heap. If the two children of a node are heaps, then calling f ixDown 
on that node makes the subtree rooted there a heap. By working 
backward through the heap, calling fixDown on each node, we can 
establish the heap property inductively. The scan starts halfway back 
through the array because we can skip the subheaps of size l. 

A full implementation is given in Program 9.7, the classical heap
sort algorithm. Although the loops in this program seem to do different 
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Figure 9.8 
Sorting from a heap 

(continued) 

This sequence depicts removal of 
the rest of the keys from the heap 
in Figure 9.7. Even if every ele
ment goes all the way back to the 
bottom, the total cost of the sorting 
phase is less than 

Ig N -+ ... -+ 192 + Ig 1, 

which is less than N log ]II. 



Figure 9.9 
Bottom-up heap construction 

Working from right to left and bot
tom to top, we construct a heap 
by ensuring that the subtree below 
the current node is heap ordered. 
7he total cost is linear in the worst 
case, because most nodes are near 
the bottom. 
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tasks (the first constructs the heap, and the second destroys the heap for 
the sortdown), they are built around the same fundamental procedure, 
which restores order in a tree that is heap-ordered except possibly at 
the root, using the array representation of a complete tree. Figure 9.10 

illustrates the contents of the array for the example corresponding to 
Figures 9.7 through 9·9. 

Property 9.4 Bottom-up heap construction takes linear time. 

This fact follows from the observation that most of the heaps processed 
are smalL For example, to build a heap of 127 elements, we process 
32 heaps of size 3, 16 heaps of size 7, 8 heaps of size 15, 4 heaps of 
size 31, 2 heaps of size 63, and 1 heap of size 127, so 32·1 +- 16·2 -i- 8· 
3 + 4·4 -l- :2 ·5+ 1 ·6= 120 promotions (twice as many comparisons) 

2nare required in the worst case. For N = - 1, an upper bound on 
the number of promotions is 

k 12:= k2n - = 2" - 1 < N.- n 
l:Sk<n 

A similar proof holds when N + 1 is not a power of 2. • 

This property is not of particular importance for heapsort, be
cause its time is still dominated by the N log IV time for the sortdown, 
but it is important for other priority-queue applications, where a linear
time construct operation can lead to a linear-time algorithm. As noted 
in Figure 9.6, constructing a heap with N successive insert operations 
requires a total of IV log N steps in the worst case (even though the 
total turns out to be linear on the average for random files). 

Property 9.5 Heapsort uses fewer than 2N 19 N comparisons to sort 
IV elements. 

The slightly higher bound 3N 19 N follows immediately from Prop
erty 9.2. The bound given here follows from a more careful count 
based on Property 9+ • 

Property 9.5 and the in-place property are the two primary rea
sons that heapsort is of practical interest: It is guaranteed to son N 
elements in place in time proportional to N log N, no matter what the 
input. There is no worst-case input that makes heapsort run signifi
cantly slower (unlike quicksort), and heapsort does not use any extra 
space (unlike mergesort). This guaranteed worst-case performance 
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Program 9.7 Heapsort 

Using fixDown directly gives the classical heapsort algorithm. The for 
loop constructs the heap; then, the while loop exchanges the largest ele
ment with the final element in the array and repairs the heap, continuing 
until the heap is empty. The pointer pq to a [1-1] allows the code to 

treat the subarray passed to it as an array with the first element at index 
1, for the array representation of the complete tree (see Figure 9.2). 
Some programming environments may disallow this usage. 

void heapsort(Item a[], int 1, int r) 

{ int k, N = r-1+1; Item* pq a+1-1; 


for (k = N/2; k >= 1; k--) 

fixDown(pq, k, N); 


while (N > 1) 

{ exch (pq [j.], pq [N]) ; 


fixDown(pq, 1, --N); } 

} 

does come at a price: for example, the algorithm's inner loop (cost 
per comparison) has more basic operations than quicksort's, and it 
uses more comparisons than quicksort for random files, so heapsort is 
likely to be slower than quicksort for typical or random files. 

Heaps are also useful for solving the selection problem of finding 
the k largest of N items (see Chapter 7), particularly if k is small. We 
simply stop the heapsort algorithm after k items have been taken from 
the top of the heap. 

Property 9.6 Heap-based selection allows the kth largest ofN items 
to be found in time proportional to N when k is small or close to N, 
and in time proportional to N log N otherwise. 

One option is to build a heap, using fewer than 2N comparisons (by 
Property 9.4), then to remove the k largest elements, using 2k 19 N 
or fewer comparisons (by Property 9.2), for a total of 2N + 2k 19 N. 
Another method is to build a minimum-oriented heap of size k, then 
to perform k replace the minimum (insert followed by delete the min
imum) operations with the remaining elements for a total of at most 
2k + 2(N - k) 19 k comparisons (see Exercise 9.35). This method uses 
space proportional to k, so is attractive for finding the k largest of N 
elements when k is small and N is large (or is not known in advance). 

A S 0 R TIN G E X AMP L E 
A S 0 R TIN G E X AMP L E 
A S 0 R T P N G E X A M L E 
A S 0 R X P N GET A M L E 
A S 0 R X P N GET A M L E 
ASP R X 0 N GET A M L E 
A X P R TON G E SAM I L E 
X T P R SON G E A A MIL E 

T S PRE 0 N G E A A MIL X 
S R P LEO N G E A A MIT X 
R L PIE 0 N G E A A M S T X 
P L 0 I E M N G E A A R S T X 
o L N E MAG E APR S T X 
N L MEA AGE 0 P R S T X 
M LEI E A A G N 0 P R S T X 
LIE G E A A M N 0 P R S T X 
I G E A E A L M N 0 P R S T X 
GEE A A I L M N 0 P R S T X 
E A E A GIL M N 0 P R S T X 
E A A E GIL M N 0 P R S T X 
A A E E GIL M N 0 PAS T X 
A A E E GIL M N 0 P R S T X 

Figure 9.10 

Heapsort example 

Heapsorl is an efficient selection
based algorithm. First, we build a 
heap from the bottom up, in-place. 
The top eight lines in this figure 
correspond to Figure 9.9. Next, we 
repeatedly remove the largest ele
ment in the heap. The unshaded 
parts of the bottom lines corre
spond to Figures 9.7 and 9.8; the 
shaded parts contain the growing 
sorted file. 
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Figure 9.11 

Dynamic characteristics of 
heap sort 

The construction process (left) 
seems to unsort the file, putting 
large elements near the beginning. 
Then, the sortdown process (right) 
works like selection sort, keeping a 
heap at the beginning and building 
up the sorted array at the end of 
the file. 
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For random keys and other typical situations, the 19 k upper bound for 
heap operations in the second method is likely to be 0 (1) when k is 
small relative to N (see Exercise 9.36).• 

Various ways to improve heapsort further have been investigated. 
One idea, developed by Floyd, is to note that an element reinserted into 
the heap during the sortdown process usually goes all the way to the 
bottom, so we can save time by avoiding the check for whether the 
element has reached its position, simply promoting the larger of the 
two children until the bottom is reached, then moving back up the heap 
to the proper position. This idea cuts the number of comparisons by a 
factor of 2 asymptotically-close to the 19 N! ~ N Ig N - N / In 2 that is 
the absolute minimum number of comparisons needed by any sorting 
algorithm (see Part 8). The method requires extra bookkeeping, and 
it is useful in practice only when the cost of comparisons is relatively 
high (for example, when we are sorting records with strings or other 
types of long keys). 

Another idea is to build heaps based on an array representation 
ofcomplete heap-ordered ternary trees, with a node at position k larger 
than or equal to nodes at positions 3k - 1, 3k, and 3k + 1 and smaller 
than or equal to nodes at position L(k + 1)/3j, for positions between 
1 and N in an array of N elements. There is a tradeoff between the 
lower cost from the reduced tree height and the higher cost of finding 
the largest of the three children at each node. This tradeoff is dependent 
on details of the implementation (see Exercise 9.30). Further increasing 
the number of children per node is not likely to be productive. 

Figure 9.II shows heapsort in operation on a randomly ordered 
file. At first, the process seems to do anything but sorting, because 
large elements are moving to the beginning of the file as the heap is 
being constructed. But then the method looks more like a mirror image 
of selection sort, as expected. Figure 9.12 shows that different types of 
input files can yield heaps with peculiar characteristics, but they look 
more like random heaps as the sort progresses. 

Naturally, we are interested in the issue of how to choose among 
heap sort, quicksort, and mergesort for a particular application. The 
choice between heapsort and mergesort essentially reduces to a choice 
between a sort that is not stable (see Exercise 9.28) and one that uses 
extra memory; the choice between heapsort and quicksort reduces to a 
choice between average-case speed and worst-case speed. Having dealt 
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Table 9.2 Empirical study of heapsort algorithms 

The relative timings for various sorts on files of random integers in the 
left part of the table confirm our expectations from the lengths of the 
inner loops that heapsort is slower than quicksort but competitive with 
mergesort. The timings for the first N words of Moby Dick in the right 
part of the table show that Floyd's method is an effective improvement 
to heap sort when comparisons are expensive. 

32-bit integer keys string keys 

N o M PO H F o H F 
~~_c___ ~__ ~__ c ___ ~_ 

-~----~~-----~----.------.-~--. 

12500 2 5 4 3 4 8 11 8 

25000 7 11 9 8 8 16 25 20 

50000 13 24 22 18 19 36 60 49 

100000 27 52 47 42 46 88 143 116 

200000 58 111 106 100 107 

400000 122 238 245 232 246 

800000 261 520 643 542 566 

Key: 
o Quicksort, standard implementation (Program 7.1) 

M Mergesort, standard implementation (Program 8.1) 

PO Priority-queue based heapsort (Program 9.S) 

H Heapsort, standard implementation (Program 9.6) 

F Heapsort with Floyd's improvement 


extensively with improving the inner loops of quicksort and merge sort, 
we leave this activity for heap sort as exercises in this chapter. Making 
heapsort faster than quicksort is typically not in the cards-as indicated 
by the empirical studies in Table 9.2-but people interested in fast sorts 
on their machines will find the exercise instructive. As usual, various 
specific properties of machines and programming environments can 
play an important role. For example, quicksort and mergesort have 
a locality property that gives them a further advantage on certain 
machines. When comparisons are extremely expensive, Floyd's version 
is the method of choice, as it is nearly optimal in terms of time and 
space costs in such situations. 
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Figure 9.12 

Dynamic characteristics of 
heapsort on various 
types of files 

The running time for heapsort is 
not particularly sensitive to the 
input. No matter what the input 
values are, the largest element is 
always found in less than 19 N 
steps. These diagrams show files 
that are random, Gaussian, nearfy 
ordered, nearly reverse-ordered, 
and randomly ordered with 10 dis
tinCl key values (at the top, left to 
right). The second diagrams from 
the top show the heap constructed 
by the bottom-up algorithm, and 
the remaining diagrams show the 
sortdown process for each file. The 
heaps somewhat mirror the initial 
file at the beginning, but all be
come more like the heaps for a 
random file as the process contin
ues. 
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Exercises 

9.28 Show that heapsort is not stable . 

• 	9.29 Empirically determine the percentage of time heapsort spends in the 
construction phase for N = 103

, 104
, 105

, and 106 
• 

• 	9.30 Implement a version of heapsort based on complete heap-ordered 
ternary trees, as described in the text. Compare the number of compar
isons used by your program empirically with the standard implementation, 
for N 103

, 104
, 105

, and 106 
• 

• 9.31 Continuing Exercise 9.30, determine empirically whether or not Floyd's 
method is effective for ternary heaps. 

09.32 	 Considering the cost of comparisons only, and assuming that it takes t 
comparisons to find the largest of t elements, find the value of t that minimizes 
the coefficient of N log N in the comparison count when a t-ary heap is used 
in heapsort. First, assume a straightforward generalization of Program 9.7; 
then, assume that Floyd's method can save one comparison in the inner loop. 

09.33 	 For N 32, give an arrangement of keys that makes heap sort use as 
many comparisons as possible . 

•• 9.34 For N = 32, give an arrangement of keys that makes heapsort use as 
few comparisons as possible. 

9.35 Prove that building a priority queue of size k then doing N k replace 
the minimum (insert followed by delete the minimum) operations leaves the k 
largest of the N elements in the heap. 

9.36 Implement both of the versions of heapsort-based selection referred to 
in the discussion of Property 9.6, using the method described in Exercise 9.25. 
Compare the number of comparisons they use empirically with the quicksort
based method from Chapter 7, for N 106 and k 10, 100, 1000, 104 

, lOS, 
and 106 • 

• 9.37 Implement a version of heapsort based on the idea of representing the 
heap-ordered tree in preorder rather than in level order. Empirically compare 
the number of comparisons used by this version with the number used by the 
standard implementation, for randomly ordered keys with N = 103 , 104 , 105 , 

and 106 
• 

9.5 Priority-Queue ADT 

For most applications of priority queues, we want to arrange to have 
the priority queue routine, instead of returning values for delete the 
maximum, tell us which of the records has the largest key, and to work 
in a similar fashion for the other operations. That is, we assign pri
orities and use priority queues for only the purpose of accessing other 
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information in an appropriate order. This arrangement is akin to use 
of the indirect-sort or the pointer-sort concepts described in Chapter 6. 
In particular, this approach is required for operations such as change 
priority or delete to make sense. We examine an implementation of this 
idea in detail here, both because we shall be using priority queues in 
this way later in the book and because this situation is prototypical of 
the problems we face when we design interfaces and implementations 
for ADTs. 

When we want to delete an item from a priority queue, how do 
we specify which item? When we want to join two priority queues, 
how do we keep track of the priority queues themselves as data types? 
Questions such as these are the topic of Chapter 4. Program 9.8 gives 
a general interface for priority queues along the lines that we discussed 
in Section 4.8. It supports a situation where a client has keys and 
associated information and, while primarily interested in the operation 
of accessing the information associated with the highest key, may have 
numerous other data-processing operations to perform on the objects, 
as we discussed at the beginning of this chapter. All operations refer to 
a particular priority queue through a handle (a pointer to a structure 
that is not specified). The insert operation returns a handle for each 
object added to the priority queue by the client program. Object 
handles are different from priority queue handles. In this arrangement, 
client programs are responsible for keeping track of handles, which 
they may later use to specify which objects are to be affected by delete 
and change priority operations, and which priority queues are to be 
affected by all of the operations. 

This arrangement places restrictions on both the client program 
and the implementation. The client program is not given a way to 
access information through handles except through this interface. It 
has the responsibility to use the handles properly: for example, there is 
no good way for an implementation to check for an illegal action such 
as a client using a handle to an item that is already deleted. For its part, 
the implementation cannot move around information freely, because 
client programs have handles that they may use later. This point will 
become more clear when we examine details of implementations. As 
usual, whatever level of detail we choose in our implementations, an 
abstract interface such as Program 9.8 is a useful starting point for 
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Program 9.8 First-class priority-queue ADT 

This interface for a priority-queue ADT provides handles to items (which 
allow client programs to delete items and to change priorities) and han
dles to priority queues (which allow clients to maintain multiple pri
ority queues and to merge queues together). These types, PQlink and 
PO respectively, are pointers to structures that are to be specified in the 
implementation (see Section 4.8). 

typedef struct pq* PQ; 

typedef struct PQnode* PQlink; 


PQ PQinitO; 

int PQemptyCPQ); 


PQlink PQinsert(PQ, Item); 

Item PQdelmax(PQ); 

void PQchange(PQ, PQlink, Item); 

void PQdelete(PQ, PQlink); 

void PQjoin(PQ, PQ); 


making tradeoffs between the needs of applications and the needs of 
implementations. 

Straightforward implementations of the basic priority-queue op
erations, using an unordered doubly linked-list representation, are 
given in Program 9.9. This code illustrates the nature of the interface; 
it is easy to develop other, similarly straightforward, implementations 
using other elementary representations. 

As we discussed in Section 9.1, the implementation given in Pro
grams 9.9 and 9.10 is suitable for applications where the priority queue 
is small and delete the maximum or find the maximum operations 
are infrequent; otherwise, heap-based implementations are preferable. 
Implementing fixUp and fixDown for heap-ordered trees with explicit 
links while maintaining the integrity of the handles is a challenge that 
we leave for exercises, because we shall be considering two alternative 
approaches in detail in Sections 9.6 and 9.7. 

A first-class ADT such as Program 9.8 has many virtues, but it 
is sometimes advantageous to consider other arrangements, with dif
ferent restrictions on the client programs and on implementations. In 
Section 9.6 we consider an example where the client program keeps the 
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Program 9.9 Unordered doubly-linked-list priority queue 

This implementation of the initialize, test if empty, insert and delete 
the maximum routines from the interface of Program 9.8 uses only 
elementary operations to maintain an unordered list, with head and tail 
nodes. We specify the structure PQnode to be a doubly-linked list node 
(with a key and two links), and the structure pq to be the list's head and 
tail links. 

#include <stdlib.h> 

#include "Item.hl! 

#include "PQfull.h" 

struct PQnode { Item key; PQlink prev, next; }; 

struct pq { PQlink head, tail; }; 

PQ PQinitO 


{ 	PQ pq = malloc(sizeof *pq); 

PQlink h = malloc(sizeof *h), 


t = malloc(sizeof *t); 

h->prev = t; h->next = t; 

t->prev = h; t->next = h; 

pq->head = h; pq->tail = t; 

return pq; 


} 

int PQempty(PQ pq) 

{ return pq->head->next->next pq->head;} 


PQlink PQinsert(PQ pq, Item v) 

{ 	PQlink t = mallocCsizeof *t); 

t->key = v; 
t->next = pq->head->next; t->next->prev t·, 
t->prev = pq->head; pq->head->next = t; 
return t; 

} 

Item PQdelmax(PQ pq) 
{ Item max; struct PQnode *t, *x = pq->head->next; 

for (t = x; t->next != pq->head; t = t->next) 
if (t->key > x->key) x = t; 


max = x->key; 

x->next->prev = x->prev; 

x->prev->next = x->next; 

free(x); return max; 


} 
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Program 9.IO Doubly-linked-list priority queue (continued) 

The overhead of maintaining doubly-linked lists is justified by the fact 
that the change priority, delete, and join operations all are also imple
mented in constant time, again using only elementary operations on the 
lists (see Chapter 3 for more details on doubly linked lists). 

void PQchangeCPQ pq. PQlink x. Item v) 

{ x->key = v; } 


void PQdeleteCpq pq. PQlink x) 

{ 


x->next->prev x->prev; 

x->prev->next x->next; 

free(x); 


} 

void PQjoin(pq a, PQ b) 
{ 


a->tail->prev->next = b->head->next; 

b->head->next->prev a->tail->prev; 

a->head->prev = b->tail; 

b->tail->next = a->head; 

free(a->tail); free (b->head) ; 


responsibility for maintaining the records and keys, and the priority
queue routines refer to them indirectly. 

Slight changes in the interface also might be appropriate. For ex
ample, we might want a function that returns the value of the highest 
priority key in the queue, rather than just a way to reference that key 
and its associated information. Also, the issues that we considered in 
Section 4.8 associated with memory management and copy semantics 
come into play. \Ve are not considering destroy or true copy opera
tions, and have chosen just one out of several possibilities for join (see 
Exercises 9.39 and 9·40). 

It is easy to add such procedures to the interface in Program 9.8, 
but it is much more challenging to develop an implementation where 
logarithmic performance for all operations is guaranteed. In applica
tions where the priority queue does not grow to be large, or where 
the mix of insert and delete the maximum operations has some special 
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properties, a fully flexible interface might be desirable. On the other 
hand, in applications where the queue will grow to be large, and where 
a tenfold or a hundredfold increase in performance might be noticed or 
appreciated, it might be worthwhile to restrict to the set of operations 
where efficient performance is assured. A great deal of research has 
gone into the design of priority-queue algorithms for different mixes of 
operations; the binomial queue described in Section 9.7 is an important 
example. 

Exercises 

9.38 Which priority-queue implementation would you use to find the 100 
smallest of a set of 106 random numbers? Justify your answer . 

• 9.39 Add copy and destroy operations to the priority queue ADT in Pro
grams 9.9 and 9.10. 

• 9.40 Change the interface and implementation for the join operation in Pro
grams 9.9 and 9.IO such that it returns a PO (the result of joining the argu
ments) and has the effect of destroying the arguments. 

9.4I Provide implementations similar to Programs 9.9 and 9.IO that use 
ordered doubly linked lists. Note: Because the client has handles into the data 
structure, your programs can change only links (rather than keys) in nodes. 

9.42 Provide implementations for insert and delete the maximum (the 
priority-queue interface in Program 9. I) using complete heap-ordered trees 
represented with explicit nodes and links. Note: Because the client has no 
handles into the data structure, you can take advantage of the fact that it is 
easier to exchange information fields in nodes than to exchange the nodes 
themselves. 

• 	9·43 Provide implementations for insert, delete the maximum, change prior
ity, and delete (the priority-queue interface in Program 9.8) using heap-ordered 
trees with explicit links. Note: Because the client has handles into the data 
structure, this exercise is more difficult than Exercise 9.42, not just because 
the nodes have to be triply-linked, but also because your programs can change 
only links (rather than keys) in nodes. 

9·44 Add a (brute-force) implementation of the join operation to your im
plementation from Exercise 9.43. 

9·45 Provide a priority queue interface and implementation that supports 
construct and delete the maximum, using tournaments (see Section 5.7). Pro
gram 5 .I9 will provide you with the basis for construct. 

• 9.46 Convert your solution to Exercise 9.45 into a first-class ADT 

• 9·47 Add insert to your solution to Exercise 9.45. 
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9.6 Priority Queues for Index Items 

Suppose that the records to be processed in a priority queue are in an 
existing array. In this case, it makes sense to have the priority-queue 
routines refer to items through the array index ..Moreover, we can use 
the array index as a handle to implement all the priority-queue oper
ations. An interface along these lines is illustrated in Program 9.II. 

Figure 9.I3 shows how this approach might apply in the example 
we used to examine index sorting in Chapter 6. Without copying or 
making special modifications of records, we can keep a priority queue 
containing a subset of the records. 

Using indices into an existing array is a natural arrangement, but 
it leads to implementations with an orientation opposite to that of 
Program 9.8. Now it is the client program that cannot move around 
information freely, because the priority-queue routine is maintaining 
indices into data maintained by the client. For its part, the priority 
queue implementation must not use indices without first being given 
them by the client. 

To develop an implementation, we use precisely the same ap
proach as we did for index sorting in Section 6.8. We manipulate 
indices and redefine less such that comparisons reference the client's 
array. There are added complications here, because it is necessary for 
the priority-queue routine to keep track of the objects, so that it can 
find them when the client program refers to them by the handle (array 
index). To this end, we add a second index array to keep track of the 
position of the keys in the priority queue. To localize the maintenance 
of this array, we move data only with the exch operation, then define 
exch appropriately. 

A full implementation of this approach using heaps is given in 
Program 9.I2. This program differs only slightly from Program 9.5, 
but it is well worth studying because it is so useful in practical situa
tions. We refer to the data structure built by this program as an index 
heap. We shall use this program as a building block for other algo
rithms in Parts 5 through 7. As usual, we do no error checking, and 
we assume (for example) that indices are always in the proper range 
and that the user does not try to insert anything on a full queue or to 
remove anything from an empty one. Adding code for such checks is 
straightforward. 

k qp[k] pq[k] data[k] 

0 Wilson 63 
1 5 3 Johnson 86 
2 2 2 Jones 87 
3 1 4 Smith 90 
4 3 9 Washington 84 
5 Thompson 65 
6 Brown 82 
7 Jackson 61 
8 White 76 
9 4 Adams 86 
10 Black 71 

Figure 9.I3 
Index heap data structures 

By manipulating indices, rather 
than the records themselves, we 
can build a priority queue on a 
subset of the records in an array. 
Here, a heap of size 5 in the array 
pq contains the indices to those 
students with the top five grades. 
Thus, data[pq[1]] .name con
tains Smith, the name of the stu
dent with the highest grade, and 
so forth. An inverse array qp al
lows the priority-queue routines to 
treat the array indices as handles. 
For example, if we need to change 
Smith's grade to 85, we change 
the entry in data [3] . grade, then 
call change (3). The priority
queue implementation accesses 
the record at pq [qp [3]] (or 
pq [1], because qp [3] =1) and the 
new key atdata[pq[1]] .name 
(or data [3] . name, because 
pq[1] =3). 
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Program 9. I I Priority queue ADT interface for index items 

Instead of building a data structure from the items themselves, this 
interface provides for building a priority queue using indices into a 
client array. The insert, delete the maximum, change priority, and delete 
routines all use a handle consisting of an array index. The client supplies 
a less routine to compare two records. For example, the client program 
might define less (i, j) to be the result of comparing data [i) .grade 
and data[j) .grade. 

int less(int, int) ; 
void PQinitO; 
int PQemptyO; 

void PQinsert(int); 
int PQdelmaxO; 

void PQchange(int); 
void PQdelete(int); 

We can use the same approach for any priority queue that uses 
an array representation (for example, see Exercises 9.50 and 9.51). 
The main disadvantage of using indirection in this way is the extra 
space used. The size of the index arrays has to be the size of the 
data array, when the maximum size of the priority queue could be 
much less. Another approach to building a priority queue on top of 
existing data in an array is to have the client program make records 
consisting of a key with its array index as associated information, or 
to use an index key with a client-supplied less function. Then, if 
the implementation uses a linked-allocation representation such as the 
one in Programs 9.9 and 9.IO or Exercise 9.43, then the space used 
by the priority queue would be proportional to the maximum number 
of elements on the queue at anyone time. Such approaches would 
be preferred over Program 9.I2 if space must be conserved and if the 
priority queue involves only a small fraction of the data array. 

Contrasting this a pproach to providing a complete priority -queue 
implementation to the approach in Section 9.5 exposes essential differ
ences in abstract-data-type design. In the first case (Program 9.8, for 
example), it is the responsibility of the priority queue implementation 
to allocate and deallocate the memory for the keys, to change key val
ues, and so forth. The ADT supplies the clent with handles to items, 
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Program 9.12 Index-heap-based priority queue 

Using the interface of Program 9. I I allows the priority-queue routines 
to maintain pq as an array of indices into some client array. For ex
ample, if less is defined as indicated in the commentary before Pro
gram 9.II, then, when fixUp uses less(pq[j], pq[k]), it is com
paring data. grade [pq [j]] and data. grade [pq [k]], as desired. The 
array qp keeps the heap position of the kth array element. This mech
anism provides index handles, allowing the change priority and delete 
(see Exercise 9.49) operations to be included in the interface. The code 
maintains the invariant pq [qp [k]]:qp [pq[k]] =k for all indices k in the 
heap (see Figure 9.13). 

#include "PQindex.h" 

typedef int Item; 

static int N, pq[maxPQ+1] , qp[maxPQ+1]; 

void exch(int i, int j) 


{ 	int t; 

t = qp [i]; qp [i] = qp [j]; qp [j] t; 

pq[qp[i]] i; pq[qp[j]] j; 


} 


void PQinit() { N = 0; } 

int PQempty() { return !N; } 


void PQinsert(int k) 

{ qp[k] = ++N; pq[N] = k; fixUp(pq, N); } 


int PQdelmax () 

{ 


exch(pq[l] , pq[N]); 

fixDown(pq, 1, --N); 

return pq [N+ 1] ; 


} 


void PQchange(int k) 

{ fixUp(pq, qp[k]); fixDown(pq, qp[k] , N); } 


and the client accesses items only through calls to the priority-queue 
routines, using the handles as arguments. In the second case, (Pro
gram 9.12, for example), the client program is responsible for the keys 
and records, and the priority-queue routines access this information 
only through handles provided by the user (array indices, in the case 
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Figure 9.14 
Changing of the priority of 

a node in a heap 

The top diagram depicts a heap 
that is known to be heap ordered, 
except possibly at one given node. 
If the node is larger than its par
ent, then it must move up, just as 
depicted in Figure 9.3. This situ
ation is illustrated in the middle 
diagram, with Y moving up the 
tree (in general, it might stop be
fore hitting the rooO. If the node 
is smaller than the larger of its two 
children, then it must move down, 
just as depicted in Figure 9.3. This 
situation is illustrated in the bottom 
diagram, with B moving down the 
tree (in general, it might stop be
fore hitting the bottom). We can 
use this procedure as the basis for 
the change priority operation on 
heaps, to reestablish the heap con
dition after changing the key in a 
node; or as the basis for the delete 
operation on heaps, to reestablish 
the heap condition after replacing 
the key in a node with the right
most key on the bottom level. 
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of Program 9.I2). Both uses require cooperation between client and 
implementation. 

Note that, in this book, we are normally interested in coop
eration beyond that encouraged by programming language support 
mechanisms. In particular, we want the performance characteristics of 
the implementation to match the dynamic mix of operations required 
by the client. One way to ensure that match is to seek implementations 
with provable worst-case performance bounds, but we can solve many 
problems more easily by matching their performance requirements 
with simpler implementations. 

Exercises 

9.48 Suppose that an array is filled with the keys E A S Y QUE S T ION. 
Give the contents of the pq and qp arrays after these keys are inserted into an 
initially empty heap using Program 9.I2. 

09.49 Add a delete operation to Program 9.I 2. 

9.50 Implement the priority-queue ADT for index items (see Program 9.II) 
using an ordered-array representation for the priority queue. 

9.5 I Implement the priority-queue ADT for index items (see Program 9.I I) 
using an unordered-array representation for the priority queue. 

09.52 	 Given an array a of N elements, consider a complete binary tree of 2N 
elements (represented as an array pq) containing indices from the array with the 
following properties: (i) for i from 0 to N-l, we have pq[N+i] =i; and (ii) for 
i from 1 to N-l, we have pq[i] =pq[2*i] if a [pq[2*i]] >a[pq[2*i+1]], and 
we have pq[i] =pq[2*i+1] otherwise. Such a structure is called an index heap 
tournament because it combines the features of index heaps and tournaments 
(see Program 5.I9). Give the index heap tournament corresponding to the 
keys E A S YQUE S T ION. 

09.53 	 Implement the priority-queue ADT for index items (see Program 9.I I) 
using an index heap tournament (see Exercise 9.45). 

9.7 Binomial Queues 

None of the implementations that we have considered admit imple
mentations of join, delete the maximum, and insert that are all effi
cient in the worst case. Unordered linked lists have fast join and insert, 
but slow delete the maximum; ordered linked lists have fast delete the 
maximum, but slow join and insert; heaps have fast insert and delete 



393 PRIORITY QUEUES AND HEAPSORT 

the maximum, but slow join; and so forth. (See Table 9.1.) In applica
tions where frequent or large join operations play an important role, 
we need to consider more advanced data structures. 

In this context, we mean by "efficient" that the operations should 
use no more than logarithmic time in the worst case. This restriction 
would seem to rule out array representations, because we can join 
two large arrays apparently only by moving all the elements in at 
least one of them. The unordered doubly linked-list representation 
of Program 9.9 does the join in constant time, but requires that we 
walk through the whole list for delete the maximum. Use of a doubly 
linked ordered list (see Exercise 9.41) gives a constant-time delete the 
maximum, but requires linear time to merge lists for join. 

Numerous data structures have been developed that can support 
efficient implementations of all the priority-queue operations. Most of 
them are based on direct linked representation of heap-ordered trees. 
Two links are needed for moving down the tree (either to both children 
in a binary tree or to the first child and next sibling in a binary tree 
representation of a general tree) and one link to the parent is needed for 
moving up the tree. Developing implementations of the heap-ordering 
operations that work for any (heap-ordered) tree shape with explicit 
nodes and links or other representation is generally straightforward. 
The difficulty lies in dynamic operations such as insert, delete, and join, 
which require us to modify the tree structure. Different data structures 
are based on different strategies for modifying the tree structure while 
still maintaining balance in the tree. Generally, the algorithms use 
trees that are more flexible than are complete trees, but keep the trees 
sufficiently balanced to ensure a logarithmic time bound. 

The overhead of maintaining a triply linked structure can be 
burdensome-ensuring that a particular implementation correctly 
maintains three pointers in all circumstances can be a significant chal
lenge (see Exercise 9.42). Moreover, in many practical situations, it 
is difficult to demonstrate that efficient implementations of all the op
erations are required, so we might pause before taking on such an 
implementation. On the other hand, it is also difficult to demonstrate 
that efficient implementations are not required, and the investment to 
guarantee that all the priority-queue operations will be fast may be 
justified. Regardless of such considerations, the next step from heaps 
to a data structure that allows for efficient implementation of join, 
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Figure 9.15 
A binomial queue of size 13 

A binomial queue of size N is a 
list of left-heap-ordered power-of
2 heaps, one for each bit in the 
binary representation of N, Thus, 
a binomial queue of size 13 
110b consists of an B-heap, a 4
heap, and a I-heap, Shown here 
are the left-heap-ordered power
of-2 heap representation (top) and 
the heap-ordered binomial-tree 
representation (bottom) of the same 
binomial queue. 
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insert, and delete the maximum is fascinating and worthy of study in 
its own right. 

Even with a linked representation for the trees, the heap condition 
and the condition that the heap-ordered binary tree be complete are 
too strong to allow efficient implementation of the join operation. 
Given two heap-ordered trees, how do we merge them together into 
just one tree? For example, if one of the trees has 1023 nodes and 
the other has 255 nodes, how can we merge them into a tree with 
1278 nodes, without touching more than 10 or 20 nodes? It seems 
impossible to merge heap-ordered trees in general if the trees are to 
be heap ordered and complete, but various advanced data structures 
have been devised that weaken the heap-order and balance conditions 
to get the flexibility that we need to devise an efficient join. Next, 
we consider an ingenious solution to this problem, called the binomial 
queue, that was developed by Vuillemin in 1978. 

To begin, we note that the join operation is trivial for one partic
ular type of tree with a relaxed heap-ordering restriction. 

Definition 9.4 A binary tree comprising nodes with keys is said to 
be left heap ordered if the key in each node is larger than or equal to 
all the keys in that node's left subtree (if any). 

Definition 9.5 A power-of-2 heap is a left-heap-ordered tree consist
ing of a root node with an empty right subtree and a complete left 
subtree. The tree corresponding to a power-of-2 heap by the left-child, 
right-sibling correspondence is called a binomial tree. 

Binomial trees and power-of-2 heaps are equivalent. We work 
with both representations because binomial trees are slightly easier 
to visualize, whereas the simple representation of power-of-2 heaps 
leads to simpler implementations. In particular, we depend upon the 
following facts, which are direct consequences of the definitions. 

• The number of nodes in a power-of-2 heap is a power of 2. 
• No node has a key larger than the key at the root. 
• Binomial trees are heap-ordered. 

The trivial operation upon which binomial queue algorithms are based 
is that of joining two power-of-2 heaps that have an equal number of 
nodes. The result is a heap with twice as many nodes that is easy to 
create, as illustrated in Figure 9.16. The root node with the larger key 
becomes the root of the result (with the other original root as the result 
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Program 9.13 Joining of two equal-sized power-of-2 heaps 

We need to change only a few links to combine two equal-sized power-of
2 heaps into one power-of-2 heap that is twice that size. This procedure 
is one key to the efficiency of the binomial queue algorithm. 

PQlink pair(PQlink p, PQlink q) 
{ 

if (less(p->key, q->key)) 
{p->r q->l; q->l Pi return q; } 

else { q->r = p->l; p->l = q; return p; } 
} 

s 
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root's left child), with its left subtree becoming the right subtree of the 
other root node. Given a linked representation for the trees, the join is 
a constant-time operation: We simply adjust two links at the top. An 
implementation is given in Program 9.13. This basic operation is at the 
heart of Vuillemin's general solution to the problem of implementing 
priority queues with no slow operations. 

Definition 9.6 A binomial queue is a set of power-of-2 heaps, no 
two of the same size. The structure ofa binomial queue is determined 
by that queue's number of nodes, by correspondence with the binary 
representation of integers. 

In accordance with Definitions 9.5 and 9.6, we represent power
of-2 heaps (and handles to items) as links to nodes containing keys 
and two links (like the explicit tree representation of tournaments in 
Figure 5.10); and we represent binomial queues as arrays of power-of-2 
heaps, as follows: 

struct PQnode { Item key; PQlink 1, r; }; 
struct pq { PQlink *bq; }; 

The arrays are not large and the trees are not high, and this rep
resentation is sufficiently flexible to allow implementation of all the 
priority-queue operations in less than 19 N steps, as we shall now see. 

A binomial queue of N elements has one power-of-2 heap for 
each 1 bit in the binary representation of N. For example, a binomial 
queue of 13 nodes comprises an 8-heap, a 4-heap, and a l-heap, as 
illustrated in Figure 9.15. There are at most 19 N power-of-2 heaps in 
a binomial queue of size N, all of height no greater than 19N. 

. ~I 
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Figure 9.16 
Joining of two equal-sized 

power-of-2 heaps. 

We join two power-of-two heaps 
(top) by putting the larger of the 
roots at the root, with that root's 
(left) subtree as the right subtree 
of the other original root. If the 
operands have 2" nodes, the result 
has 2n+l nodes. If the operands 
are left-heap ordered, then so is 
the result, with the largest key 
at the root. The heap-ordered 
binomial-tree representation of the 
same operation is shown below the 
line. 



CHAPTER NINE 

Jf{~
rtfDw 

o o o 

N P 
ElL E ~ 

Figure 9.17 
Insertion of a new element 

into a binomial queue 

Adding an element to a binomial 
queue of seven nodes is analogous 
to performing the binary addition 
11 h + 1 = 10002, with carries at 
each bit. The result is the binomial 
queue at the bottom, with an 8
heap and nuI/4-, 2-, and l-heaps. 

Program 9.I4 Insertion into a binomial queue 

To insert a node into a binomial queue, we first make the node into 
a I-heap, identify it as a carry I-heap, and then iterate the following 
process starting at i == o. If the binomial queue has no 2i-heap, we put 
the carry 2i-heap into the queue. If the binomial queue has a 2i-heap, 
we combine that with the new one to make a 2i+l_heap, increment i, and 
iterate until finding an empty heap position in the binomial queue. As 
usual, we adopt the convention of representing null links with z, which 
can be defined to be NULL or can be adapted to be a sentinel node. 

PQlink PQinsert(PQ pq, Item v) 
{ 	 int i; PQlink c, t == malloc(sizeof *t); 

c = t; c->l z; c->r = z; c->key v'. 
for (i = 0; i < maxBQsize; i++) 

{ 


if (c == z) break; 

if (pq->bq[i] == z) 


{pq->bq[i] C; break; } 
c pair(c, pq->bq[i]); pq->bq[i] z·, 

} 

return t; 

} 


To begin, let us consider the insert operation. The process of 
inserting a new item into a binomial queue mirrors precisely the process 
of incrementing a binary number. To increment a binary number, 
we move from right to left, changing Is to Os because of the carry 
associated with 1 + 1 = 102 , until finding the rightmost 0, which we 
change to 1. In the analogous way, to add a new item to a binomial 
queue, we move from right to left, merging heaps corresponding to 1 
bits with a carry heap, until finding the rightmost empty position to 
put the carry heap. 

Specifically, to insert a new item into a binomial queue, we make 
the new item into a 1-heap. Then, if N is even (rightmost bit OJ, we just 
put this 1-heap in the empty rightmost position of the binomial queue. 
If N is odd (rightmost bit 1), we join the I-heap corresponding to the 
new item with the 1-heap in the rightmost position of the binomial 
queue to make a carry 2-heap. If the position corresponding to 2 in 
the binomial queue is empty, we put the carry heap there; otherwise, 
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Program 9.I5 Deletion of the maximum in a binomial queue 

We first scan the root nodes to find the maximum, and remove the 
power-of-2 heap containing the maximum from the binomial queue. 
We then remove the root node containing the maximum from its power
of-2 heap and temporarily build a binomial queue that contains the 
remaining constituent parts of the power-of-2 heap. Finally, we use 
the join operation to merge this binomial queue back into the original 
binomial queue. 

Item PQdelmaxCPQ pq) 
{ int i, max; PQlink x; Item v; 

PQlink temp[maxBQsize]; 
for (i 0, max -1; i < maxBQsize; i++) 

if (pq->bq[i] != z) 
if «max == -1) I I less(v, pq->bq[i]->key» 

{ max = i; v = pq->bq[max]->key; } 
x = pq->bq[max]->l; 
for (i = max; i < maxBQsize; i++) temp[i] z; 

for (i max; i > 0; i--) 
{ temp[i-1] = x; x = x->r; temp[i-1]->r z; } 

free(pq->bq[max]); pq->bq[max] = z; 
BQjoin(pq->bq, temp); 
return v; 

} 

~Clo 

cA~ 

we merge the carry 2-heap with the 2-heap from the binomial queue to 
make a carry 4-heap, and so forth, continuing until we get to an empty 
position in the binomial queue. This process is depicted in Figure 9.I7; 
Program 9.I4 is an implementation. 

Other binomial-queue operations are also best understood by 
analogy with binary arithmetic. As we shall see, implementing join 
corresponds to implementing addition for binary numbers. 

For the moment, assume that we have an (efficient) function 
for join that is organized to merge the priority-queue reference in its 
second operand with the priority-queue reference in its first operand 
(leaving the result in the first operand). Using this function, we could 
implement the insert operation with a call to the join function where 
one of the operands is a binomial queue of size 1 (see Exercise 9.63). 

Figure 9.I8 
Deletion of the maximum in a 

power-of-2 heap 

Taking away the root gives a forest 
of power-of-2 heaps, all left-heap 
ordered, with roots from the right 
spine of the tree. This operation 
leads to a way to delete the max
imum element from a binomial 
queue: Take away the root of the 
power-of-2 heap that contains the 
largest element, then use the join 
operation to merge the resulting 
binomial queue with remaining 
power-of-2 heaps in the original 
binomial queue. 
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Figure 9.19 
Joining of two binomial 

queues (no carry) 

When two binomial queues to be 
joined do not have any power
of-2 heaps of the same size, the 
join operation is a simple merge. 
Doing this operation is analo
gous to adding two binary num
bers without ever encountering 
1 + 1 (no carry). Here, a bino
mial queue of 10 nodes is merged 
with one of 5 nodes to make one 
of 15 nodes, corresponding to 
10102 + 01012 = 11112. 
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We can also implement the delete the maximum operation with 
one call to join. To find the maximum item in a binomial queue, we 
scan the queue's power-of-2 heaps. Each of these heaps is left heap
ordered, so it has its maximum element at the root. The largest of the 
items in the roots is the largest element in the binomial queue. Because 
there are no more than 19 N heaps in the binomial queue, the total 
time to find the maximum element is less than 19 N. 

To perform the delete the maximum operation, we note that re
moving the root of a left-ordered 2k-heap leaves kieft-ordered power
of-2 heaps-a 2k- 1-heap, a 2k- 2-heap, and so forth-which we can 
easily restructure into a binomial queue of size 2k -- 1, as illustrated 
in Figure 9.18. Then, we can use the join operation to combine this 
binomial queue with the rest of the original queue, to complete the 
delete the maximum operation. This implementation is given in Pro
gram 9.15. 

How do we join two binomial queues? First, we note that the 
operation is trivial if they do not contain two power-of-2 heaps of the 
same size, as illustrated in Figure 9.19: we simply merge the heaps 
from the two binomial queues to make one binomial queue. A queue 
of size 10 (consisting of an 8-heap and a 2-heap) and a queue of 
size 5 (consisting of a 4-heap and a I-heap) simply merge together to 
make a queue of size 15 (consisting of an 8-heap, a 4-heap, a 2-heap, 
and a I-heap). The more general case follows by direct analogy with 
performing addition on two binary numbers, complete with carry, as 
illustrated in Figure 9.20. 

For example, when we add a queue of size 7 (consisting of a 
4-heap, a 2-heap, and a I-heap) to a queue of size 3 (consisting of 
a 2-heap and a I-heap), we get a queue of size 10 (consisting of an 
8-heap and a 2-heap); to do the addition, we need to merge the 1
heaps and carry a 2-heap, then merge the 2-heaps and carry a 4-heap, 
then merge the 4-heaps to get an 8-heap result, in a manner precisely 
analogous to the binary addition 01 b + 1112 = 10102 • The example 
of Figure 9.19 is simpler than Figure 9.20 because it is analogous to 
lO102 -r- 01012 = 11112, with no carry. 

This direct analogy with binary arithmetic carries through to give 
us a natural implementation for the join operation (see Program 9.16). 

For each bit, there are eight cases to consider, based on all the possible 
different values for the 3 bits involved (carry and two bits in the 
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Program 9.16 Joining (merging) of two binomial queues 

This code mimics the operation of adding two binary numbers. Pro
ceeding from right to left with an initial carry bit of 0, we treat the 
eight possible cases (all possible values of the operands and carry bits) 
in a straightforward manner. For example, case 3 corresponds to the 
operand bits being both 1 and the carry 0. Then, the result is 0, but the 
carry is 1 (the result of adding the operand bits). 

#define test(C, B, A) 4*(C) + 2*(B) + l*(A) 
void BQjoin(PQlink *a, PQlink *b) 

{ int i; PQlink c = z; 
for (i = 0; i < maxBQsize; i++) 

switch(test(c != z, b[i] != z, a[i] != z)) 
{ 

case 2: a[i] = b [i] ; break; 
case 3: c = pair(a [i] , b [i] ) ; 

a[i] = z·, break; 
case 4: a [i] = c', c = z·, break; 
case 5: c = pair(c, a [i] ) ; 

a [i] = z·, break; 
case 6: 
case 7: c = pair(c, b [iJ) ; break; 

} 


} 


void PQjoin(PQ a, PQ b) 

{ BQjoin(a->bq, b->bq); } 


operands). The code is more complicated than that for plain addition, 
because we are dealing with distinguishable heaps, rather than with 
indistinguishable bits, but each case is straightforward. For example, 
if all 3 bits are 1, we need to leave a heap in the result binomial queue, 
and to join the other two heaps for the carry into the next position. 
Indeed, this operation brings us full cycle on abstract data types: we 
(barely) resist the temptation to cast Program 9.16 as a purely abstract 
binary addition procedure, with the binomial queue implementation 
nothing more than a client program using the more complicated bit 

addition procedure in Program 9.13. 
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Figure 9.20 

Joining of two binomial 
queues 

Adding a binomial queue of 3 
nodes to one of 7 nodes gives one 
of 70 nodes through a process 
that mimics the binary addition 
0112 + 1112 = 10102. Adding N 
to E gives an empty 7-heap in the 
result with a carry 2-heap contain
ing Nand E. Then adding the three 
2-heaps leaves a 2-heap in the re
sult with a carry 4-heap containing 
T N E I. This 4-heap is added to 
the other 4-heap, producing the bi
nomial queue at the bottom. Few 
nodes are touched in the process. 
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Property 9.7 All the operations for the priority-queue ADT can be 
implemented with binomial queues such that O(lg N) steps are re
quired for any operations performed on an N -item queue. 

These performance bounds are the goal of the design of the data struc
ture. They are direct consequences of the fact that the implementations 
all have only one or two loops that iterate through the roots of the 
trees in the binomial queue. For simplicity, our implementations loop 
through all the trees, so their running time is proportional to the loga
rithm of the maximum size of the binomial queue. We can make them 
meet the stated bound for the case when not many items are in the 
queue by keeping track of the size of the queue, or by using a sentinel 
pointer value to mark the point where the loops should terminate (see 
Exercises 9.61 and 9.62). This change may not be worth the effort in 
many situations, since the maximum queue size is exponentially larger 
than the maximum number of times that the loop iterates. For exam
ple, if we set the maximum size to be 216 and the queue normally has 
thousands of items, then our simpler implementations iterate the loop 
15 times, whereas the more complicated methods still need to iterate 
perhaps 11 or 12 times, and they incur extra cost for maintaining the 
size or the sentinel. On the other hand, blindly setting a large maxi
mum might cause our programs to run more slowly than expected for 
tiny queues. • 

Property 9.8 Construction ofa binomial queue with N insert oper
ations on an initially empty queue requires O(N) comparisons in the 
worst case. 

For one-half the insertions (when the queue size is even and there is 
no 1-heap) no comparisons are required; for one-half the remaining 
insertions (when there is no 2-heap) only 1 comparison is required; 
when there is no 4-heap, only 2 comparisons are required; and so 
forth. Thus, the total number of comparisons is less than 0 . N12 + 1 . 
NI4 + 2· N/8 + ... < N. As for Property 9.7, we also need one of the 
modifications discussed in Exercises 9.61 and 9.62 to get the stated 
linear worst-case time bound. • 

As discussed in Section 4.8, we have not considered memory 
allocation in the implementation of join in Program 9.16, so it has 
a memory leak, and therefore may be unusable in some situations. 
To correct this defect, we need to pay proper attention to memory 
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allocation for the arguments and return value of the function that 
implements join (see Exercise 9.65). 

Binomial queues provide guaranteed fast performance, but data 
structures have been designed with even better theoretical performance 
characteristics, providing guaranteed constant-time performance for 
certain operations. This problem is an interesting and active area of 
data-structure design. On the other hand, the practical utility of many 
of these esoteric structures is dubious, and we need to be certain that 
performance bottlenecks exist that we can relieve only by reducing the 
running time of some priority-queue operation, before we delve into 
complex data-structure solutions. Indeed, for practical applications, 
we should prefer a trivial structure for debugging and for small queues; 
then, we should use heaps to speed up the operations unless fast join 
operations are required; finally, we should use binomial queues to 
guarantee logarithmic performance for all operations. All things con
sidered, however, a priority-queue package based on binomial queues 
is a valuable addition to a software library. 

Exercises 

[> 9.54 Draw a binomial queue of size 29, using the binomial-tree representa
tion . 

• 9.55 Write a program to draw the binomial-tree representation of a binomial 
queue, given the size N (just nodes connected by edges, no keys). 

9.56 Give the binomial queue that results when the keys E AS YQUE S T I 
o N are inserted into an initially empty binomial queue. 

9.57 Give the binomial queue that results when the keys E A S Yare inserted 
into an initially empty binomial queue, and give the binomial queue that results 
wh~.k:eys QUE S T ION are inserted into an initially empty binomial 
<Ueue. Then give the result of delete the maximum for each queue. Finally, 
give the result when the join operation is performed on the resulting queues. 

9.58 Using the conventions of Exercise 9.I give the sequence of binomial 
queues produced when the operations 

PRIO*R**I*T*Y"'QUE*"U'E 

are performed on an initially empty binomial queue. 

9.59 Using the conventions of Exercise 9.2 give the sequence of binomial 
queues produced when the operations 

( ( ( P RIO .) + ( R • IT' Y * ) ) * •• ) + ( QUE * • * U • E ) 

are performed on an initially empty binomial queue. 

40 I 
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°9.60 Prove that a binomial tree with 2n nodes has (~) nodes at level i for 
SiS n. (This fact is the origin of the name binomial tree.) 

09.61 	 Implement binomial queues such that Property 9.7 holds, by modifying 
the binomial-queue data type to include the queue size, then using the size to 
control the loops. 

09.62 	 Implement binomial queues such that Property 9.7 holds, by maintain
ing a sentinel pointer to mark the point where the loops should terminate . 

• 9.63 	 Implement insert for binomial queues by just using the join operation 
explicitly . 

•• 9.64 Implement change priority and delete for binomial queues. Note: You 
will need to add a third link, which points up the tree, to the nodes . 

• 9.65 	 Modify the priority queue ADT interface (Program 9.8) and binomial 
queue implementations (Programs 9.13 through 9.16) in the text such that 
there are no memory leaks (see Exercise 4.72) . 

• 	9.66 Empirically compare binomial queues against heaps as the basis for 
sorting, as in Program 9.6, for randomly ordered keys with N 1000, 104 

, 

105
, and 106

• Note: See Exercises 9.6r and 9.62. 

• 9.67 Develop an in-place sorting method like heapsort, but based on bino
mial queues. Hint: See Exercise 9.37. 
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Radix Sorting 


FOR MANY SORTING applications, the keys used to define the 
order of the records for files can be complicated. For example, 

consider the complex nature of the keys used in a telephone book or 
a library catalog. To separate this complication from essential proper
ties of the sorting methods that we have been studying, we have used 
just the basic operations of comparing two keys and exchanging two 
records (hiding all the details of manipulating keys in these functions) 
as the abstract interface between sorting methods and applications for 
most of the methods in Chapters 6 through 9. In this chapter, we 
examine a different abstraction for sort keys. For example, processing 
the full key at every step is often unnecessary: to look up a person's 
number in a telephone book, we often just check the first few letters 
in the name to find the page containing the number. To gain similar 
efficiencies in sorting algorithms, we shall shift from the abstract oper
ation where we compare keys to an abstraction where we decompose 
keys into a sequence of fixed-sized pieces, or bytes. Binary numbers are 
sequences of bits, strings are sequences of characters, decimal numbers 
are sequences of digits, and many other (but not all) types of keys can 
be viewed in this way. Sorting methods built on processing numbers 
one piece at a time are called radix sorts. These methods do not just 
compare keys: They process and compare pieces of keys. 

Radix-sorting algorithms treat the keys as numbers represented in 
a base-R number system, for various values of R (the radix), and work 
with individual digits of tbe numbers. For example, when a machine at 
the post office processes a pile of packages that bave on them five-digit 
decimal numbers, it distributes the packages into ten piles: one having 
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numbers beginning with 0, one having numbers beginning with 1, one 
having numbers beginning with 2, and so forth. If necessary, the piles 
can be processed individually, by using the same method on the next 
digit or by using some easier method if there are only a few packages. 
If we were to pick up the packages in the piles in order from °to 9 and 
in order within each pile after they have been processed, we would get 
them in sorted order. This procedure is a simple example of a radix 
sort with R == 10, and it is the method of choice in many real sorting 
applications where keys are 5- to 10-digit decimal numbers, such as 
postal codes, telephone numbers or social-security numbers. We shall 
examine the method in detail in Section 1003

Different values of the radix R are appropriate in various appli
cations. In this chapter, we focus primarily on keys that are integers 
or strings, where radix sorts are widely used. For integers, because 
they are represented as binary numbers in computers, we most often 
work with R = 2 or some power of 2, because this choice allows 
us to decompose keys into independent pieces. For keys that involve 
strings of characters, we use R = 128 or R 256, aligning the radix 
with the byte size. Beyond such direct applications, we can ultimately 
treat virtually anything that is represented inside a digital computer as 
a binary number, and we can recast many sorting applications using 
other types of keys to make feasible the use of radix sorts operating 
on keys that are binary numbers. 

Radix-sorting algorithms are based on the abstract operation 
"extract theith digit from a key." Fortunately, C provides low-level 
operators that make it possible to implement such an operation in a 
straightforward and efficient manner. This fact is significant because 
many other languages (for example, Pascal), to encourage us to write 
machine-independent programs, intentionally make it difficult to write 
a program that depends on the way that a particular machine repre
sents numbers. In such languages, it is difficult to implement many 
types of bit-by-bit manipulation techniques that actually suit most 
computers well. Radix sorting in particular was, for a time, a casualty 
of this "progressive" philosophy. But the designer of C recognized that 
direct manipulation of bits is often useful, and we shall be able to take 
advantage of C's low-level facilities to implement radix sorts. 

Good hardware support also is required; and it cannot be taken 
for granted. Some machines (both old and new) provide efficient ways 
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to get at small data, but some other machines (both old and new) slow 
down significantly when such operations are used. Whereas radix 
sorts are simply expressed in terms of the extract-the-digit operation, 
the task of getting peak performance out of a radix sorting algorithm 
can be a fascinating introduction to our hardware and software envi
ronment. 

There are two, fundamentally different, basic approaches to 
radix sorting. The first class of methods involves algorithms that 
examine the digits in the keys in a left-to-right order, working with 
the most significant digits first. These methods are generally referred 
to as most-significant-digit (MSD) radix sorts. MSD radix sorts are 
attractive because they examine the minimum amount of information 
necessary to get a sorting job done (see Figure ro.r). MSD radix sorts 
generalize quicksort, because they work by partitioning the file to be 
sorted according to the leading digits of the keys, then recursively ap
plying the same method to the subfiles. Indeed, when the radix is 2, we 
implement MSD radix sorting in a manner similar to that for quick
sort. The second class of radix-sorting methods is different: They 
examine the digits in the keys in a right-to-left order, working with 
the least significant digits first. These methods are generally referred 
to as least-significant-digit (LSD) radix sorts. LSD radix sorts are 
somewhat counterintuitive, since they spend processing time on digits 
that cannot affect the result, but it is easy to ameliorate this problem, 
and this venerable approach is the method of choice for many sorting 
applications. 

10.1 Bits, Bytes, and Words 

The key to understanding radix sort is to recognize that (i) comput
ers generally are built to process bits in groups called machine words, 
which are often grouped into smaller pieces call bytes; (ii) sort keys 
also are commonly organized as byte sequences; and (iii) small byte 
sequences can also serve as array indices or machine addresses. There
fore, it will be convenient for us to work with the following abstrac
tions. 

.396465048 .015583409 .0 

.353336658 .159072306 .1590 

.318693642 .159369371 .1593 

.015583409 .269971047 .2 

.159369371 .318693642 .31 

.691004885 .353336658 .35 

.899854354 .396465048 .39 

.159072306 .538069659 .5 

.604144269 .604144269 .60 

.269971047 .691004885 .69 

.538069659 .899854354 .8 

Figure 10.1 

MSD radix sorting 

Even though the 11 numbers be
tween 0 and 1 on this list (left) 
each have nine digits for a total 
of 99 digits, we can put them in 
order (center) by just examining 22 
of the digits (right). 
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Definition 10.1 A byte is a fixed-length sequence of bits; a string is 
a variable-length sequence of bytes; a word is a fixed-length sequence 
of bytes. 

In radix sorting, depending on the context, a key may be a word or 
a string. Some of the radix-sorting algorithms that we consider in 
this chapter depend on the keys being fixed length (words); others are 
designed to adapt to the situation when the keys are variable length 
(strings). 

A typical machine might have 8-bit bytes and 32- or 64-bit words 
(the actual values may be found in the header file <limits.h», but 
it will be convenient for us to consider various other byte and word 
sizes as well (generally small integer multiples or fractions of built-in 
machine sizes). We use machine- and application-dependent defined 
constants for the number of bits per word and the number of bits per 
byte: 

#define bitsword 32 
#define bitsbyte 8 
#define bytesword 4 
#define R (1 « bitsbyte) 

Also included in these definitions for use when we begin looking at 
radix sorts is the constant R, the number of different byte values. 
When using these definitions, we generally assume that bitsword is a 
multiple of bitsbyte; that the number of bits per machine word is not 
less than (typically, is equal to) bitsword; and that bytes are individ
uallyaddressable. Different computers have different conventions for 
referring to their bits and bytes; for the purposes of our discussion, we 
will consider the bits in a word to be numbered, left to right, from 0 

to bi tsword-1, and the bytes in a word to be numbered, left to right, 
from 0 to bytesword-1. In both cases, we assume the numbering to 

also be from most significant to least significant. 
Most computers have bitwise and and shift operations, which we 

can use to extract bytes from words. In C, we can directly express the 
operation of extracting the Bth byte of a binary word A as follows: 

#define digit(A, B) 

«(A) » (bitsword-«B)+1)*bitsbyte» & (R-1» 

For example, this macro would extract byte 2 (the third byte) of a 32
bit number by shifting right 32 - 3 *8 = 8 bit positions, then using the 
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mask 00000000000000000000000011111111 to zero out all the bits 
except those of the desired byte, in the 8 bits at the right. 

Another option on many machines is to arrange things such that 
the radix is aligned with the byte size, and therefore a single access 
will get the right bits quickly. This operation is supported directly for 
strings in C: 

#define digit(A, B) A[B]. 

This approach could be used for numbers as well, though differing 
number-representation schemes may make such code nonportable. In 
any case, we need to be aware that byte-access operations of this type 
might be implemented with underlying shift-and-mask operations sim
ilar to the ones in the previous paragraph in some computing environ
ments. 

At a slightly different level of abstraction, we can think of keys 
as numbers and bytes as digits. Given a (key represented as a) number, 
the fundamental operation needed for radix sorts is to extract a digit 
from the number. When we choose a radix that is a power of 2, the 
digits are groups of bits, which we can easily access directly using one 
of the macros just discussed. Indeed, the primary reason that we use 
radices that are powers of 2 is that the operation of accessing groups 
of bits is inexpensive. In some computing environments, we can use 
other radices, as well. For example, if a is a positive integer, the bth 

digit (from the right) of the radix-R representation of a is 

la/ RbJ mod R. 

On a machine built for high-performance numerical calculations, this 
computation might be as fast for general R as for R = 2. 

Yet another viewpoint is to think of keys as numbers between 0 
and 1 with an implicit decimal point atthe left, as shown in Figure IO.I. 

In this case, the bth digit (from the left) of a is 

laRbJ mod R. 

If we are using a machine where we can do such operations efficiently, 
then we can use them as the basis for our radix sort. This model 
applies when keys are variable length, such as character strings. 

Thus, for the remainder of this chapter, we view keys as radix-R 
numbers (with R not specified), and use the abstract digit operation 
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to access digits of keys, with confidence that we will be able to develop 
fast implementations of digit for particular computers. 

Definition IO.2 A key is a radix-R number, with digits numbered 
from the left (starting at 0). 

In light of the examples that we just considered, it is safe for us to 

assume that this abstraction will admit efficient implementations for 
many applications on most computers, although we must be careful 
that a particular implementation is efficient within a given hardware 
and software environment. 

We assume that the keys are not short, so it is worthwhile to 
extract their bits. If the keys are short, then we can use the key
indexed counting method of Chapter 6. Recall that this method can 
sort N keys known to be integers between 0 and R 1 in linear time, 
using one auxiliary table of size R for counts and another of size N 
for rearranging records. Thus, if we can afford a table of size 2lV 

, then 
w-bit keys can easily be sorted in linear time. Indeed, key-indexed 
counting lies at the heart of the basic MSD and LSD radix-sorting 
methods. Radix sorting comes into play when the keys are sufficiently 
long (say w 64) that using a table of size 2W is not feasible. 

Exercises 

1> 10.1 How many digits are there when a 32-bit quantity is viewed as a radix
256 number? Describe how to extract each of the digits. Answer the same 
question for radix 216 • 

1> 10.2 For N = 103
, 106

, and 109
, give the smallest byte size that allows any 

number between 0 and N to be represented in a 4-byte word. 

010.3 	 Implement a less function using the digit abstraction (so that, for ex
ample, we could run empirical studies comparing the algorithms in Chapters 6 
and 9 with the methods in this chapter, using the same data). 

o 10.4 Design and carry out an experiment to compare the cost of extracting 
digits using bit-shifting and arithmetic operations on your machine. How 
many digits can you extract per second, using each of the two methods? Note: 
Be wary; your compiler might convert arithmetic operations to bit-shifting 
ones, or vice versa! 

.10.5 Write a program that, given a set of N random decimal numbers (R = 
10) uniformly distributed between 0 and 1, will compute the number of digit 
comparisons necessary to sort them, in the sense illustrated in Figure 10.1. 

Run your program for N 103
, 104

, 10\ and 106 
• 

• 	 10.6 Answer Exercise 10.5 for R 2, using random 32-bit quantities. 
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.10.7 Answer Exercise 10.5 for the case where the numbers are distributed 
according to a Gaussian distribution. 

10.2 Binary Quicksort 

Suppose that we can rearrange the records of a file such that all those 
whose keys begin with a 0 bit come before all those whose keys begin 
with a 1 bit. Then, we can use a recursive sorting method that is a 
variant of quicksort (see Chapter 7): Partition the file in this way, then 
sort the two subfiles independently. To rearrange the file, scan from 
the left to find a key that starts with a 1 bit, scan from the right to find 
a key that starts with a 0 bit, exchange, and continue until the scanning 
pointers cross. This method is often called radix-exchange sort in the 
literature (including in earlier editions of this book); here, we shall use 
the name binary quicksort to emphasize that it is a simple variant of the 
algorithm invented by Hoare, even though it was actually discovered 
before quicksort was (see reference section). 

Program 10.1 is a full implementation of this method. The parti 
tioning process is essentially the same as Program 7.2, except that the 
number 2b, instead of some key from the file, is used as the partitioning 
element. Because 2b may not be in the file, there can be no guarantee 
that an element is put into its final place during partitioning. The al
gorithm also differs from normal quicksort because the recursive calls 
are for keys with 1 fewer bit. This difference has important impli
cations for performance. For example, when a degenerate partition 
occurs for a file of N elements, a recursive call for a sub file of size N 

will result, for keys with 1 fewer bit. Thus, the number of such calls 
is limited by the number of bits in the keys. By contrast, consistent 
use of partitioning values not in the file in a standard quicksort could 
result in an infinite recursive loop. 

As there are with standard quicksort, various options are avail
able in implementing the inner loop. In Program 10.1, tests for whether 
the pointers have crossed are included in both inner loops. This ar
rangement results in an extra exchange for the case i = j, which could 
be avoided with a break, as is done in Program 7.2, although in this 
case the exchange of a [i] with itself is harmless. Another alternative 
is to use sentinel keys. 

A 5 0 R T I N G E X AMP L E 
A E 0 L M I N G E A X T P R 5 

5 T P R X 
5 R P T 
P R 5 

R 5 
A E A E GIN M L 0 


I N M L 0 

L M N 0 


N 0 

L M 

A A E E G 

E E G 

E E 

E E 


A A 
A A 
A A 
A A E E G I L M N 0 P R 5 T X 

Figure 10.2 

Binary quicksort example 

Partitioning on the leading bit does 
not guarantee that one value will 
be put into place; it guarantees 
only that all keys with leading 
o bits come before all keys with 
leading 1 bits. We can compare 
this diagram with Figure 7.1 for 
quicksort, although the operation 
of the partitioning method is com
pletely opaque without the binary 
representation of the keys. Fig
ure 10.3 gives the details that ex
plain the partition positions pre
cisely. 
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Program 10.1 Binary quicksort 

This program partitions a file on the leading bits of the keys, and then 
sorts the subfiles recursively. The variable II" keeps track of the bit being 
examined, starting at 0 (leftmost). The partitioning stops with j equal to 
i, and all elements to the right of a[i] having 1 bits in the wth position 
and all elements to the left of a [i] having 0 bits in the bth position. The 
element a[i] itself will have a 1 bit unless all keys in the file have a 0 in 
position 11". An extra test just after the partitioning loop covers this case. 

quicksortB(int a[], int 1, int r, int w) 
{ int i = 1, j = r; 

if (r <= 1 I I w > bitsword) return; 
while (j != i) 

{ 

while (digit(a[i], w) o && (i < j)) i++; 
while (digit(a[j), w) 1 && (j > i)) j--; 

exch(a[i], a[j)); 
} 

if (digit (a(r) , w) == 0) j++; 
quicksortB(a, 1, j-l, w+l); 
quicksortB(a, j, r, w+l); 

} 

void sort(Item a[), int 1, int r) 
{ 

quicksortB(a, 1, r, 0); 
} 

Figure 10.2 depicts the operation of Program 10. I on a small 
sample file, for comparison with Figure 7.1 for quicksort. This figure 
shows what the data movement is, but not why the various moves 
are made-that depends on the binary representation of the keys. A 
more detailed view for the same example is given in Figure 10.3. This 
example assumes that the letters are encoded with a simple 5-bit code, 
with the ith letter of the alphabet represented by the binary represen
tation of the number i. This encoding is a simplified version of real 
character codes, which use more bits (7, 8, or even 16) to represent 
more characters (uppercase or lowercase letters, numbers, and special 
symbols). 
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For full-word keys consisting of random bits, the starting point 
in Program 10.1 should be the leftmost bit of the words, or bit O. In 
general, the starting point that should be used depends in a straight
forward way on the application, on the number of bits per word in the 
machine, and on the machine representation of integers and negative 
numbers. For the one-letter 5-bit keys in Figures 10.2 and 10.3, the 
starting point on a 32-bit machine would be bit 27. 

This example highlights a potential problem with binary quick
sort in practical situations: Degenerate partitions (partitions with all 
keys having the same value for the bit being used) can happen fre
quently. It is not uncommon to sort small numbers (with many leading 
zeros) as in our examples. The problem also occurs in keys comprising 
characters: for example, suppose that we make up 32-bit keys from 
four characters by encoding each in a standard 8-bit code and then 
putting them together. Then, degenerate partitions are likely to occur 
at the beginning of each character position, because, for example, low
ercase letters all begin with the same bits in most character codes. This 
problem is typical of the effects that we need to address when sorting 
encoded data, and similar problems arise in other radix sorts. 

Once a key is distinguished from all the other keys by its left bits, 
no further bits are examined. This property is a distinct advantage 
in some situations; it is a disadvantage in others. When the keys are 
truly random bits, only about 19 N bits per key are examined, and that 
could be many fewer than the number of bits in the keys. This fact 
is discussed in Section 10.6; see also Exercise 10.5 and Figure 10.1. 

For example, sorting a file of 1000 records with random keys might 

Figure 10.3 

Binary quicksort example (key 
bits exposed) 

We derive this figure from Fig
ure 10.2 by translating the keys to 
their binary encoding, compressing 
the table such that the independent 
sub file sorts are shown as though 
they happen in parallel, and trans
posing rows and columns. The first 
stage splits the file into a subfile 
with all keys beginning with 0, and 
a sub file with all keys beginning 
with 1. Then, the first sub file is 
split into one sub file with all keys 
beginning with 00, and another 
with all keys beginning with 01; 
independently, at some other time, 
the other sub file is split into one 
sub file with all keys beginning with 
10, and another with all keys be
ginning with 11. The process stops 
when the bits are exhausted (for 
duplicate keys, in this example) or 
the sub files are of size 1. 
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Figure IO.4 

Binary quicksort partitioning 
trie 

This tree describes the partition
ing structure for binary quicksort, 
corresponding to Figures 10.2 
and 10.3. Because no item is nec
essarily put into position, the keys 
correspond to external nodes in the 
tree. The structure has the fol/ow
ing property: Fol/owing the path 
from the root to any key, taking 
o for left branches and 1 for right 
branches, gives the leading bits of 
the key. These are precisely the 
bits that distinguish the key from 
other keys during the sort. The 
smal/ black squares represent the 
null partitions (when aI/ the keys 
go to the other side because their 
leading bits are the same). This 
happens only near the bottom of 
the tree in this example, but could 
happen higher up in the tree: For 
example. if I or X were not among 
the keys, their node would be re
placed by a null node in this draw
ing. Note that duplicated keys (A 

and E) cannot be partitioned (the 
sort puts them in the same sub-
file only after all their bits are ex
hausted). 
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involve examining only about 10 or 11 bits from each key (even if the 
keys are, say, 64-bit keys). On the other hand, all the bits of equal 
keys are examined. Radix sorting simply does not work well on files 
that contain huge numbers of duplicate keys that are not short. Bi
nary quicksort and the standard method are both fast if keys to be 
sorted comprise truly random bits (the difference between them is pri
marily determined by the difference in cost between the bit-extraction 
and comparison operations), but the standard quicksort algorithm can 
adapt better to nonrandom sets of keys, and 3-way quicksort is ideal 
when duplicate keys predominate. 

As it was with quicksort, it is convenient to describe the partition
ing structure with a binary tree (as depicted in Figure 10.4): The root 
corresponds to a subfile to be sorted, and its two subtrees correspond 
to the two subfiles after partitioning. In standard quicksort, we know 
that at least one record is put into position by the partitioning process, 
so we put that key into the root node; in binary quicksort, we know 
that keys are in position only when we get to a subfile of size 1 or we 
have exhausted the bits in the keys, so we put the keys at the bottom of 
the tree. Such a structure is called a binary trie-properties of tries are 
covered in detail in Chapter 15. For example, one important property 
of interest is that the structure of the trie is completely determined by 
the key values, rather than by their order. 

Partitioning divisions in binary quicksort depend on the binary 
representation of the range and number of items being sorted. For 
example, if the files are random permutations of the integers less than 
171 = 10l0l0lb, then partitioning on the first bit is equivalent to 
partitioning about the value 128, so the subfiles are unequal (one of 
size 128 and the other of size 43). The keys in Figure 10.5 are random 
8-bit values, so this effect is absent there, but the effect is worthy of 
note now, lest it come as a surprise when we encounter it in practice. 

We can improve the basic recursive implementation in Pro
gram 10. I by removing recursion and treating small subfiles differently, 
just as we did for standard quicksort in Chapter 7. 

Exercises 

!> 10.8 Draw the trie in the style of Figure 10.2 that corresponds to the parti
tioning process in radix quicksort for the key E A S Y QUE S T ION. 



RADIX SORTING 

10.9 Compare the number of exchanges used by binary quicksort with the 

number used by the normal quicksort for the file of 3-bit binary numbers 001, 

011,101,110,000,001,010,111,110,010. 


010.10 Why is it not as important to sort the smaller of the two subfiles first in 
binary quicksort as it was for normal quicksort? 

o 10.II Describe what happens on the second level of partitioning (when the 
left subfile is partitioned and when the right subfile is partitioned) when we 
use binary quicksort to sort a random permutation of the nonnegative integers 
less than 171. 

10.12 Write a program that, in one preprocessing pass, identifies the number 

of leading bit positions where all keys are equal, then calls a binary quicksort 

that is modified to ignore those bit positions. Compare the running time of 

your program with that of the standard implementation for N 103

, 104
, 105

, 


and 106 when the input is 32-bit words of the following format: The rightmost 

16 bits are uniformly random, and the leftmost 16 bits are all 0 except with a 

1 in position i if there are i Is in the right half. 


10.13 Modify binary quicksort to check explicitly for the case that all keys are 

equal. Compare the running time of your program with that of the standard 

implementation for N 103 

, 104 
, 105 

, and 106 with the input described in 

Exercise 10.12. 


10.3 MSD Radix Sort 

Using just 1 bit in radix quicksort amounts to treating keys as radix
2 (binary) numbers and considering the most significant digits first. 

Generalizing, suppose that we wish to sort radix-R numbers by con

sidering the most significant bytes first. Doing so requires partitioning 

the array into R, rather than just two, different parts. Traditionally we 

refer to the partitions as bins or buckets and think of the algorithm as 

using a group of R bins, one for each possible value of the first digit, 

as indicated in the following diagram: 


Figure 10.5 

keys with keys with keys with keys with Dynamic characteristics of bi
first byte 0 first byte 1 first byte 2 first byte M-1 nary quicksort on a large 

bin[O] biro bin[2] bin[M-l] 

We pass through the keys, distributing them among the bins, then 
recursively sort the bin contents on keys with 1 fewer byte. 

Figure 10.6 shows an example of MSD radix sorting on a ran
dom permutation of integers. By contrast with binary quicksort, this 

file 

Partitioning divisions in binary 
quicksort are less sensitive to key 
order than they are in standard 
quicksort. Here, two different ran
dom 8-bit files lead to virtually 
identical partitioning profiles. 



Figure 10.6 

Dynamic characteristics of 
MSD radix sort 

just one stage of MSD radix sort 
can nearly complete a sort task, as 
shown in this example with ran
dom 8-bit integers. The first stage 
of an MSD sort, on the leading 2 
bits (left), divides the file into four 
subfiles. The next stage divides 
each of those into four subfiles. 
An MSD sort on the leading 3 bil.S 
(right) divides the file into eight 
subfiles, in just one distribution
counting pass. At the next level, 
each of those subfiles is divided 
into eight parts, leaving just a few 
elements in each. 
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algorithm can bring a file nearly into order rather quickly, even on the 
first partition, if the radix is sufficiently large. 

As mentioned in Section 10.2, one of the most attractive features 
of radix sorting is the intuitive and direct manner in which it adapts to 
sorting applications where keys are strings of characters. This observa
tion is especially true in C and other programming environments that 
provide direct support for processing strings. For MSD radix sorting, 
we simply use a radix corresponding to the byte size. To extract a digit, 
we load a byte; to move to the next digit, we increment a string pointer. 
For the moment, we consider fixed-length keys; we shall see shortly 
that variable-length string keys are easy to handle with the same basic 
mechanisms. 

Figure 10.7 shows an example of MSD radix sorting on three
letter words. For simplicity, this figure assumes that the radix is 26, 
although in most applications we would use a larger radix correspond
ing to the character encodings. First, the words are partitioned so all 
those that start with a appear before those that start with b, and so 
forth. Then, the words that start with a are sorted recursively, then the 
words that start with b are sorted, and so forth. As is obvious from 
the example, most of the work in the sort lies in partitioning on the 
first letter; the subfiles that result from the first partition are small. 

As we saw for quicksort in Chapter 7 and Section IO.2 and for 
merge sort in Chapter 8, we can improve the performance of most 
recursive programs by using a simple algorithm for small cases. Using 
a different method for small subfiles (bins containing a small number 
of elements) is essential for radix sorting, because there are so many of 
them! Moreover, we can tune the algorithm by adjusting the value of R 
because there is a clear tradeoff: If R is too large, the cost of initializing 
and checking the bins dominates; if it is too small, the method does 
not take advantage of the potential gain available by subdividing into 
as many pieces as possible. We return to these issues at the end of this 
section and in Section 10.6. 

To implement MSD radix sort, we need to generalize the meth
ods for partitioning an array that we studied in relation to quicksort 
implementations in Chapter 7. These methods, which are based on 
pointers that start from the two ends of the array and meet in the mid
dle, work well when there are just two or three partitions, but do not 
immediately generalize. Fortunately, the key-indexed counting method 
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from Chapter 6 for sorting files with key values in a small range suits 
our needs perfectly. We use a table of counts and an auxiliary array; 
on a first pass through the array, we count the number of occurrences 
of each leading digit value. These counts tell us where the partitions 
will fall. Then, on a second pass through the array, we use the counts 
to move items to the appropriate position in the auxiliary array. 

Program 10.2 implements this process. Its recursive structure 
generalizes quicksort's, so the same issues that we considered in Sec
tion 7.3 need to be addressed. Should we do the largest of the subfiles 
last to avoid excessive recursion depth? Probably not, because the 
recursion depth is limited by the length of the keys. Should we sort 
small subfiles with a simple method such as insertion sort? Certainly, 
because there are huge numbers of them. 

To do the partitioning, Program 10.2 uses an auxiliary array 
of size equal to the size of the array to be sorted. Alternatively, we 
could choose to use in-place key-indexed counting (see Exercises 10.17 

and 10.18). We need to pay particular attention to space, because 
the recursive calls might use excessive space for local variables. In 
Program 10.2, the temporary buffer for moving keys (aux) can be 
global, but the array that holds the counts and the partition positions 
(count) must be local. 

Extra space for the auxiliary array is not a major concern in 
many practical applications of radix sorting that involve long keys 
and records, because a pointer sort should be used for such data. 
Therefore, the extra space is for rearranging pointers, and is small 
compared to the space for the keys and records themselves (although 
still not insignificant). If space is available and speed is of the essence 
(a common situation when we use radix sorts), we can also eliminate 
the time required for the array copy by recursive argument switchery, 
in the same manner as we did for mergesort in Section 10.4. 

For random keys, the number of keys in each bin (the size of the 
subfiles) after the first pass will be IV/Ron the average. In practice, 
the keys may not be random (for example, when the keys are strings 
representing English-language words, we know that few start with x 
and none start with xx), so many bins will be empty and some of 
the nonempty ones will have many more keys than others do (see 
Figure 10.8). Despite this effect, the multiway partitioning process 

41 5 

noW' ace ace ace 
for ago 
tip and 
ilk bet bet bet 
dim cab cab cab 
tag caw caW' caW' 
jot cue cue cue 
sob dim dim dim 
nob dug dug dug 

-- -~"""".-----

sky egg egg egg-_._._
hut for feW' fee 
ace fee fee feW' 
bet feW' for for 
men gig gig gig 

----_.-----_...._--_.. 

egg hut hut hut 
feW' ilk ilk ilk 

--_ .. 

jay jam jay jam 
oW'l jay am jay 
joy jot jot jot 
rap 
gig men men men 
W'ee now now nob 
W'as nob nob now 
cab owl owl 
wad rap rap rap-_. ---

caw sob sky sky 
cue 
fee tip tag 
tap tag tap 
ago tap tar tar 
tar tar tip tip-_...._-
jam wee wad wad 
dug was was was 
and wad wee wee 

Figure 10.7 

MSD radix sort example 

We divide the words into 26 bins 
according to the first letter. Then, 
we sort all the bins by the same 
method, starting at the second let
ter. 
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Program 10.2 MSD radix sort 

We derive this program from Program 8. I 7 (key-indexed-counting sort) 
by changing key references to key-digit references, and adding a loop at 
the end that does recursive calls for each subfile of keys starting with 
the same digit. For variable-length keys terminated by 0 digits (such as 
C strings), omit the first if statement and the first recursive call. This 
implementation uses an auxiliary array (awe) that is big enough to hold 
a copy of the input. 

#define bin(A) l+count[A] 

void radixMSD(Item a[], int 1, int r, int w) 


{ 	 int i, j, count [R+1] ; 
if (w > bytesword) return; 
if (r-l <= M) { insertion (a , 1, r); return; } 
for (j = 0; j < R; j++) count[j] = 0; 
for (i = 1; i <= r; i++) 

count [digit(a[i] • w) + 1]++; 

for (j = 1; j < R; j++) 


count[j] += count [j-1] ; 

for (i = 1; i <= r; i++) 


aux[count[digit(a[i], w)]++] = a[i]; 
for (i = 1; i <= r; i++) a[i] = aux[i-l]; 
radixMSD(a, I, bin(O)-l, w+1); 
for (j = 0; j < R-1; j++) 

radixMSD(a, bin(j), bin(j+1)-l, w+1); 
} 

will generally be effective in dividing a large file to be sorted into many 
smaller ones. 

Another natural way to implement MSD radix sorting is to use 
linked lists. We keep one linked list for each bin: On a first pass 
through the items to be sorted, we insert each item into the appro
priate linked list, according to its leading digit value. Then, we sort 
the sublists, and stitch together all the linked lists to make a sorted 
whole. This approach presents a challenging programming exercise 
(see Exercise IO.36). Stitching together the lists requires keeping track 
of the beginning and the end of all the lists, and, of course, many of 
the lists are likely to be empty. 
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To achieve good performance using radix sort for a particular 
application, we need to limit the number of empty bins encountered 
by choosing appropriate values both for the radix size and for the 
cutoff for small subfiles. As a concrete example, suppose that 224 

(about sixteen million) 64-bit integers are to be sorted. To keep the 
table of counts small by comparison with the file size, we might choose 
a radix of R = 216 

, corresponding to checking 16 bits of the keys. But 
after the first partition, the average file size is only 28 , and a radix of 
216 for such small files is overkill. To make matters worse, there can 
be huge numbers of such files: about of them in this case. For each 
of those 216 files, the sort sets 216 counters to zero, then checks that 
all but about 28 of them are nonzero, and so forth, for a cost of at 
least arithmetic operations. Program 10.2, which is implemented 
on the assumption that most bins are nonempty, does more than a 
few arithmetic operations for each empty bin (for example, it does 
recursive calls for all the empty bins), so its running time would be 
huge for this example. A more appropriate radix for the second level 
might be 28 or 24. In short, we should be certain not to use large 
radices for small files in a MSD radix sort. We shall consider this point 
in detail in Section 10.6, when we look carefully at the performance 
of the various methods. 

If we set R 256 and eliminate the recursive call for bin 0, then 
Program TO.2 is an effective way to sort C strings. If we know that 
the lengths of all the strings are less than a certain fixed length, we 
can set the variable bytesword to that length, or we can eliminate the 
test on bytesword to sort standard variable-length character strings. 
For sorting strings, we normally would implement the digit abstract 
operation as a single array reference, as we discussed in Section TO.1. 

By adjusting Rand bytesword (and testing their values), we can easily 
modify Program 10.2 to handle strings from nonstandard alphabets 
or in nonstandard formats involving length restrictions or other con
ventions. 

String sorting again illustrates the importance of managing empty 
bins properly. Figure 10.8 shows the partitioning process for an ex
ample like Figure 10.7, but with two-letter words and with the empty 
bins shown explicitly. In this example, we radix sort two-letter words 
using radix 26, so there are 26 bins at every stage. In the first stage, 

-

no an am 
if am an 

be at as 
do as at 

he be be 

an by by 
-

by do do 

of go go 
us he he 

on if if 

am is in 

we it is 
is in it 

at me me 
it no no 

to of of 

or on on 

me or or 

go to to 
in us us 

as we we 

Figure 10.8 

MSD radix sort example 
(with empty bins) 

Excessive numbers of empty bins 
are encountered, even in the sec
ond stage, for small files. 
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there are not many empty bins; in the second stage, however, most 
bins are empty. 

An MSD radix-sorting function divides the file on the first digit of 
the keys, then recursively calls itself for subfiles corresponding to each 
value. Figure 10.9 shows this recursive-call structure for MSD radix 
sorting for the example in Figure 10.8. The call structure corresponds 
to a multiway trie, a direct generalization of the trie structure for 
binary quicksort in Figure 10.4. Each node corresponds to a recursive 
call on the MSD sort for some subfile. For example, the subtree of the 
root with root labeled 0 corresponds to sorting the subfile consisting 
of the three keys of, on, and or. 

These figures make obvious the presence of significant numbers of 
empty bins in MSD sorting with strings. In Section 10.4, we study one 
way to cope with this problem; in Chapter 15, we examine explicit 
uses of trie structures in string-processing applications. Generally, 
we work with compact representations of the trie structures that do 
not include the nodes corresponding to the empty bins and that have 
the labels moved from the edges to the nodes below, as illustrated 
in Figure 10.10, the structure that corresponds to the recursive call 
structure (ignoring empty bins) for the three-letter MSD radix-sorting 
example of Figure 10.7. For example, the subtree of the root with root 
labeled j corresponds to sorting the bin containing the four keys jam, 
jay, jot, and joy. We examine properties of such tries in detail in 
Chapter 15. 

The main challenge in getting maximum efficiency in a practical 
MSD radix sort for keys that are long strings is to deal with lack 
of randomness in the data. Typically, keys may have long stretches 
of equal or unnecessary data, or parts of them might fall in only a 
narrow range. For example, an information-processing application 
for student data records might have keys with fields corresponding to 
graduation year (4 bytes, but one of four different values), state names 
(perhaps 10 bytes, but one of SO different values), and gender (1 byte 
with one of two given values), as well as to a person's name (more 
similar to random strings, but probably not short, with nonuniform 
letter distributions, and with trailing blanks in a fixed-length field). All 
these various restrictions lead to large numbers of empty bins during 
the MSD radix sort (see Exercise 10.23). 
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One practical way to cope with this problem is to develop a 
more complex implementation of the abstract operation of accessing 
bytes that takes into account any specialized knowledge that we might 
have about the strings being sorted. Another method that is easy to 
implement, which is called the bin-span heuristic, is to keep track of the 
high and low ends of the range of nonempty bins during the counting 
phase, then to use only bins in that range (perhaps also including 
special cases for a few special key values, such as 0 or blank). This 
arrangement is attractive for the kind of situation described in the 
previous paragraph. For example, with radix-256 alphanumeric data, 
we might be working with numbers in one section of the keys and 
thus have only 10 nonempty bins corresponding to the digits, while 
we might be working with uppercase letters in another section of the 
keys and thus have only 26 nonempty bins corresponding to them. 

There are various alternatives that we might try for extending the 
bin-span heuristic (see reference section). For example, we could con
sider keeping track of the nonempty bins in an auxiliary data structure, 
and only keep counters and do the recursive calls for those. Doing so 
(and even the bin-span heuristic itself) is probably overkill for this situ
ation, however, because the cost savings is negligible unless the radix is 
huge or the file size is tiny, in which case we should be using a smaller 
radix or sorting the file with some other method. We might achieve 
some of the same cost savings that we could achieve by adjusting the 
radix or switching to a different method for small files by using an ad 
hoc method, but we could not do so as easily. In Section 10.4, we 
shall consider yet another version of quicksort that does handle the 
empty-bin problem gracefully. 

Exercises 

t> 10.14 Draw the compact trie strucure (with no empty bins and with keys in 
nodes, as in Figure 10.10) corresponding to Figure 10.9. 

t> 10.15 How many nodes are there in the full trie corresponding to Fig
ure IO.IO? 

Figure 10.9 
Recursive structure of MSD 

radix sort. 

This tree corresponds to the oper
ation of the recursive MSD radix 
sort in Program 10.2 on the two
letter MSD sorting example in Fig
ure TO.B. If the file size is 1 or 0, 
there are no recursive calls. Oth
e{"';vise, there are 26 calls: one for 
each possible value of the current 
byte. 
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Figure 10.10 

Recursive structure of 
MSD radix sort (null sub
files ignored) 

This representation of the recur
sive structure of MSD radix sort 
is more compact than the one in 
Figure 10.9. Each node in this 
tree is labeled with the value of 
the (i - 1)st digit of certain keys, 
where i is the distance from the 
node to the mot. Each path from 
the root to the bottom of the tree 
corresponds to a key; putting the 
node labels together gives the key. 
This tree corresponds to the three
letter MSD sorting example in Fig
ure 10.7. 

t> 10.16 Show how the set of keys now is the time for all good people 
to come the aid of their party is partitioned with MSD radix sort. 

.10.17 \X/rite a program that does four-way partitioning in place, by counting 
the frequency of occurrence of each key as in key-indexed counting, then using 
a method like Program 6.14 to move the keys. 

•• 10.18 Write a program to solve the general R-way partitioning problem, using 
the method sketched in Exercise 10.17. 

10.19 Write a program that generates random 80-byte keys. Use this key 
generator to generate N random keys, then sort them with lv1SD radix sort, 
for N = 103

, 10\ lOS, and 106 
• Instrument your program to print out the 

total number of key bytes examined for each sort. 

010.20 What is the rightmost key byte position that you would expect the 
program in Exercise 10.I9 to access for each of the given values of N? If 
you have done that exercise, instrument your program to keep track of this 
quantity, and compare your theoretical result with empirical results. 

10.21 Write a key generator that generates keys by shuffling a random 80
byte sequence. Use your key generator to generate N random keys, then sort 
them with MSD radix sort, for N = 103 , 104 , 105 , and 106

• Compare your 
performance results with those for the random case (see Exercise IO.19). 

10.22 What is the rightmost key byte position that you would expect the 
program in Exercise 10.21 to access for each value of N? If you have done 
that exercise, compare your theoretical result with empirical results from your 
program. 

10.23 Write a key generator that generates 30-byte random strings made up 
of three fields: a four-byte field with one of a set of 10 given strings; a lO-byte 
field with one of a set of 50 given strings; a I-byte field with one of two 
given values; and a IS-byte field with random left-justified strings of letters 
equally likely to be four through 15 characters long. Use your key generator 
to generate N random keys, then sort them with MSD radix sort, for N 103

, 

10\ lOS, and 106 
• Instrument your program to print out the total number of 

key bytes examined. Compare your performance results with those for the 
random case (see Exercise 10.19). 

10.24 Modify Program 10.2 to implement the bin-span heuristic. Test your 
program on the data of Exercise 10.23. 
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10.4 Three-Way Radix Quicksort 

Another way to adapt quicksort for MSD radix sorting is to use three
way partitioning on the leading byte of the keys, moving to the next 
byte on only the middle subfile (keys with leading byte equal to that 
of the partitioning element). This method is easy to implement (the 
one-sentence description plus the three-way partitioning code in Pro
gram 7.5 suffices, essentially), and it adapts well to a variety of situa
tions. Program 10.3 is a full implementation of this method. 

In essence, doing three-way radix quicksort amounts to sorting 
the file on the leading characters of the keys (using quicksort), then 
applying the method recursively on the remainder of the keys. For 
sorting strings, the method compares favorably with normal quicksort 
and with MSD radix sort. Indeed, it might be viewed as a hybrid of 
these two algorithms. 

To compare three-way radix quicksort to standard MSD radix 
sort, we note that it divides the file into only three parts, so it does not 
get the benefit of the quick multiway partition, especially in the early 
stages of the sort. On the other hand, for later stages, MSD radix 
sort involves large numbers of empty bins, whereas three-way radix 
quicksort adapts well to handle duplicate keys, keys that fall into a 
small range, small files, and other situations where MSD radix sort 
might run slowly. Of particular importance is that the partitioning 
adapts to different types of nonrandomness in different parts of the 
key. Furthermore, no auxiliary array is required. Balanced against all 
these advantages is that extra exchanges are required to get the effect 
of the multiway partition via a sequence of three-way partitions when 
the number of subfiles is large. 

Figure 10.1 I shows an example of the operation of this method 
on the three-letter-word sorting problem of Figure 10.7. Figure IO.I} 

depicts the recursive-call structure. Each node corresponds to precisely 
three recursive calls: for keys with a smaller first byte (left child), for 
keys with first byte equal (middle child), and for keys with first byte 
larger (right child). 

When the sort keys fit the abstraction of Section 10.2, standard 
quicksort (and all the other sorts in Chapters 6 through 9) can be 
viewed as an MSD radix sort, because the compare function has to 
access the most significant part of the key first (see Exercise 10.3). 

now gig ace ago ago 
for for bet bet ace 
tip dug dug and and 

ilk ilk cab ace bet 

dim dim dim cab 

tag ago ago caw 

jot and and cue 


sob fee egg egg 

nob cue cue dug 

sky caw caw dim 


hut hut fee 

ace ace for 

bet bet few 


men cab ilk 

egg egg gig 

few few hut 


jay jay jam 
owl jot jay 

joy joy joy 
rap jam jot 

gig owl owl men 

wee wee now owl 

was was nob nob 

cab men men now 


wad wad rap 

caw sky sky sky sky 
cue nob was tip sob 

fee sob sob sob tip tar 
tap tap tap tap tap tap 
ago tag tag tag tag tag 

tar tar tar tar tar tip 

dug tip tip was 

and now wee wee 

jam rap wad wad 


Figure IO.II 

Three-way radix quicksort 

We divide the file into three parts: 
words beginning with a through 
i, words begininning with j, and 
words beginning with k through z. 
Then, we sort recursively. 
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Program 10.3 Three-way radix quicksort 

This MSD radix sort is essentially the same code as quicksort with three
way partitioning (Program 9.5), but with the following changes: (i) key 
references become key-byte references, (ii) the current byte is added as 
a parameter to the recursive routine, and (iii) the recursive calls for the 
middle subfile move to the next byte. We avoid moving past the ends of 
strings by checking whether the partitioning value is °before recursive 
calls that move to the next byte. When the partitioning value is 0, the 
left subfile is empty, the middle subfile corresponds to the keys that the 
program has found to be equal, and the right subfile corresponds to 
longer strings that need to be processed further. 

#define ch(A) digit(A, D) 

void quicksortX(Item a[], int 1, int r, int D) 


{ 

int i, j, k, p, q; int v; 

if (r-l <= M) { insertion(a, 1, r); return; } 

v = ch(a[r]); i = 1-1; j = r; p = 1-1; q = r; 

while (i < j) 


{ 

while (ch(a[++i]) < v) 

while (v < ch(a[--j])) if (j 1) break; 

if (i > j) break; 

exch(a[i], a[j]); 

if (ch(a[i])==v) { p++; exch(a[p], a[i]); } 

if (v==ch(a[j])) { q--; exch(a[j], a[q]); } 


} 

if (p == q) 

{ if (v ! '\0') quicksortX(a, 1, r, D+1); 
return; } 

if (ch(a[i]) < v) i++; 
for (k = 1; k <= p; k++, j exch(a[k], a[j]); 
for (k = r; k )= q; k--, i++) exch(a[k], a[i]); 
quicksortX(a, 1, j, D); 
if «i == r) && (ch(a[i]) == v)) i++; 
if (v != '\0') 
quicksortX(a, i, r, D); 

} 
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For example, if the keys are strings, the compare function should 
access only the leading bytes if they are different, the leading 2 bytes 
if the first bytes are the same and the second different, and so forth. 
The standard algorithm thus automatically realizes some of the same 
performance gain that we seek in MSD radix sorting (see Section 7.7). 
The essential difference is that the standard algorithm cannot take 
special action when the leading bytes are equal. Indeed, one way 
to think of Program IO.3 is as a way for quicksort to keep track 
of what it knows about leading digits of items after they have been 
involved in multiple partitions. In the small subfiles, where most of 
the comparisons in the sort are done, the keys are likely to have many 
equal leading bytes. The standard algorithm has to scan over all those 
bytes for each comparison; the three-way algorithm avoids doing so. 

Consider a case where the keys are long (and are fixed length, 
for simplicity), but most of the leading bytes are all equal. In such 
a situation, the running time of normal quicksort would be propor
tional to the word length times 2N In N, whereas the running time of 
the radix version would be proportional to N times the word length 
(to discover all the leading equal bytes) plus 2NlnN (to do the sort 
on the remaining short keys). That is, this method could be up to 
a factor of In N faster than normal quicksort, counting just the cost 
of comparisons. It is not unusual for keys in practical sorting appli
cations to have characteristics similar to this artificial example (see 
Exercise IO.25). 

Another interesting property of three-way radix quicksort is that 
it has no direct dependencies on the size of the radix. For other radix 
sorting methods, we have to maintain an auxiliary array indexed by 
radix value, and we need to ensure that the size of this array is not 
appreciably larger than the file size. For this method, there is no such 

Figure IO.I2 

Example of trie nodes for 
three-way radix quicksort 

Three-way radix qUicksort ad
dresses the empty-bin problem for 
MSD radix sort by doing three-way 
partitioning to eliminate 1 byte 
value and (recursively) to work 
on the others. This action corre
sponds to replacing each M-way 
node in the trie that describes the 
recursive call structure of MSD 
radix sort (see Figure 10.9) by a 
ternary tree with an internal node 
for each nonempty bin. For full 
nodes (left), this change costs time 
without saving much space, but for 
empty nodes (right), the time cost 
is minimal and the space savings is 
considerable. 
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Figure 10.13 

Recursive structure of three-
way radix quicksort 

This tree-trie combination corre
sponds to a substitution of the 
26-way nodes in the trie in 
ure 10.10 by ternary binary search 
treesl as illustrated in Figure 10.12. 
Any path from the root to the bot
tom of the tree that ends in a mid
dle link defines a key in the file, 
given by the characters in the 
nodes left by middle links in the 
path. Figure 10.10 has 1035 null 
links that are not depicted; all 
the 155 null links in this tree are 
shown here. Each null link cor
responds to an empty bin, so this 
difference illustrates how three-way 
partitioning can cut dramatically 
the number of empty bins encoun
tered in MSD radix sorting. 

table. Taking the radix to be extremely large (larger than the word 
size) reduces the method to normal quicksort, and taking the radix to 
be 2 reduces it to binary quicksort, but intermediate values of the radix 
give us an efficient way to deal with equal stretches among pieces of 
keys. 

For many practical applications, we can develop a hybrid method 
with excellent performance by using standard MSD radix sort for large 
files, to get the advantage of multiway partitioning, and a three-way 
radix quicksort with a smaller radix for smaller files, to avoid the 
negative effects of large numbers of empty bins. 

Three-way radix quicksort is also applicable when the keys to 
be sorted are vectors. That is, if the keys are made up of independent 
components (each an abstract key), we might wish to reorder records 
such that they are in order according to the first components of the 
keys, and in order according to the second component of the keys if 
the first components are equal, and so forth. We can think of vector 
sorting as a generalization of radix sorting where we take R to be 
arbitrarily large. When we adapt Program 10.3 to this application, we 
refer to it as multikey quicksort. 

Exercises 
10.25 For d > 4, suppose that keys consist of d bytes, with the final 4 bytes 
having random values and all the other bytes having value O. Estimate the 
number of bytes examined when you sort the file using three-way radix quick
sort (Program rO.3) and normal quicksort (Program 7.r) for files of size N 
for large N, and calculate the ratio of the running times. 

10.26 Empirically determine the byte size for which three-way radix quicksort 
runs fastest, for random 64-bit keys with N lO3, 104

, 105
, and 106

• 
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.10.27 Develop an implementation of three-way radix quicksort for linked 
lists. 

10.28 Develop an implementation of multikey quicksort for the case where 

the keys are vectors of t floating point numbers, using equality testing among 

floating point numbers as described in Exercise 4.1. 


now sob cab ace 
10.29 Using the key generator of Exercise 10.19, run three-way radix quick for nob wad ago 

sort for N 103 

, 10\ 105 
, and 106 

• Compare its performance with that of tip cab tag and 

MSD radix sort. ilk wad jam bet 


dim and rap cab 
10.30 Using the key generator of Exercise 10.21, run three-way radix quick tag ace tap caw 
sort for N 103

, 104
, 105

, and 106
• Compare its performance with that of jot wee tar cue 

MSD radix sort. sob cue was dim 

10.31 Using the key generator of Exercise 10.23, run three-way radix quick nob fee caw dug 

sort for N = 103 

, 104 
, 105 

, and 106 
• Compare its performance with that of sky tag egg
raw 


MSD radix sort. hut egg jay fee 

ace gig ace few 

bet dug wee for 

men ilk fee gig


10.5 LSD Radix Sort 
egg 0 ... 1 men hut 
fe ... dim bet ilk

An alternative radix-sorting method is to examine the bytes from right jay jam fe... jam

to left. Figure 10.14 shows how our three-letter word sorting task 0 ... 1 men egg jay 

is accomplished in just three passes through the file. We sort the joy ago ago jot 


rap tip gig joy
file according to the final letter (using key-indexed counting), then 
gig rap dim menaccording to the middle letter, then according to the first letter. ...ee tap tip nob 


It is not easy, at first, to be convinced that the method works; in ...as for sky no... 

fact, it does not work at all unless the sort method used is stable (see cab tar ilk 0 ... 1 


...ad ...as and rap
Definition 6.1). Once stability has been identified as being significant, 
tap jot sob rawa simple proof that LSD radix sorting works is easy to articulate: After 
ca... hut nob sky

putting keys into order on their i trailing bytes (in a stable manner), cue bet for sob 

we know that any two keys appear in proper order (on the basis of the fee you jot tag 


bits so far examined) in the file either because the first of their i trailing ra... no... you tap 

ago fe... no... tar
bytes are different, in which case the sort on that byte put them in 
tar ca... joy tip

the proper order, or because the first of their ith trailing bytes are the jam ra... cue ...ad 

same, in which case they are in proper order because of stability. Stated dug sky dug ...as 

another way, if the 'W - i bytes that have not been examined for a pair you jay hut ...ee 

and joy 0 ... 1 youof keys are identical, any difference between the keys is restricted to 
the i bytes already examined, and the keys have been properly ordered, Figure 10.14 

and will remain so because of stability. If, on the other hand, the w i I,SD radix sort example 

bytes that have not been examined are different, thei bytes already Three-letter words are sorted in 
examined do not matter, and a later pass will correctly order the pair three passes (left to right) with LSD 
based on the more-significant differences. radix sorting. 
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Program 10.4 LSD radix sort 

This program implements key-indexed counting on the bytes in the 
words, moving right to left. The key-indexed counting implementation 
must be stable. If R is 2 (and therefore bytesword and bi tsword are 
the same), this program is straight radix sort-a right-to-left bit-by-bit 
radix sort (see Figure 10.15). 

void radixLSD(Item a[], int 1, int r) 
{ 

int i, j, w, count[R+1]; 

for (w = bytesword-1; w >= 0; w--) 


{ 

for (j = 0; j < R; j++) count[j] 0; 
for (i = 1; i <= r; i++) 

count [digit (a[i], w) + 1]++; 
for (j = 1; j < R; j++) 

count[j] += count [j-1] ; 
for (i = 1; i <= r; i++) 

aux[count[digit(a[i], w)]++] = a[i]; 
for (i = 1; i <= r; i++) a[i] = aux[i-1]; 

} 

} 

The stability requirement means, for example, that the partition
ing method used for binary quicksort could not be used for a binary 
version of this right-to-Ieft sort. On the other hand, key-indexed 
counting is stable, and immediately leads to a classic and efficient al
gorithm. Program 10.4 is an implementation of this method. An 
auxiliary array for the distribution seems to be required-the tech
nique of Exercises 10.17 and 10.18 for doing the distribution in place 
sacrifices stability to avoid using the auxiliary array. 

LSD radix sorting is the method used by old computer-card
sorting machines. Such machines had the capability of distributing 
a deck of cards among 10 bins, according to the pattern of holes 
punched in the selected columns. If a deck of cards had numbers 
punched in a particular set of columns, an operator could sort the 
cards by running them through the machine on the rightmost digit, 
then picking up and stacking the output decks in order, then running 
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them through the machine on the next-to-rightmost digit, and so forth, 
until getting to the first digit. The physical stacking of the cards is a 
stable process, which is mimicked by key-indexed counting sort. Not 
only was this version of LSD radix sorting important in commercial 
applications in the 19505 and 1960s, but it was also used by many 
cautious programmers, who would punch sequence numbers in the 
final few columns of a program deck so as to be able to put the deck 
back in order mechanically if it were accidentally dropped. 

Figure IO.I5 depicts the operation of binary LSD radix sort on 
our sample keys, for comparison with Figure IO-3- For these 5-bit 
keys, the sort is completed in five passes, moving right to left through 
the keys. Sorting records with single-bit keys amounts to partition
ing the file such that all the records with 0 keys appear before all the 
records with 1 keys. As just mentioned, we cannot use the partitioning 
strategy that we discussed at the beginning of this chapter in Pro
gram IO.I, even though it seems to solve this same problem, because 
it is not stable. It is worthwhile to look at radix-2 sorting, because it is 
often appropriate for high-performance machines and special-purpose 
hardware (see Exercise IO'38). In software, we use as many bits as 
we can to reduce the number of passes, limited only by the size of the 
array for the counts (see Figure Io.r6). 

It is typically difficult to apply the LSD approach to a string
sorting application because of variable-length keys. For MSD sorting, 
it is simple enough to distinguish keys according to their leading bytes, 
but LSD sorting is based on a fixed-length key, with the leading keys 
getting involved for only the final pass. Even for (long) fixed-length 

Figure 10.15 

LSD (binary) radix sort exam
ple (key bits exposed) 

This diagram depicts a right-to-Ieft 
bit-by-bit radix sort working on our 
file of sample keys. We compute 
the ith column from the (i - l)st 
column by extracting (in a stable 
manner) all the keys with a 0 in 
the 'ith bit, then all the keys with 
a 1 in the ith bit. If the (i l)st 
column is in order on the trailing 
(i 1) bits of the keys before the 
operation, then the ith column is 
in order on the trailing i bits of 
the keys after the operation. The 
movement of the keys in the third 
stage is indicated explicitly. 



Figure Io.r6 
Dynamic characteristics of 

LSD radix sort 

This diagram shows the stages of 
LSD radix sort on random 8-bit 
keysl for both radix 2 (left) and 
radix 4, which comprises every 
other stage from the radix-2 dia
gram (right). For example, when 
two bits remain (second-to-Iast 
stage on the left, next-to-Iast stage 
on the right), the file consists of 
four intermixed sorted subfiles con
sisting of the keys beginning with 
001 all 10, and 11. 
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keys, LSD radix sorting would seem to be doing unnecessary work on 
the right parts of the keys, since, as we have seen, only the left parts of 
the keys are typically used in the sort. We shall see a way to address 
this problem in Section rO.7, after we have examined the properties of 
radix sorts in detail. 

Exercises 

10.32 Using the key generator of Exercise IO.I9, run LSD radix sort for 
N = 103

, 104
, 105

, and 106
• Compare its performance with that of MSD radix 

sort. 

10.33 Using the key generators of Exercises IO.21 and 10.23, run LSD radix 
sort for N 103 

, 10\ 10" and 106 
• Compare its performance with that of 

MSD radix sort. 

IO.34 Show the (unsorted) result of trying to use an LSD radix sort based on 
the binary quicksort partitioning method for the example of Figure 10. I 5. 

I> IO.35 Show the result of using LSD radix sort on the leading two characters 
for the set of keys now is the time for all good people to come the 
aid of their party. 

• [0.36 Develop an implementation of LSD radix sort using linked lists. 

• IO.37 Find an efficient method that (i) rearranges the records of a file such 
that all those whose keys begin with a 0 bit come before all those whose keys 
begin with a 1 bit, (ii) uses extra space proportional to the square root of the 
number of records (or less), and (iii) is stable. 

• 	[0.38 Implement a routine that sorts an array of 32-bit words using only the 
following abstract operation: Given a bit position i and a pointer into the 
array a [k], rearrange a [k], a [k+1] , ... , a [k+63] in a stable manner such that 
those words with a 0 bit in position i appear before those words with a 1 bit 
in position i. 

10.6 Performance Characteristics of Radix Sorts 

The running time of LSD radix sort for sorting N records with w-byte 
keys is proportional to Nw, because the algorithm makes ill passes over 
all N keys. This analysis does not depend on the input, as illustrated 
in Figure 10.17. 

For long keys and short bytes, this running time is comparable 
to N 19 N: For example, if we are using a binary LSD radix sort to 
sort 1 billion 32-bit keys, then ill and 19 N are both about 32. For 
shorter keys and longer bytes this running time is comparable to N: 
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For example, if a 16-bit radix is used on 64-bit keys, then ill will be 4, 
a small constant. 

To compare properly the performance of radix sort with the per
formance of comparison-based algorithms, we need to account care
fully for the bytes in the keys, rather than for only the number of 
keys. 

Property 10.1 The worst case for radix sorting is to examine all the 
bytes in all the keys. 

In other words, the radix sorts are linear in the sense that the time 
taken is at most proportional to the number of digits in the input. This 
observation follows directly from examination of the programs: No 
digit is examined more than once. This worst case is achieved, for all 
the programs we have examined, when all the keys are equal. _ 

As we have seen, for random keys and for many other situations, 
the running time of MSD radix sorting can be sublinear in the total 
number of data bits, because the whole key does not necessarily have 
to be examined. The following classical result holds for arbitrarily 
long keys: 

Property 10.2 Binary quicksort examines about N 19 N bits, on av
erage, when sorting keys composed of random bits. 

If the file size is a power of 2 and the bits are random, then we 
expect one-half of the leading bits to be 0 and one-half to be 1, so 
the recurrence CN 2CN /2 + N should describe the performance, 
as we argued for quicksort in Chapter 7. Again, this description of 
the situation is not entirely accurate, because the partition falls in the 
center only on the average (and because the number of bits in the 
keys is finite). However, the partition is much more likely to be near 
the center for binary quicksort than for standard quicksort, so the 
leading term of the running time is the same as it would be were the 
partitions perfect. The detailed analysis that proves this result is a 
classical example in the analysis of algorithms, first done by Knuth 
before 1973 (see reference section). _ 

This result generalizes to apply to MSD radix sort. However, since our 
interest is generally in the total running time, rather than in only the 
key characters examined, we have to exercise caution, because part of 
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the running time of MSD radix sort is proportional to the size of the 
radix R and has nothing to do with the keys. 

Property 10.3 MSD radix sort with radix R on a file of size N 
requires at least 2N + 2R steps. 

MSD radix sort involves at least one key-indexed counting pass, 
and key-indexed counting consists of at least two passes through the 
records (one for counting and one for distributing), accounting for at 
least 2N steps, and two passes through the counters (one to initialize 
them to 0 at the beginning and one to determine where the subfiles are 
at the end), accounting for at least 2R steps. • 

This property almost seems too obvious to state, but it is essential to 

our understanding of MSD radix sort. In particular, it tells us that we 
cannot conclude that the running time will be low from the fact that N 
is small, because R could be much larger than N. In short, some other 
method should be used for small files. This observation is a solution to 
the empty-bins problem that we discussed at the end of Section 10.3. 
For example, if R is 256 and N is 2, MSD radix sort will be up to 
128 times slower than the simpler method of just comparing elements. 
The recursive structure of MSD radix sort ensures that the recursive 
program will call itself for large numbers of small files. Therefore, 
ignoring the empty-bins problem could make the whole radix sort up 
to 128 times slower than it could be for this example. For intermediate 
situations (for example, suppose that R is 256 and N is 64), the cost 
is not so catastrophic, but is still significant. Using insertion sort 
is not wise, because its expected cost of N2/4 comparisons is too 
high; ignoring the empty bins is not wise, because there are significant 
numbers of them. The simplest way to cope with this problem is to 
use a radix that is less than the file size. 

Property 10.4 If the radix is always less than the file size, the number 
of steps taken by MSD radix sort is within a small constant factor of 
N logR N on the average (for keys comprising random bytes), and 
within a small constant factor of the number of bytes in the keys in the 
worst case. 

The worst-case result follows directly from the preceding discussion, 
and the analysis cited for Property 10.2 generalizes to give the average
case result. For large R, the factor logR N is small, so the total time 
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Figure 10.17 

Dynamic characteristics of 
LSD radix sort on vari
ous types of files 

These diagrams illustrate the 
of LSD radix sort for files of size 
700 that are random, Gaussian, 
nearly ordered, nearly reverse or
dered, and randomly ordered with 
70 distinct key values (left to right). 
The running time is insensitive to 
the initial order of the input. The 
three files that contain the same set 
of keys (the first, third, and fourth 
all are a permutation of the inte
gers from 7 to 700) have similar 
characteristics near the end of the 
sort . 
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is proportional to N for practical purposes. For example, if R , 

then Iogn N is less than 3 for all N < 248 , which value certainly 
encompasses all practical file sizes. • 

As we do from Property 10.2 we have from Property 10.4 the 
important practical implication that MSD radix sorting is actually a 
sublinear function of the total number of bits for random keys that 
are not short. For example, sorting 1 million 64-bit random keys will 
require examining only the leading 20 to 30 bits of the keys, or less 
than one-half of the data. 

Property 10.5 Three-way radix quicksort uses 2N In N byte com
parisons, on the average, to sort N (arbitrarily long) keys. 

There are two instructive ways to understand this result. First, con
sidering the method to be equivalent to quicksort partitioning on the 
leading byte, then (recursively) using the same method on the sub
files, we should not be surprised that the total number of operations is 
about the same as for normal quicksort-but they are single-byte com
parisons, not full-key comparisons. Second, considering the method 
from the point of view depicted in Figure 10.12, we expect that the 
N Iogn N running time from Property 10.3 should be multiplied by a 
factor of 2In R because it takes quicksort 2R In R steps to sort R bytes, 
as opposed to the R steps for the same bytes in the trie. We omit the 
full proof (see reference section). _ 

Property 10.6 LSD radix sort can sort N records with w-bit keys 
in w jIg R passes, using extra space for R counters {and a buffer for 
rearranging the file}. 

Proof of this fact is straightforward from the implementation. In 
particular, if we take R = 2"'/\ we get a four-pass linear sort .• 

Exercises 

10.39 Suppose that an input file consists of 1000 copies of each of the num
bers 1 through 1000, each in a 32-bit word. Describe how you would take 
advantage of this knowledge to get a fast radix sorr. 

1040 Suppose that an input file consists of 1000 copies of each of a thousand 
different 32-bit numbers. Describe how you would take advantage of this 
knowledge to get a fast radix sort. 

10.41 What is the total number of bytes examined by three-way radix quick
sort when sorting fixed-length bytestrings, in the worst case? 
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10.42 Empirically compare the number of bytes examined by three-way radix 
quicksort for long strings with N = 103 

, 104 
, 105 

, and 106 with the number of 
comparisons used by standard quicksort for the same files. 

010.43 	Give the number of bytes examined by MSD radix sort and three-way 
radix quicksort for a file of N keys A, AA, AAA, AAAA, AAAAA, AAAAAA, .... 

IO.7 Sublinear-Time Sorts 

The primary conclusion that we can draw from the analytic results of 
Section 10.6 is that the running time of radix sorts can be sublinear 
in the total amount of information in the keys. In this section, we 
consider practical implications of this fact. 

The LSD radix-sort implementation given in Section 10.5 makes 
bytesword passes through the file. By making R large, we get an 
efficient sorting method, as long as N is also large and we have space for 
R counters. As mentioned in the proof of Property 10.5, a reasonable 
choice is to make Ig R (the number of bits per byte) about one-quarter 
of the word size, so that the radix sort is four key-indexed counting 
passes. Each byte of each key is examined, but there are only four 
digits per key. This example corresponds directly to the architectural 
organization of many computers: one typical organization has 32-bit 
words, each consisting of four 8-bit bytes. We extract bytes, rather 
than bits, from words, which approach is likely to be much more 
efficient on many computers. Now, each key-indexed-counting pass 
is linear, and, because there are only four of them, the entire sort is 
linear--certainly the best performance we could hope for in a sort. 

In fact, it turns out that we can get by with only two key-indexed 
counting passes. We do so by taking advantage of the fact that the 
file will be almost sorted if only the leading w /2 bits of the w-bit 
keys are used. As we did with quicksort, we can complete the sort 
efficiently by using insertion sort on the whole file afterward. This 
method is a trivial modification to Program 10-4- To do a right-to
left sort using the leading one-half of the keys, we simply start the 
outer for loop at bytesword/2-1, rather than bytesword-1. Then, 
we use a conventional insertion sort on the nearly ordered file that 
results. Figures 10.3 and 10.18 provide convincing evidence that a 
file sorted on its leading bits is well ordered. Insertion soct would use 
only six exchanges to sort the file in the fourth column of Figure 10.3, 
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Figure 10.18 

Dynamic characteristics of 
LSD radix sort on MSD 
bits 

When keys are random bits, sort
ing the file on the leading bits of 
the keys brings it nearly into or
der. This diagram compares a six
pass LSD radix sort (left) on a file 
of random 6-bit keys with a three
pass LSD radix sort, which can be 
followed by an insertion-sort pass 
(right). The latter strategy is nearly 
twice as fast. 
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and Figure 10.18 shows that a larger file sorted on only the leading 
one-half of its bits also could be sorted efficiently by insertion sort. 

For some file sizes, it might make sense to use the extra space 
that would otherwise be used for the auxiliary array to try to get by 
with just one key-indexed-counting pass, doing the rearrangement in 
place. For example, sorting 1 million random 32-bit keys could be 
done with one key-indexed-counting sort on the leading 20 bits, then 
an insertion sort. To do that, we need space just for the (l million) 
counters-significantly less than would be needed for an auxiliary 
array. Using this method is equivalent to using standard MSD radix 

220sort with R = , although it is essential that a small radix be used 
for small files for such a sort (see the discussion after Property 10.4). 

The LSD approach to radix sorting is widely used, because it 
involves extremely simple control structures and its basic operations 
are suitable for machine-language implementation, which can directly 
adapt to special-purpose high-performance hardware. In such an en
vironment, it might be fastest to run a full LSD radix sort. If we use 
pointers, then we need to have space for N links (and R counters) to 

use LSD radix sort, and this investment yields a method that can sort 
random files with only three or four passes. 

In conventional programming environments, the inner loop of 
the key-indexed-counting program on which the radix sorts are based 
contains a substantially higher number of instructions than do the inner 
loops of quicksort or mergesort. This property of the implementations 
implies that the sublinear methods that we have been describing may 
not be as much faster than quicksort (say) as we might expect in many 
situations. 

General-purpose algorithms such as quicksort are more widely 
used than radix sort, because they adapt to a broader variety of ap
plications. The primary reason for this state of affairs is that the key 
abstraction on which radix sort is built is less general than the one that 
we used (with the compare function) in Chapters 6 through 9. For 
example, one typical way to arrange the interface for a sort utility is to 
have the client provide the comparison function. This is the interface 
used by the C library qsort. This arrangement not only handles situ
ations where the client can use specialized knowledge about complex 
keys to implement a fast comparison, but also allows us to sort using 
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Table 10.1 Empirical study of radix sorts (integer keys) 

These relative timings for radix sorts on random files of N 32-bit integers 
(all with a cutoff to insertion sort for N less than 16) indicate that radix 
sorts can be among the fastest sorts available, used with care. If we use a 
huge radix for tiny files, we ruin the performance of MSD radix sort, but 
adapting the radix to be less than the file size cures this problem. The 
fastest method for integer keys is LSD radix sort on the leading one-half 
of the bits, which we can speed up further by paying careful attention to 
the inner loop (see Exercise 10.45). 

4-bit bytes 8-bit byles 16-bit bytes 

N Q M L M L L* M L M* 
--- 

12500 2 7 11 28 4 2 52 5 8 

25000 5 14 21 29 8 4 54 8 15 

50000 10 49 43 35 18 9 58 15 39 

100000 21 77 92 47 39 18 67 30 77 

200000 49 133 185 72 81 39 296 56 98 

400000 102 278 377 581 169 88 119398 110 297 

800000 223 919 732 6064 328 203 1532492 219 2309 
------ ---------------------_..... 

Key: 
Q Quicksort, standard (Program 7. I) 

M MSD radix sort, standard (Program 10.2) 

L LSD radix sort (Program 10.4) 

M* MSD radix sort, radix adapting to file size 

L * LSD radix sort on MSD bits 


an ordering relation that may not involve keys at all. We examine such 
an algorithm in Chapter 2I. 

When any of them could be used, the choice among quicksort 
and the various radix sort algorithms (and related versions of quick
sort!) that we have considered in this chapter will depend not only on 
features of the application (such as key, record, and file size) but also 
on features of the programming and machine environment that relate 
to the efficiency of access and use of individual bits and bytes. Ta
bles ro.1 and 10.2 give empirical results in support of the conclusion 
that the linear- and sublinear-time performance results that we have 
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Table 10.2 Empirical study of radix sorts (string keys) 

These relative timings for various sorts on the first N words of Moby 
Dick (all, except heapsort, with a cutoff to insertion sort for N less than 
16) indicate that the MSD-first approach is effective for string data. The 
cutoff for small subfiles is less effective for three-way radix quicksort 
than for the other methods, and is not effective at all unless we modify 
the insertion sort to avoid going through the leading parts of the keys 
(see Exercise 10.46). 

N Q T M F R X X' 

12500 7 6 9 9 8 6 5 

25000 14 12 18 19 15 11 10 

50000 34 26 39 49 34 25 24 

100000 83 61 87 114 71 57 54 

Key: 
Q Quicksort, standard (Program 7.1) 

T Quicksort with three-way partitioning (Program 7.5) 

M Mergesort (Program 8.2) 

F Heapsort with Floyd's improvement (see Section 9.4) 

R MSD radix sort (Program IO.2) 

X radix quicksort (Program 10.3) 

X' radix quicksort (with cutoff) 


discussed for various applications of radix sorts make these sorting 
methods an attractive choice for a variety of suitable applications. 

Exercises 

t> 10.44 What is the major drawback of doing LSD radix sorting on the leading 
bits of the then cleaning up with insertion sort afterward? 

• 10.45 	Develop an implementation of LSD radix sort for 32-bit keys with as 
few instructions as possible in the inner loop. 

10.46 Implement three-way radix quicksort such that the insertion sort for 
small files does not use leading bytes that are known to be equal in compar
isons. 

10.47 Given 1 million random 32-bit keys, find the choice of byte size that 
minimizes the total running time when we use the method of using LSD radix 
sort on the first two bytes, then using insertion sort to dean up. 
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IO.48 Answer Exercise IO.47 for 1 billion 64-bit keys. 

IO.49 Answer Exercise IO.48 for three-pass LSD radix sort. 





CHAPTER ELEVEN 


Special-Purpose Sorting Methods 


SORTING METHODS ARE critical components of many applica
tions systems, and it is not unusual for special measures to be taken 

to make a sort as fast as possible or capable of handling huge files. We 
might encounter high-performance enhancements to a computer sys
tem, or special-purpose hardware specifically designed for sorting, or 
simply a new computer system based on some new architectural de
sign. In such cases, the implicit assumptions that we have been making 
about the relative costs of operations on the data to be sorted may not 
be valid. In this chapter, we examine examples of sorting methods that 
are designed to run efficiently on various different kinds of machines. 
We consider several different examples of the restrictions imposed by 
high-performance hardware, and several methods that are useful in 
practice for implementing high-performance sorts. 

Any new computer architecture is eventually going to need to 

support an efficient sorting method. Indeed, sorting has historically 
served as one testbed for evaluating new architectures, because it is 
so important and so well understood. We want to learn not just 
which known algorithms run best on a new machine and why, but also 
whether specific characteristics of a new machine can be exploited 
in some new algorithm. To develop a new algorithm, we define an 
abstract machine that encapsulates the essential properties of the real 
machine; design and analyze algorithms for the abstract machine; then 
implement, test, and refine both the best algorithms and the modeL We 
draw on our past experience, including the many methods for general
purpose machines that we have seen in Chapters 6 through 10, but the 
abstract machines impose limitations that help us to focus on the true 

439 
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costs, and make it clear that different algorithms are appropriate for 
different machines. 

At one end of the spectrum, we shall consider low-level models 
where the only allowed operation is the compare-exchange operation. 
At the other end of the spectrum, we shall consider high-level models 
where we read and write large blocks of data to a slow external medium 
or among independent parallel processors. 

First, we examine a version of mergesort known as Batcher's 
odd-even mergesort. It is based on a divide-and-conquer merge al
gorithm that uses only compare-exchange operations, with perfect
shuffle and perfect-unshuffle operations for data movement. These are 
of interest in their own right, and apply to many problems other than 
sorting. Next, we examine Batcher's method as a sorting network. A 
sorting network is a simple abstraction for low-level sorting hardware. 
Networks consist of interconnected comparators, which are modules 
capable of performing compare-exchange operations. 

Another important abstract sorting problem is the external
sorting problem, where the file to be sorted is far too large to fit in 
memory. The cost of accessing individual records can be prohibitive, 
so we shall use an abstract model, where records are transferred to and 
from external devices in large blocks. We consider two algorithms for 
external sorting, and use the model to compare them. 

Finally, we consider parallel sorting, for the case when the file 
to be sorted is distributed among independent parallel processors. We 
define a simple parallel-machine model, then examine how Batcher's 
method provides an effective solution. Our use of the same basic 
algorithm to solve a high-level problem and a low-level problem is a 
convincing example of the power of abstraction. 

The different abstract machines in this chapter are simple, but 
are worthy of study because they encapsulate specific constraints that 
can be critical in particular sorting applications. Low-level sorting 
hardware has to consist of simple components; external sorts gener
ally require access of huge data files in blocks, with sequential access 
more efficient than random access; and parallel sorting involves com
munications constraints among processors. On the one hand, we 
cannot do justice to detailed machine models that fully correspond to 
particular real machines; on the other hand, the abstractions that we 
do consider lead us not only to theoretical formulations that provide 
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information about essential limitations on performance, but also to 
interesting algorithms that are of direct practical utility. 

I I. I Batcher's Odd-Even Mergesort 

To begin, we shall consider a sorting method that is based on just two 
abstract operations, the compare-exchange operation and the perfect 
shuffle operation (along with its inverse, the perfect unshuffle). The 
algorithm, developed by Batcher in 1968, is known as Batcher's odd
even mergesort. It is a simple task to implement the algorithm using 
shuffles, compare-exchanges, and double recursion, but it is more 
challenging to understand why the algorithm works, and to untangle 
the shuffles and recursion to see how it operates at a low level. 

We encountered the compare-exchange operation briefly in 
Chapter 6, where we noted that some of the elementary sort meth
ods discussed there could be expressed more concisely in terms of this 
abstract operation. l'\ow, we are interested in methods that exam
ine the data exclusively with compare-exchange operations. Standard 
comparisons are ruled out: The compare-exchange operation does not 
return a result, so there is no way for a program to take action that 
depends on data values. 

Definition 11.1 A nonadaptive sorting algorithm is one where the 
sequence of operations performed depends on only the number of the 
inputs, rather than 011 the values of the keys. 

In this section, we do allow operations that unilaterally rearrange the 
data, such as exchanges and perfect shuffles, but they are not essential, 
as we shall see in Section I I.2. ~onadaptive methods are equivalent 
to straight-line programs for sorting: They can be expressed simply 
as a list of the compare-exchange operations to be performed. For 
example, the sequence 

compexch(a[O] , a[l]) 
compexch(a[l] , a ) 
compexch(a[O] , a[l]) 

is a straight-line program for sorting three elements. We use loops, 
shuffles, and other high-level operations for convenience and economy 
in expressing algorithms, but our goal in developing an algorithm is 
to define, for each N, a fixed sequence of compexch operations that 
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A---A A A 
G A A G 
I G G I 
N B B N 
0 I I 0 
R E E R 

S N N S 
T E E T 
A 0 0 A 
B L L B 
E R R E 
E M M E 
L S S L 
M P P M 
P T T P 
X---X x x 

Figure ILl 

Perfect shuffle and perfect un
shuffle 

To perform a perfect shuffle (left), 
we take the first element in the file; 
then the first element in the second 
half, then the second element in 
the file, then the second element 
in the second half, and 50 forth. 
Consider the elements to be num
bered starting at 0, top to bottom. 
Then, elements in the first half go 
to even-numbered positions, and 
elements in the second half go to 
odd-numbered positions. To per
form a perfect unshuffle (right), 
we do the opposite: Elements in 
even-numbered positions go to 
the first half, and elements in odd
numbered positions go to the sec
ond half 
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Program ILl Perfect shuffle and perfect unshuffle 

The shuffle function rearranges a subarray a [1], ... , a [r] by splitting 
that subarray in half, then alternating elements from each half: Elements 
in the first half go in the even-numbered positions in the result, and 
elements in the second half go in the odd-numbered positions in the 
result. 

The unshuffle function does the opposite: Elements in the even
numbered positions go in the first half of the result, and elements in the 
odd-numbered positions go in the second half of the result. We use 
these functions only for subarrays with an even number of elements. 

shuff1eCitemType a[], int 1, int r) 
{ int i, j, m C1+r)/2; 

for (i = 1, j = 0; i <= r; i+=2, j++) 
{ aux[i] = a[l+j]; aux[i+l] a[m+l+j];} 

for (i 1; i <= r; i++) a[i] aux[i] ; 
} 

unshuffle(itemType a[]. int 1, int r) 
{ int i, j, m = (1+r)/2; 

for (i = 1, j = 0; i <= r; i+=2, j++) 
{ aux[l+j] = a[i]; aux[m+l+j] = a[i+l]; } 

for (i = 1; i <= r; i++) a[i] = aux[i]; 
} 

can sort any set of IV keys. We can assume without loss of generality 
that the key values are the integers 1 through IV (see Exercise 11.4); 
to know that a straight-line program is correct, we have to prove that 
it sorts each possible permutation of these values (see, for example, 
Exercise II.S). 

Few of the sorting algorithms that we considered in Chapters 6 
through 10 are nonadaptive-they all use less or examine the keys in 
other ways, then take differing actions depending on key values. One 
exception is bubble sort (see Section 6.4), which uses only compare
exchanges. Pratt's version of shellsort (see Section 6.6) is another 
nonadaptive method. 

Program 11.1 gives an implementation of the other abstract op
erations that we shall be using-the perfect shuffle and the perfect 
unshuffle-and Figure 11.1 gives an example of each. The perfect 
shuffle rearranges an array in a manner corresponding to the way that 
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Program 11.2 Batcher's odd-even merge (recursive version) 

This recursive program implements an abstract inplace merge, using the 
shuffle and unshuffle operations from Program 11.1, although they 
are not essential-Program 11.3 is a bottom-up nonrecursive version 
of this program with shuffling removed. OUf primary interest here is 
that this implementation provides a compact description of Batcher's 
algorithm, when the file size is a power of 2. 

mergeTD(itemType a[], int 1, int r) 
{ int i, m (l+r)/2; 

if (r == 1+1) compexch(a[l] , a[r]); 
if (r < 1+2) return; 
unshuffle(a, 1, r); 
mergeTD(a, 1, m); 
mergeTD(a, m+1, r); 
shuffle(a, 1, r); 
for (i = 1+1; i < r; 

compexch(a[i], a[i+1]); 
} 

a deck of cards might be rearranged when shuffled by an expert: It is 
split precisely in half, then the cards are taken alternately from each 
half to make the shuffled deck. We always take the first card from the 
top half of the deck. If the number of cards is even, the two halves 
have the same number of cards; if the number of cards is odd, the extra 
card ends up in the top half. The perfect unshuffle does the opposite: 
We make the unshuffled deck by putting cards alternately in the top 
half and the bottom half. 

Batcher's sort is exactly the top-down mergesort of Section 8.3; 
the difference is that instead of one of the adaptive merge implementa
tions from Chapter 8, it uses Batcher's odd-even merge, a nonadaptive 
top-down recursive merge. Program 8.3 does not access the data at 
all, so our use of a nonadaptive merge implies that the whole sort is 
nonadaptive. 

We shall implicitly assume in the text throughout this section and 
Section 11.2 that the number of items to be sorted is a power of 2. 
Then, we can always refer to "Nj2" without a caveat about N being 
odd, and so forth. This assumption is impractical, of course-our 

A GIN 0 R S T A EEL M P X Y 
A lOS A E M X G N R TEL P Y 
AOAMISEX 
AAOM 
A A 

MO 

A MAO 

A A M 0 


I E S X 

E I 


S X 

E S I X 
E I S X 

AEAIMSOX 
AAEIMOSX 

G REP N T L Y 
G E R P 
E G 

P R 
E P G R 
E G P R 

N L T Y 
L N 

T Y 
L T N Y 
L N T Y 

E L GNP TRY 
E G L N P R T Y 

A E AGE LIN M P 0 R S T X Y 
A A E E GIL M N 0 P R S T X Y 

Figure 11.2 

Top-down Batcher's odd-even 
merge example 

To merge A G , NOR S T with A 
EEL M P X Y, we begin with an 
unshuffle operation, which creates 
two independent merging problems 
of about one-half the size (shown 
in the second line): we have to 
merge A lOS with A E M X (in 
the first half of the array) and G 
N R T with E L P Y (in the sec
ond half of the array). After solv
ing these subproblems recursively,. 
we shuffle the solutions to these 
problems (shown in the next-to
last line) and complete the sort by 
compare-exchanging E with A, G 
with E, L with I, N with M, P with 
0, R with S, and T with X. 
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00111 1 1 0 0 0 0 1 1 1 

011 100 10111001 

000111 1 0 0 0 1 1 111 

o 0 0 0 0 0 1 11111111 

o 0 0 000 1 11111111 


001111110001111 
o 1 1 1 001 1 011 1 0 1 1 

0001111100111111 

o 0 0 0 0 1 1 1 1 1 1 1 1 

o 0 0 0 0 1 1 1 1 1 1 1 1 


o 1 1 1 1 1 1 100 0 0 1 1 1 

011 100 111 1 001 

000 1 1 1 100 1 1 1 1 

o 0 000 1 111 1 1 1 1 1 1 

0000011111111111 


000 1 1 1 1 1 0 0 0 1 1 1 1 1 

001 100 1 0 1 1 101 1 1 

o 0 0 0 1 1 1 001 111 

o 0 0 001 011 1 1 111 

o 0 0 0 0 0 1 1 1 1 1 1 1 111 


Figure 11.3 

Four cases for 0-1 merging 

These four examples consist of five 
lines each: a 0-1 merging prob
lem; the result of an un.shuffle op
eration, which gives two merging 
problems; the result of recursively 
completing the merges; the result 
of a shuffle; and the result of the 
final odd-€ven compares. The last 
stage performs an exchange only 
when the number of 05 in both in
put files is odd. 
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programs and examples involve other file sizes-but it simplifies the 
discussion considerably. We shall return to this issue at the end of 
Section 11.2. 

Batcher's merge is itself a divide-and-conquer recursive method. 
To do a I-by-l merge, we use a single compare-exchange operation. 
Otherwise, to do an N-by-N merge, we unshuffle to get two N/2-by
N/2 merging problems, and then solve them recursively to get two 
sorted files. Shuffling these files, we get a file that is nearly sorted
all that is needed is a single pass of N/2 - 1 independent compare
exchange operations: between elements 2i and 2i + 1 fori from 1 to 
N /2 -1. An example is depicted in Figure 11.2. From this description, 
the implementation in Program 11.2 is immediate. 

Why does this method sort all possible input permutations? The 
answer to this question is not at all obvious-the classical proof is an 
indirect one that depends on a general characteristic of nonadaptive 
sorting programs. 

Property 11.1 (0-1 principle) If a nonadaptive program produces 
sorted output when the inputs are all either 0 or 1, then it does so 
when the inputs are arbitrary keys. 

See Exercise I I .7. _ 


Property II.2 Batcher's odd-even merge (Program 11.2) is a valid 
merging method. 

Using the 0-1 principle, we check only that the method properly merges 
when the inputs are all either 0 or 1. Suppose that there are i Os in the 
first subfile and j Os in the second subfile. The proof of this property 
involves checking four cases, depending on whether i and ,7 are odd or 
even. If they are both even, then the two merging subproblems each 
involve one file with i/2 Os and one file with j /2 Os, so both results 
have (i + j)/2 Os. Shuffling, we get a sorted 0-1 file. The 0-1 file 
is also sorted after shuffling in the case that i is even and j is odd 
and the case thati is odd and j is even. But if both i and j are odd, 
then we end up shuffling a file with (i + j) /2 -r 1 Os with a file with 
(i + j)/2 lOs, so the 0-1 file after shuffling hasi + j - lOs, a 1, a 
0, then N - i - j 1 1s (see Figure 11.3), and one of the comparators 
in the final stage completes the sort. _ 
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We do not need actually to shuffle the data. Indeed, we can use 
Programs 11.2 and 8.3 to output a straight-line sorting program for 
any N, by changing the implementations of compexch and shuffle to 
maintain indices and to refer to the data indirectly (see Exercise 11.1 2). 

Or, we can have the program output the compare-exchange instruc
tions to use on the original input (see Exercise 11.13). We could apply 
these techniques to any nonadaptive sorting method that rearranges 
the data with exchanges, shuffles, or similar operations. For Batcher's 
merge, the structure of the algorithm is so simple that we can develop 
a bottom-up implementation directly, as we shall see in Section I I .2. 

Exercises 

t> I1.I Give the result of shuffling and unshuffling the keys E AS YQUE S T I 
ON. 

11.2 Generalize Program 11.1 to implement h-way shuffle and unshuffle. 
Defend your strategy for the case that the file size is not a multiple of h . 

• 	IL3 Implement the shuffle and unshuffle operations without using an aux
iliary array . 

• 	11.4 Show that a straight-line program that sorts N distinct keys will sort 
N keys that are not necessarily distinct. 

t> 11.5 Show how the straight-line program given in the text sorts each of the 
six permutations of the integers 1, 2, and 3. 

o I1.6 Give a straight-line program that sorts four elements . 

• 	11.7 Prove Property 11.1. Hint: Show that if the program does not sort 
some input array with arbitrary keys, then there is some 0-1 sequence that it 
does not sort. 

t> II.8 Show how the keys A E Q S U Y E I NOS T are merged using Pro
gram 11.2, in the style of the example diagrammed in Figure 11.2. 

t> 11.9 Answer Exercise 11.8 for the keys A E S Y E I NO Q STU. 

o II.IO Answer Exercise 11.8 for the keys 1 00 1 1 1 000001 01 0 O. 

I 1.1 I Empirically compare the running time of Batcher's mergesort with that 
of standard top-down mergesort (Programs 8.3 and 8.2) for N = 103, 104

, 

105 , and 106 • 

ILI2 Give implementations of compexch, shuffle, and unshuffle that 
cause Programs 11.2 and 8.3 to operate as an indirect sort (see Section 6.8). 

o 1I.13 Give implementations of compexch, shuffle, and unshuffle that 
cause Programs 11.2 and 8.3 to print out, given N, a straight-line program 
for sorting N elements. You may use an auxiliary global array to keep track 
of indices. 



A AC--t-B-B±A 
B~C-C C C --t- B 
D-D--t-A B B~C 
A-A~D 0 o 0 

Figure II.4 
A sorting network 

The keys move from left to right 
on the lines in the network. The 
comparators that they encounter 
exchange the keys if necessary to 
put the smaller one on the higher 
line. In this example, Band Care 
exchanged on the top two lines, 
then A and 0 are exchanged on 
the bottom two, then A and B, and 
so forth, leaving the keys in sorted 
order from top to bottom at the 
end. In this example; all the com~ 
parators do except the 
fourth one. This network sorts any 
permutation of four keys. 
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I I.14 If we put the second file for the merge in reverse order, we have a bitonic 
sequence, as defined in Section 8.2. Changing the final loop in Program I 1.2 

to start at 1 instead of 1+1 turns the program into one that sorts bitonic 
sequences. Show how the keys A E S Q U Y T SON I E are merged using this 
method, in the style of the example diagrammed in Figure I I. 2 . 

• 	 I I. I 5 Prove that the modified Program I I. 2 described in Exercise I I.14 

sorts any bitonic sequence. 

I 	1.2 Sorting Networks 

The simplest model for studying nonadaptive sorting algorithms is 
an abstract machine that can access the data only through compare
exchange operations. Such a machine is called a sorting network. 
A sorting network comprises atomic compare-exchange modules, or 
comparators, which are wired together so as to implement the capa~ 
bility to perform fully general sorting. 

Figure I 1.4 shows a simple sorting network for four keys. Cus~ 
tomarily, we draw a sorting network for N items as a sequence of 
N horizontal lines, with comparators connecting pairs of lines. We 
imagine that the keys to be sorted pass from right to left through the 
network, with a pair of numbers exchanged if necessary to put the 
smaller on top whenever a comparator is encountered. 

Many details must be worked out before an actual sorting ma
chine based on this scheme could be built. For example, the method 
of encoding the inputs is left unspecified. One approach would be to 
think of each wire in Figure I 1.4 as a group of lines, each holding 1 bit 
of data, so that all the bits of a key flow through a line simultaneously. 
Another approach would be to have the comparators read their inputs 
1 bit at a time along a single line (most significant bit first). Also left 
unspecified is the timing: mechanisms must be included to ensure that 
no comparator performs its operation before its input is ready. Sort
ing networks are a good abstraction because they allow us to separate 
such implementation considerations from higher-level design consid
erations, such as minimizing the number of comparators. Moreover, 
as we shall see in Section I1.5, the sort network abstraction is useful 
for applications other than direct circuit realizations. 

Another important application of sorting networks is as a model 
for parallel computation. If two comparators do not use the same 
input lines, we assume that they can operate at the same time. For 
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example, the network in Figure 11.4 shows that four elements can 
be sorted in three parallel steps. The 0-1 comparator and the 2
3 comparator can operate simultaneously in the first step, then the 
0-2 comparator and the 1-3 comparator can operate simultaneously 
in the second step, and then the 2-3 comparator finishes the sort in 
the third step. Given any network, it is not difficult to classify the 
comparators into a sequence of parallel stages that consist of groups 
of comparators that can operate simultaneously (see Exercise 11.17). 

For efficient parallel computation, our challenge is to design networks 
with as few parallel stages as possible. 

Program 11.2 corresponds directly to a merging network for 
each N, but it is also instructive for llS to consider a direct bottom
up construction, which is illustrated in Figure 11. 5. To construct a 
merging network of size N, we use two copies of the network of size 
N /2; one for the even-numbered lines and one for the odd-numbered 
lines. Because the two sets of comparators do not interfere, we can 
rearrange them to interleave the two networks. Then, at the end, we 
complete the network with comparators between lines 1 and 2, 3 and 
4, and so forth. The odd--even interleaving replaces the perfect shuffle 
in Program 11.2. The proof that these networks merge properly is 
the same as that given for Properties 11.1 and 11.2, using the 0-1 
principle. Figure 11.6 shows an example of the merge in operation. 

Program 11.3 is a bottom-up implementation of Batcher's merge, 
with no shuffling, that corresponds to the networks in Figure 11.5. 

This program is a compact and elegant in-place merging function that 

Figure 11.5 

Batcher's odd-even merging 
networks 

These different representations of 
the networks for four (top), eight 
(center), and 16 (bottom) lines ex
pose the network's basic recursive 
structure. On the left are direct 
representations of the construction 
of the networks of size N with two 
copies of the networks of size N /2 
(one for the even-numbered lines 
and one for the odd-numbered 
lines), plus a stage of compara
tors between lines 1 and 2, 3 and 
4, .5 and 6, and so forth. On the 
right are Simpler networks that we 
derive from those on the left by 
grouping comparators of the same 
length; grouping is possible be
cause we can move comparators 
on odd lines past those on even 
lines without interference. 
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.Figure I 1.6 
Bottom-up Batcher's merge 

example 

When all the shuffling is removed, 
Batcher's merge for our exam
ple amounts to the 25 compare
exchange operations depicted here. 
They divide into four phases of in
dependent compare-exchange op
erations at a fixed offset for each 
phase. 
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Program 11.3 Batcher's odd-even merge (nonrecursive version) 

This implementation of Batcher's odd-even merge (which assumes that 
the file size N is a power of 2) is compact but mysterious. We can under
stand how it accomplishes the merge by examining how it corresponds 
to the recursive version (see Program 11.2 and Figure 11.5). It accom
plishes the merge in Ig N passes consisting of uniform and independent 
compare-exchange instructions. 

mergeBU(itemType a[], int 1, int r) 

{ int i, j, k, N = r-l+i; 


for (k = N/2; k > 0; k 1= 2) 

for (j = k % (N/2); j+k < N; j += (k+k» 


for (i 0; i < k; i++) 

compexch(a[l+j+i], a[l+j+i+k]); 


} 


is perhaps best understood as just an alternate representation of the 
networks, although direct proofs that it accomplishes the merging task 
correctly are also interesting to contemplate. We shall examine one 
such proof at the end of this section. 

Figure I 1.7 shows Batcher's odd-even sorting network, built 
from the merging networks in Figure 11.5 using the standard recursive 
mergesort construction. The construction is doubly recursive: once for 
the merging networks and once for the sorting networks. Although 
they are not optimal-we shall discuss optimal networks shortly
these networks are efficient. 

Property 11.3 Batcher's odd-even sorting networks have about 
N (lg N)2 / 4 comparators and can run in (lg N)2 /2 parallel steps. 

The merging networks need about 19 N parallel steps, and the sorting 
networks need 1 + 2 + ... + 19 N, or about (lg N)2 /2 parallel steps. 
Comparator counting is left as an exercise (see Exercise I1.23)•• 

Using the merge function in Program 11.3 within the standard 
recursive mergesort in Program 8.3 gives a compact in-place sorting 
method that is nonadaptive and uses O(N(1g N)2) compare-exchange 
operations. Alternatively, we can remove the recursion from the merge
sort and implement a bottom-up version of the whole sort directly, as 
shown in Program I1.4. As was Program 11. 3, this program is per
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haps best understood as an alternate representation of the network 
in Figure II.7. The implementation involves adding one loop and 
adding one test in Program IL3, because the merge and the sort have 
similar recursive structure. To perform the bottom-up pass of merg
ing a sequence of sorted files of length 2k into a sequence of sorted 
files of length 2k +1 , we use the full merging network, but include only 
those comparators that fall completely within subfiles. This program 
perhaps wins the prize as the most compact nontrivial sort implemen
tation that we have seen, and it is likely to be the method of choice 
when we want to take advantage of high-performance architectural 
features to develop a high-speed sort for small files (or to build a sort
ing network). Understanding how and why the program sorts would 
be a formidable task if we did not have the perspective of the recur
sive implementations and network constructions that we have been 
considering. 

As usual with divide-and-conquer methods, we have two basic 
choices when N is not a power of 2 (see Exercises I1.24 and I 1.2I). 

We can divide in half (top-down) or divide at the largest power of 2 
less than N (bottom-up). The latter is somewhat simpler for sorting 
networks, because it is equivalent to building a full network for the 
smallest power of 2 greater than or equal to N, then using only the 
first N lines and only comparators with both ends connected to those 
lines. The proof that this construction is valid is simple. Suppose that 
the lines that are not used have sentinel keys that are greater than any 
other keys on the network. Then, comparators on those lines never 

Figure II.7 

Batcher's odd-even sorting 
networks 

This sorting network for 32 lines 
contains two copies of the net
work for 16 lines, four copies of 
the network for eight lines, and so 
forth. Reading from right to left; 
we see the structure in a top-down 
manner: A sorting network for 32 
lines consists of a 16-by-76 merg
ing network following two copies 
of the sorting network for 16 lines 
(one for the top half and one for 
the bottom halt). Each network 
for 16 lines consists of an 8-by
8 merging network following two 
copies of the sorting network for 8 
lines, and 50 forth. Reading from 
left to right, we see the structure in 
a bottom-up manner: The first col
umn of comparators creates sorted 
subfile5 of size 2; then, we have 
2-by-2 merging networks that cre
ate sorted subfiles of size 4; then, 
4-by-4 merging networks that cre
ate sorted subfiles of size 8, and 50 

forth. 
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Figure II.S 
Shuffling in Batcher's odd-

even merge 
A direct implementation of Pro
gram 11.2 as a sorting network 
gives a network replete with recur
sive unshuffling and shuffling (top). 
An equivalent implementation (bot
tom) involves only full shuffles. 
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Program I1.4 Batcher's odd-even sort (nonrecursive version) 

This implementation of Batcher's odd-even sort corresponds directly 
to the network representation in Figure II.7. It divides into phases, 
indexed by the variable p. The last phase, when p is N, is Batcher's 
odd-even merge. The next-to-Iast phase, when p is N/2, is the odd-even 
merge with the first stage and all comparators that cross N/2 eliminated; 
the third-to-Iast phase, when p is N/4, is the odd-even merge with the 
first two stages and all comparators that cross any multiple of N/4 
eliminated, and so forth. 

void batchersort(itemType a[], int 1, int r) 
{ int i, j, k, p, N = r-1+1; 

for (p = 1; P < N; P += p) 

for (k = p; k > 0; k /= 2) 
for (j = k%p; j+k < N; j += (k+k» 

for (i = 0; i < k; i++) 
if (j+i+k < N) 

if ((j+i)/(p+p) == (j+i+k)/(p+p» 
compexch(a[l+j+i], a[l+j+i+k]); 

} 

exchange, so removing them has no effect. Indeed, we could use any 
contiguous set of N lines from the larger network: Consider ignored 
lines at the top to have small sentinels and ignored lines at the bottom 
to have large sentinels. All these networks have about N(lgN)2j4 
comparators. 

The theory of sorting networks has an interesting history (see 
reference section). The problem of finding networks with as few com
parators as possible was posed by Bose before 1960, and is called the 
Bose-Nelson problem. Batcher's networks were the first good solu
tion to the problem, and for some time people conjectured that they 
were optimal. Batcher's merging networks are optimal, so any sorting 
network with substantially fewer comparators has to be constructed 
with an approach other than recursive mergesort. The problem of 
finding optimal sorting networks eluded researchers until, in 1983, 
Ajtai, Komi os, and Szemeredi proved the existence of networks with 
O(N log N) comparators. However, the AKS networks are a mathe
matical construction that is not at all practical, and Batcher's networks 
are still among the best available for practical use. 
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The connection between perfect shuffling and Batcher's networks 
makes it amusing to complete our study of sorting networks by con
sidering yet another version of the algorithm. If we shuffle the lines 
in Batcher's odd-even merge, we get networks where all the compara
tors connect adjacent lines. Figure 11.8 illustrates a network that 
corresponds to the shuffling implementation corresponding to Pro
gram 11.2. This interconnection pattern is sometimes called a but
terfly network. Also shown in the figure is another representation of 
the same straight-line program that provides an even more uniform 
pattern; it involves only full shuffles. 

Figure I 1.9 shows yet another interpretation of the method that 
illustrates the underlying structure. First, we write one file below the 
other; then, we compare those elements that are vertically adjacent 
and exchange them if necessary to put the larger one below the smaller 
one. Next, we split each row in half and interleave the halves, then 
perform the same compare-exchange operations on the numbers in 
the second and third lines. Comparisons involving other pairs of rows 
are not necessary because of the previous sorting. The split-interleave 
operation keeps both the rows and the columns of the table sorted. 
This property is preserved in general by the same operation: Each 
step doubles the number of rows, halves the number of columns, and 
still keeps the rows and the columns sorted; eventually we end up 
with 1 column of N rows, which is therefore completely sorted. The 
connection between the tableaux in Figure 11.9 and the network at 
the bottom in Figure II.8 is that, when we write down the tables 
in column-major order (the elements in the first column followed by 
the elements in the second column, and so forth), we see that the 
permutation required to go from one step to the next is none other 
than the perfect shuffle. 

Now, with an abstract parallel machine that has the perfect
shuffle interconnection built in, as shown in Figure 11.10, we would 
be able to implement directly networks like the one at the bottom of 
Figure II.8. At each step, the machine does compare-exchange oper
ations between some pairs of adjacent processors, as indicated by the 
algorithm, then performs a perfect shuffle of the data. Programming 
the machine amounts to specifying which pairs of processors should 
do compare-exchange operations at each cycle. 
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Figure 11.9 

Split-interleave merging 

Starting with two sorted files in 
one row; we merge them by iterat
ing the following operation: split 
each row in half and interleave 
the halves (left), and do compare
exchanges between items now ver
tically adjacent that came from 
different rows (right). At the begin
ning we have 16 columns and one 
ro~v, then eight columns and two 
rows, then four columns and four 
rows, then two columns and eight 
rows, and finally 16 rows and one 
column, which is sorted. 
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Figure I 1.10 

A perfect shuffling machine 

A machine with the interconnec
tions drawn here could perform 
Batcher's algorithm (and many oth
ers) efficiently. Some parallel com
puters have connections like these. 

Figure 11.11 shows the dynamic characteristics of both the 
bottom-up method and this full-shuffling version of Batcher's odd
even merge. 

Shuffling is an important abstraction for describing data move
ment in divide-and-conquer algorithms, and it arises in a variety of 
problems other than sorting. For example, if a 2n_by_271 square ma
trix is kept in row-major order, then n perfect shuffles will transpose 
the matrix (convert the matrix to column-major order). More im
portant examples include the fast Fourier transform and polynomial 
evaluation (see Part 8). We can solve each of these problems using a 
cycling perfect-shuffle machine like the one shown in Figure 11.10 but 
with more powerful processors. We might even contemplate having 
general-purpose processors that can shuffle and unshuffle (some real 
machines of this type have been built); we return to the discussion of 
such parallel machines in Section 11.5. 

Exercises 

11.16 Give sorting networks for four (see Exercise 11.6), five, and six ele
ments. Use as few comparators as possible. 

011.17 Write a program to compute the number of parallel steps required for 
any given straight-line program. Hint: Use the following labeling strategy. 
Label the input lines as belonging to stage 0, then do the following for each 
comparator: Label both output lines as inputs to stage i + 1 jf the label on one 
of the input lines isi and the label on the other is not greater than i. 

11.18 Compare the running time of Program 11.4 with that of Program 8.3, 
for randomly ordered keys with N 103

, 104
, 105

, and 106
• 

r> 11.19 Draw Batcher's network for doing a 1O-by-l1 merge. 
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•• 11.20 Prove the relationship between recursive unshuffling and shuffling that 
is suggested by Figure 11.8. 

o 11.21 From the argument in the text, there are 11 networks for sorting 21 
elements hidden in Figure 11.7. Draw the one among these that has the fewest 
comparators. 

11.22 Give the number of comparators in Batcher's odd-even sorting net
works for 2 ::; N ::; 32, where networks when N is not a power of 2 are 
derived from the first N lines of the network for the next largest power of 2. 

011.23 	For N 2", derive an exact expression for the number of comparators 
used in Batcher's odd-even sorting networks. Note: Check your answer 
against Figure 1 1.7, which shows that the networks have 1, 3, 9, 25, and 65 
comparators for N equal to 2, 4, 8, 16, and 32, respectively. 

011.24 	Construct a sorting network for sorting 21 element, using a top-down 
recursive style, where a network of size N is a composition of networks of 
sizes LN/2J and fN/2-1 followed by a merging network. (Use your answer 
from Exercise 11.19 as the final part of the network.) 

11.25 Use recurrence relations to compute the number of comparators in 
sorting networks constructed as described in Exercise 11.24 for 2 ::; N ::; 32. 
Compare your results with those that you obtained in Exercise 11.22. 

• 	 11.26 Find a 16-line sorting network that uses fewer comparators than 
Batcher's network does. 

11.27 Draw the merging networks corresponding to Figure 11.8 for bitonic 
sequences, using the scheme described in Exercise 11.1 4. 

11.28 Draw the sorting network corresponding to shellsort with Pratt's incre
ments (see Section 6.6), for N = 32. 

II.29 Give a table containing the number of comparators in the networks 
described in Exercise 11.28 and the number of comparators in Batcher's net
works, for N lfi, 32, 64, 128, and 256. 

11.30 Design sorting networks that will sort files of N elements that are 3
and 4-sorted. 

.11.31 Use your networks from Exercise 11.30 to design a Pratt-like scheme 
based on multiples of 3 and 4. Draw your network for N = 32, and answer 
Exercise 1 I.29 for your networks. 

• 	 11.32 Draw a version of Batcher's odd-even sorting network for N = 16 that 
has perfect shuffles between stages of independent comparators connecting 
adjacent lines. (The final four stages of the network should be those from the 
merging network at the bottom of Figure II.8.) 

o 11.33 Write a merging program for the machine in Figure I!. I 0, using the 
following conventions. An instruction is a sequence of 15 bits, where the ith 
bit, for 1 ::; i ::; 15, indicates (if it is 1) that processor i and processor i -- 1 

Figure I I.II 

Dynamic characteristics of 
odd-even merging 

The bottom-up version of the 
odd--even merge (left) involves 
a sequence of stages where we 
compare--exchange the large half 
of one sorted subfile with the small 
half of the next With full shuf
fling (right), the algorithm has an 
entirely different appearance. 
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should do a compare-exchange. A program is a sequence of instructions, and 
the machine executes a perfect shuffle between each instruction. 

o II.34 Write a sorting program for the machine in Figure I LIO, using the 
conventions described in Exercise I 1.3 3. 

I 1.3 External Sorting 

We move next to another kind of abstract sorting problem, which ap
plies when the file to be sorted is much too large to fit in the random
access memory of the computer. We use the term external sorting 
to describe this situation. There are many different types of external 
sorting devices, which can place a variety of different restrictions on 
the atomic operations used to implement the sort. Still, it is useful 
to consider sorting methods that use two basic primitive operations: 
read data from external storage into main memory, and write data 
from main memory onto external storage. We assume that the cost of 
these two operations is so much larger than the cost of primitive com
putational operations that we ignore the latter entirely. For example, 
in this abstract model, we ignore the cost of sorting the main memory! 
For huge memories or poor sorting methods, this assumption may not 
be justified; but it is generally possible to factor in an estimate of the 
true cost in practical situations if necessary. 

The wide variety of types and costs of external storage devices 
makes the development of external sorting methods highly dependent 
on current technology. These methods can be complicated, and many 
parameters affect their performance; that a clever method might go 
unappreciated or unused because of a simple change in the technology 
is certainly a possibility in the study of external sorting. For this 
reason, we shall concentrate on reviewing general methods rather than 
on developing specific implementations in this section. 

Over and above the high read-write cost for external devices, 
there are often severe restrictions on access, depending on the device. 
For example, for most types of devices, read and write operations 
between main memory and external storage are generally done most 
efficiently in large contiguous blocks of data. Also, external devices 
with huge capacities are often designed such that peak performance is 
achieved when we access the blocks in a sequential manner. For exam
ple, we cannot read items at the end of a magnetic tape without first 
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scanning through items at the beginning-for practical purposes, our 
access to items on the tape is restricted to those appearing somewhere 
close to the items most recently accessed. Several modern technologies 
have this same property. Accordingly, in this section, we concentrate 
on methods that read and write large blocks of data sequentially, mak
ing the implicit assumption that fast implementations of this type of 
data access can be achieved for the machines and devices that are of 
interest. 

When we are in the process of reading or writing a number of 
different files, we assume that they are all on different external storage 
devices. On ancient machines, where files were stored on externally 
mounted magnetic tapes, this assumption was an absolute requirement. 
When working with disks, it is possible to implement the algorithms 
that we consider using only a single external device, but it generally 
will be much more efficient to use multiple devices. 

A first step for someone planning to implement an efficient pro
gram to sort a huge file might be to implement an efficient program 
to make a copy of the file. A second step might be to implement a 
program to reverse the order of the file. Whatever difficulties arise in 
solving these tasks certainly need to be addressed in implementing an 
external sort. (The sort might have to do either one of them.) The 
purpose of using an abstract model is to allow us to separate such 
implementation issues from algorithm design issues. 

The sorting algorithms that we examine are organized as a num
ber of passes over all the data, and we usually measure the cost of 
an external sorting method by simply counting the number of such 
passes. Typically, we need relatively few passes-perhaps ten or fewer. 
This fact implies that eliminating even a single pass can significantly 
improve performance. Our basic assumption is that the running time 
of an external sorting method is dominated by input and output; thus, 
we can estimate the running time of an external sort by multiplying 
the number of passes it uses by the time required to read and write the 
whole file. 

In summary, the abstract model that we shall use for external 
sorting involves a basic assumption that the file to be sorted is far too 
large to fit in main memory, and accounts for two other resources: 
running time (number of passes through the data) and the number of 
external devices available for use. We assume that we have 
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• IV records to be sorted, on an external device 
• space in the main memory to hold lY! records and 
• 2P external devices for use during the sort. 

We assign the the label 0 to the external device containing the input, 
and the labels 1, 2, ..., 2P 1 to the others. The goal of the sort is 
to put the records back onto device 0, in sorted order. As we shall 
see, there is a tradeoff between P and the total running time-we 
are interested in quantifying that tradeoff so that we can compare 
competing strategies. 

There are many reasons why this idealized model may not be 
realistic. Still, like any good abstract model, it does capture the essen
tial aspects of the situation, and it does provide a precise framework 
within which we can explore algorithmic ideas, many of which are of 
direct utility in practical situations. 

Most external sorting methods use the following general strategy. 
Make a first pass through the file to be sorted, breaking it up into 
blocks about the size of the internal memory, and sort these blocks. 
Then, merge the sorted blocks together, if necessary by making several 
passes through the file, creating successively larger sorted blocks until 
the whole file is sorted. This approach is called sort-merge, and it 
has been used effectively since computers first found widespread use 
in commercial applications in the 19505. 

The simplest sort-merge strategy, which is called balanced multi
way merging, is illustrated in Figure I I. I 2. The method consists of an 
initial distribution pass, followed by several multiway merging passes. 

In the initial distribution pass, we distribute the input among 
external devices P, P + 1, ... , 2P 1, in sorted blocks of 1\11 records 
each (except possibly the final block, which is smaller, if IV is not a 
multiple of M). This distribution is easy to do-we read the first M 
records from the input, sort them, and write the sorted block onto 
device P; then read the next iv! records from the input, sort them, 
and write the sorted block onto device P + 1; and so forth. If, after 
reaching device 2P 1 we still have more input (that is, if IV> P}vf), 
we put a second sorted block on device P, then a second sorted block 
on device P + 1, and so forth. We continue in this way until the input 
is exhausted. After the distribution, the number of sorted blocks on 
each device is IV1M rounded up or down to the next integer. If IV is a 
multiple of M, then all the blocks are of size IV/lY! (otherwise, all but 
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the final one are of size N/A1). For small N, there may be fewer than 
P blocks, and one or more of the devices may be empty. 

In the first multiway merging pass, we regard devices P through 
2P - 1 as input devices, and devices 0 through P - 1 as output devices. 
We do Poway merging to merge the sorted blocks of size A1 on the 
input devices into sorted blocks of size P A1, then distribute them onto 
the output devices in as balanced a manner as possible. First, we 
merge together the first block from each of the input devices and put 
the result onto device 0; then, we put the result of merging the second 
block on each input device onto device 1; and so forth. After reaching 
device P - 1, we put a second sorted block on device 0, then a second 
sorted block on device 1, and so forth. We continue in this way until 
the inputs are exhausted. After the distribution, the number of sorted 
blocks on each device is N/(PM) rounded up or down to the next 
integer. If N is a multiple of PM, then all the blocks are of size PM 
(otherwise, the final block is smaller). If N is not larger than PA1, 
there is just one sorted block left (on device 0), and we are finished. 

Otherwise, we iterate the process and do a second multiway 
merging pass, regarding devices 0, 1, ..., P - 1 as the input devices, 
and devices P, P + 1, ..., 2P 1 as the output devices. We do Poway 
merging to make the sorted blocks of size P1'V[ on the input devices 
into sorted blocks of size p 2 A1, then distribute them back onto the 
output devices. We are finished after the second pass (with the result 
on device P) if N is not larger than p 2 l'vl. 

Continuing in this way, back and forth between devices 0 through 
P - 1 and devices P through 2P - 1, we increase the size of the blocks 
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Figure I 1. I 2 

Three-way balanced merge 
example 

In the initial distribution pass, we 
take the elements A S 0 (rom the 
input, sort them, and put the sorted 
run A 0 S on the first output de
vice. Next, we take the elements R 
T I from the input, sort them, and 
put the sorted run I R T on the sec
ond output device. Continuing in 
this way, cycling through the out
put devices, we end with 15 runs: 
five on each output device. In the 
first merging phase, we merge A 0 
S. I R T, and A G N to get A A G I 
o R S T, which we put on the first 
output device; then, we merge the 
second runs on the input devices 
to get D EGG I M N N R, which 
we put on the second output de
vice; and so forth; again ending up 
with the data distributed in a bal
anced manner on three devices. 
We complete the sort with two ad
ditional merging passes. 
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Figure 11. I 3 
Run distribution for balanced 

3-way merge 

In the initial distribution for a bal
anced three-way sort~merge of a 
file 15 times the size of the internal 
memory, we put five runs of rela
tive size 1 on devices 3, 4, and 5, 
leaving devices 0, 1, and 2 empty. 
In the first merging phase, we put 
two runs of size 3 on devices 0 
and 1, and one run of size 3 on 
device 2, leaving devices 3, 4, and 
5 empty. Then, we merge the runs 
on devices 0, 1, and 2, and dis
tribute them back to devices 3, 4, 
and 5, and so forth, continuing un
til only one run remains, on device 
O. The total number of records 
processed is 60: four passes over 
all 15 records. 
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by a factor of P through P-way merges until we eventually have just 
one block, on device 0 or on device P. The final merge in each pass 
may not be a full P-way merge; otherwise the process is well balanced. 
Figure I I.13 depicts the process using only the numbers and relative 
sizes of the runs. We measure the cost of the merge by performing 
the indicated multiplications in this table, summing the results (not 
including the entry in the bottom row), and dividing by the initial 
number of runs. This calculation gives cost in terms of the number of 
passes over the data. 

To implement P-way merging, we can use a priority queue of size 
P. We want to output repeatedly the smallest of the elements not yet 
output from each of the P sorted blocks to be merged, then to replace 
the element output with the next element from the block from which it 
came. To accomplish this action, we keep device indices in the priority 
queue, with a less function that reads the value of the key of the next 
record to be read from the indicated device (and provides a sentinel 
larger than all keys in records when the end of a block is reached). 
The merge is then a simple loop that reads the next record from the 
device having the smallest key and writes that record to the output, 
then replaces that record on the priority queue with the next record 
from the same device, continuing until a sentinel key is the smallest 
in the priority queue. We could use a heap implementation to make 
the time required for the priority queue proportional to log P, but P 
is normally so small that this cost is dwarfed by the cost of writing to 
external storage. In our abstract model, we ignore priority-queue costs 
and assume that we have efficient sequential access to data on external 
devices, so that we can measure running time by counting the number 
of passes through the data. In practice, we might use an elementary 
priority-queue implementation and focus our programming on making 
sure that the external devices run at maximum efficiency. 

Property I I.4 With 2P external devices and internal memory suf
ficient to hold A1 records, a sort-merge that is based on a P-way 
balanced merge takes about 1 + pogp(Nj1vl)1 passes. 

One pass is required for distribution. If N = 1'vl pk, the blocks are all 
of size A1P after the first merge, M p2 after the second, A1 p 3 after the 
third; and so forth. The sort is complete after k 10gp(Njlvl) passes. 
Otherwise, if Atpk-l < N < 11.1pk , the effect of incomplete and empty 
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blocks makes the blocks vary in size near the end of the process, but 
we are still finished after k = pogp(N/M)l passes. _ 

For example, if we want to sort 1 billion records using six devices 
and enough internal memory to hold 1 million records, we can do so 
with a three-way sort-merge with a total of eight passes through the 
data-one for distribution and pog310001 7 merging passes. We 
will have sorted runs of 1 million records after the distribution pass, 3 
million records after the first merge, 9 million records after the second 
merge, 27 million records after the third merge, and so forth. We can 
estimate that it should take about nine times as long to sort the file as 
it does to copy the file. 

The most important decision to be made in a practical sort-merge 
is the choice of the value of P, the order of the merge. In our abstract 
model, we are restricted to sequential access, which implies that P 
has to be one-half the number of external devices available for use. 
This model is a realistic one for many external storage devices. For 
many other devices, however, nonsequential access is possible-it is 
just more expensive than sequential access. If only a few devices are 
available for the sort, nonsequential access might be unavoidable. In 
such cases, we can still use multiway merging, but we will have to 
take into account the basic tradeoff that increasing P will decrease 
the number of passes but increase the amount of (slow) nonsequential 
access. 

Exercises 

I> II.35 Show how the keys E A S Y QUE S T ION WIT H P LEN T YO F 
KEY S are sorted using 3-way balanced merging, in the style of the example 
diagrammed in Figure I I. I 2. 

t> II.36 What would be the effect on the number of passes used in multiway 
merging if we were to double the number of external devices in use? 

I> I I.3 7 What would be the effect on the number of passes used in multiway 
merging if we were to increase by a factor of 10 the amount of internal memory 
available? 

• 	II.38 Develop an interface for external input and output that involves se
quential transfer of blocks of data from external devices that operate asyn
chronously (or learn details about an existing one on your system). Use the 
interface to implement P-way merging, with P as large as you can make it 
while still arranging for the P input files and the input file to be on different 
output devices. Compare the running time of your program with the time 
required to copy the files to the output, one after another. 
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Replacement selection 

This sequence shows how we can 
produce the two runs A I NOR 
S T X and A E E G L M P, which 
are of length 8 and 7, respectively, 
from the sequence A S 0 R TIN 
G E X AMP L E using a heap of 
size 5. 
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.11.39 Use the interface from Exercise I1.38 to write a program to reverse 
the order of as large a file as is feasible on your system. 

• 	 11.40 How would you do a perfect shuffle of all the records on an external 
device? 

• 	I1.41 Develop a cost model for multi way merging that encompasses algo
rithms that can switch from one file to another on the same device, at a fixed 
cost that is much higher than the cost of a sequential read. 

•• 11.42 Develop an external sorting approach that is based on partitioning ala 
quicksort or MSD radix sort, analyze it, and compare it with multiway merge. 
You may use a high level of abstraction, as we did in the description of sort 
merge in this section, but you should strive to be able to predict the running 
time for a given number of devices and a given amount of internal memory. 

11.43 How would you sort the contents of an external device if no other 
devices (except main memory) were available for use? 

11.44 How would you sort the contents of an external device if only one extra 
device (and main memory) was available for use? 

I 	I.4 Sort-Merge Implementations 

The general sort-merge strategy outlined in Section I I. 3 is effective in 
practice. In this section, we consider two improvements that can lower 
the costs. The first technique, replacement selection, has the same effect 
on the running time as does increasing the amount of internal memory 
that we use; the second technique, polyphase merging, has the same 
effect as does increasing the number of devices that we use. 

In Section I1.3, we discussed the use of priority queues for P-way 
merging, but noted that P is so small that fast algorithmic improve
ments are unimportant. During the initial distribution pass, however, 
we can make good use of fast priority queues to produce sorted runs 
that are longer than could fit in internal memory. The idea is to pass 
the (unordered) input through a large priority queue, always writing 
out the smallest element on the priority queue as before, and always 
replacing it with the next element from the input, with one additional 
proviso: If the new element is smaller than the one output most re
cently, then, because it could not possibly become part of the current 
sorted block, we mark it as a member of the next block and treat it 
as greater than all elements in the current block. When a marked ele
ment makes it to the top of the priority queue, we begin a new block. 
Figure I 1.14 depicts the method in operation. 
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Property rI.S For random keys, the runs produced by replacement 
selection are about twice the size of the heap used. 

If we were to use heapsort to produce initial runs, we would fill the 
memory with records, then write them out one by one, continuing until 
the heap is empty. Then, we would fill the memory with another batch 
of records and repeat the process, again and again. On the average, 
the heap occupies only one-half the memory during this process. By 
contrast, replacement selection keeps the memory filled with the same 
data structure, so it is not surprising that it does twice as well. The full 
proof of this property requires a sophisticated analysis (see reference 
section), although the property is easy to verify experimentally (see 
Exercise 11.47). • 

For random files, the practical effect of replacement selection is 
to save perhaps one merging pass: Rather than starting with sorted 
runs about the size of the internal memory, then taking a merging pass 
to produce longer runs, we can start right off with runs about twice 
the size of the internal memory. For P 2, this strategy would save 
precisely one merging pass; for larger P, the effect is less important. 
However, we know that practical sorts rarely deal with random files, 
and, if there is some order in the keys, then using replacement selection 
could result in huge runs. For example, if no key has more than !vI 
larger keys before it in the file, the file will be completely sorted by the 
replacement-selection pass, and no merging will be necessary! This 
possibility is the most important practical reason to use replacement 
selection. 

The major weakness of balanced multi way merging is that only 
about one-half the devices are actively in use during the merges: the 
P input devices and whichever device is collecting the output. An 
alternative is always to do (2P - I)-way merges with all output onto 
device 0, then distribute the data back to the other tapes at the end 
of each merging pass. But this approach is not more efficient, because 
it effectively doubles the number of passes, for the distribution. Bal
anced multiway merging seems to require either an excessive number 
of tape units or excessive copying. Several clever algorithms have been 
invented that keep all the external devices busy by changing the way 
in which the small sorted blocks are merged together. The simplest of 
these methods is called polyphase merging. 
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Polyphase merge example The basic idea behind polyphase merging is to distribute the 
sorted blocks produced by replacement selection somewhat unevenly In the initial distribution phase, we 

put the different numbers of runs among the available tape units (leaving one empty) and then to apply 
on the tapes according to a prear a merge-un til-empty strategy: Since the tapes being merged are of 
ranged scheme, rather than keep unequal length, one will run out sooner that the rest, and it then can 
ing the numbers of runs balanced, 

be used as output. That is, we switch the roles of the output tapeas we did in Figure 11.12. Then, 
we do three-way merges at every (which now has some sorted blocks on it) and the now-empty input 
phase until the sort is complete. tape, continuing the process until only one block remains. Figure I I. 15 
There are more phases than for the 

depicts an example.
balanced merge, but the phases do 
not involve all the data. The merge-until-empty strategy works for an arbitrary number 

of tapes, as shown in Figure 11.16. The merge is broken up into many 
phases, not all of which involve all of the data, and which involve 
no extra copying. Figure 11.16 shows how to compute the initial 
run distribution. We compute the number of runs on each device by 
working backward. 

For the example depicted in Figure 11.16, we reason as follows: 
We want to finish the merge with 1 run, on device O. Therefore, just 
before the last merge, we want device 0 to be empty, and we want to 
have 1 run on each of devices 1, 2, and 3. Next, we deduce the run 
distribution that we would need just before the next-to-last merge for 
that merge to produce this distribution. One of devices 1, 2, or 3 has 
to be empty (so that it can be the output device for the next-to-last 
merge)-we pick 3 arbitrarily. That is, the next-to-last merge merges 
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together 1 run from each of devices 0, 1, and 2, and puts the result 
on device 3. Since the next-to-last merge leaves °runs on device ° 
and 1 run on each of devices 1 and 2, it must have begun with 1 run 
on device °and 2 runs on each of devices 1 and 2. Similar reasoning 
tells us that the merge prior to that must have begun with 2, 3, and 4 
runs on devices 3, 0, and 1, respectively. Continuing in this fashion, 
we can build the table of run distributions: Take the largest number 
in each row, make it zero, and add it to each of the other numbers 
to get the previous row. This convention corresponds to defining for 
the previous row the highest-order merge that could give the present 
row. This technique works for any number of tapes (at least three): 
The numbers that arise are generalized Fibonacci numbers, which have 
many interesting properties. If the number of runs is not a generalized 
Fibonacci number, we assume the existence of dummy runs to make 
the number of initial runs exactly what is needed for the table. The 
main challenge in implementing a polyphase merge is to determine 
how to distribute the initial runs (see Exercise 11.54). 

Given the run distribution, we can compute the relative lengths 
of the runs by working forward, keeping track of the run lengths 
produced by the merges. For example, the first merge in the example 
in Figure 11.16 produces 4 runs of relative size 3 on device 0, leaving 
2 runs of size 1 on device 2 and 1 run of size 1 on device 3, and so 
forth. As we did for balanced multiway merging, we can perform the 
indicated multiplications, sum the results (not including the bottom 
row), and divide by the number of initial runs to get a measure of the 
cost as a multiple of the cost of making a full pass over all the data. For 
simplicity, we include the dummy runs in the cost calculation, which 
gives us an upper bound on the true cost. 

Property 1 I.6 With three external devices and internal memory suf
ficient to hold A1 records, a sort-merge that is based on replace
ment selection fol/owed by a two-way polyphase merge takes about 
1 + pog¢(N/22vf)l/¢ effective passes, on the average. 

The general analysis of polyphase merging, done by Knuth and other 
researchers in the 1960s and 1970s, is complicated, extensive, and 
beyond the scope of this book. For P 3, the Fibonacci numbers are 
involved-hence the appearance of cp. Other constants arise for larger 
P. The factor 1/cp accounts for the fact that each phase involves only 
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Figure 11.16 

Run distribution for polyphase 
three-way merge 

In the initial distribution for a 
polyphase three-way merge of a 
file 17 times the size of the inter
nal memory, we put seven runs on 
device 0, four runs on device 2, 
and six runs on device 3. Theil, 
ill the first phase, we merge until 
device 2 is empt}~ leaving three 
runs of size 1 on device 0, two 
runs of size 1 on device 3, alld 
creating iour rUIlS of size 3 all de
vice 1. For a file 15 times the size 
of the internal memory, we put 2 
dummy rUlls on device 0 at the be
ginllillg (see Figure 11.15). The to
tal Ilumber of blocks processed for 
the whole merge is 59, olle fewer 
thall for our balallced merging ex
ample (see Figure 11.13), but we 
use two fewer devices (see a/50 
Exercise 11.50). 

3 
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Balanced and polyphase 

merge cost comparisons 

The number of passes used in bal
anced merging with 4 tapes (top) 
is always larger than the num
ber of effective passes used in 
polyphase merging with 3 tapes 
(bottom). These plots are drawn 
from the functions in Proper
ties 11 A and 11.6, for N Ily! from 
1 to 100. Because of dummy runs, 
the true performance ofpolyphase 
merging is more complicated than 
indicated by this step function. 
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that fraction of the data. We count the number of "effective passes" as 
the amount of data read divided by the total amount of data. Some of 
the general research results are surprising. For example, the optimal 
method for distributing dummy runs among the tapes involves using 
extra phases and more dummy runs than would seem to be needed, 
because some runs are used in merges much more often than are others 
(see reference section). _ 

For example, if we want to sort 1 billion records using three 
devices and enough internal memory to hold 1 million records, we 
can do so with a two-way polyphase merge with IIog", 5001/¢ = 8 
passes. Adding the distribution pass, we incur a slightly higher cost 
(one pass) than a balanced merge that uses twice as many devices. 
That is, we can think of the polyphase merge as enabling us to do the 
same job with half the amount of hardware. For a given number of 
devices, polyphase is always more efficient than balanced merging, as 
indicated in Figure 11.17. 

As we discussed at the beginning of Section I 1.3, our focus on an 
abstract machine with sequential access to external devices has allowed 
us to separate algorithmic issues from practical issues. While develop
ing practical implementations, we need to test our basic assumptions 
and to take care that tbey remain valid. For example, we depend on 
efficient implementations of the input-output functions that transfer 
data between the processor and the external devices, and other systems 
software. Modern systems generally have well-tuned implementations 
of such software. 

Taking this point of view to an extreme, note that many modern 
computer systems provide a large virtual memory capability-a more 
general abstract model for accessing external storage than the one we 
have been using. In a virtual memory, we have the ability to address 
a huge number of records, leaving to the system the responsibility of 
making sure that the addressed data are transferred from external to 
internal storage when needed; our access to the data is seemingly as 
convenient as is direct access to the internal memory. But the illusion 
is not perfect: As long as a program references memory locations that 
are relatively close to other recently referenced locations, then trans
fers from external to internal storage are needed infrequently, and the 
performance of virtual memory is good. (For example, programs that 
access data sequentially fall in this category.) If a program's memory 
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accesses are scattered, however, the virtual memory system may thrash 
(spend all its time accessing external memory), with disastrous results. 

Virtual memory should not be overlooked as a possible alterna
tive for sorting huge files. We could implement sort-merge directly, or, 
even simpler, could use an internal sorting method such as quicksort or 
mergesort. These internal sorting methods deserve serious considera
tion in a good virtual-memory environment. Methods such as heapsort 
or a radix sort, where the the references are scattered throughout the 
memory, are not likely to be suitable, because of thrashing. 

On the other hand, using virtual memory can involve excessive 
overhead, and relying instead on our own, explicit methods (such as 
those that we have been discussing) may be the best way to get the most 
out of high-performance external devices. One way to characterize the 
methods that we have been examining is that they are designed to make 
as many independent parts of the computer system as possible work 
at full efficiency, without leaving any part idle. When we consider the 
independent parts to be processors themselves, we are led to parallel 
computing, the subject of Section 11.5. 

Exercises 

I> 11.45 Give the runs produced by replacement selection with a priority queue 
of size 4 for the keys E AS YQUE S T ION. 

011.46 What is the effect of using replacement selection on a file that was 
produced by using replacement selection on a given file? 

• 	11.47 Empirically determine the average number of runs produced using re
placement selection with a priority queue of size 1000, for random files of size 
N = 10" 10\ 105 

, and 106 
• 

11.48 What is the worst-case number of runs when you use replacement 
selection to produce initial runs in a file of N records, using a priority queue 
of size !vI with lv! < N? 

I> 11.49 Show how the keys E A S Y QUE S T ION WIT H P LEN T Y 0 F KEY 
S are sorted using polyphase merging, in the style of the example diagrammed 
in Figure 11.15. 

011.50 In the polyphase merge example of Figure 11.15, we put two dummy 
runs on the tape with 7 runs. Consider the other ways of distributing the 
dummy runs on the tapes, and find the one that leads to the lowest-cost merge. 

11.51 Draw a table corresponding to Figure 11.13 to determine the largest 
number of runs that could be merged by balanced three-way merging with five 
passes through the data (using six devices). 
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11.52 Draw a table corresponding to Figure 11.16 to determine the largest 
number of runs that could be merged by polyphase merging at the same cost 
as five passes through all the data (using six devices). 

011.53 Write a program to compute the number of passes used for multiway 
merging and the effective number of passes used for polyphase merging for 
a given number of devices and a given number of initial blocks. Use your 
program to print a table of these costs for each method, for P 3, 4, 5, 10, 
and 100, and N = 10', 104

, 105
, and 106

• 

•• 11.54 Write a program to assign initial runs to devices for P-way polyphase 
merging, sequentially. Whenever the number of runs is a generalized Fibonacci 
number, the runs should be assigned to devices as required by the algorithm; 
your task is to find a convenient way to distribute the runs, one at a time . 

• 11.55 	Implement replacement selection using the interface defined in Exer
cise 11.38. 

•• II.56 Combine your solutions to Exercise 11.38 and Exercise 11.55 to make 
a sort-merge implementation. Use your program to sort as large a file as is 
feasible on your system, polyphase merging. If possible, determine the 
effect on the running time of increasing the number of devices. 

11.57 How should small files be handled in a quicksort implementation to be 
run on a huge file in a virtual-memory environment? 

.11.58 If your computer has a suitable virtual memory system, empirically 
compare quicksort, LSD radix sort, MSD radix sort, and heapsort for huge 
files. Use as large a file size as is feasible . 

• 11.59 Develop an implementation for recursive multiway mergesort based on 
k-way merging that would be suitable for sorting huge files in a virtual-memory 
environment (see Exercise 8. I I) . 

• 	11.60 If your computer has a suitable virtual memory system, empirically 
determine the value of k that leads to the lowest running time for your imple
mentation for Exercise 11.59. Use as large a file size as is feasible. 

II.5 Parallel Sort-Merge 

How do we get several independent processors to work together on 
the same sorting problem? Whether the processors control external 
memory devices or are complete computer systems, this question is 
at the heart of algorithm design for high-performance computing sys
tems. The subject of parallel computing has been studied widely in 
recent years. Many different types of parallel computers have been de
vised, and many different models for parallel computation have been 



SPECIAL PURPOSE SORTI,'\JG METHODS 

proposed. The sorting problem is a test case for the effectiveness of 
both. 

We have already discussed low-level parallelism, in our discussion 
of sorting networks in Section r 1.2, where we considered doing a 
number of compare-exchange operations at the same time. Now, we 
discuss a high-level parallel model, where we have a large number of 
independent general-purpose processors (rather than just comparators) 
that have access to the same data. Again, we ignore many practical 
issues, but can examine algorithmic questions in this context. 

The abstract model that we use for parallel processing involves 
a basic assumption that the file to be sorted is distributed among P 
independent processors. We assume that we have 

• N records to be sorted and 

• P processors, each capable of holding NIP records 

We assign the processors the labels 0, 1, .. " P -1, and assume that the 
file to be input is in the local memories of the processors (that is, each 
processor has N/ P of the records). The goal of the sort is to rearrange 
the records to put the smallest NIP records in processor D's memory, 
the next smallest NIP records in processor l's memory, and so forth, 
in sorted order. As we shall see, there is a tradeoff between P and the 
total running time-we are interested in quantifying that tradeoff so 
that we can compare competing strategies. 

This model is one of many possible ones for parallelism, and it 
has many of the same liabilities with respect to practical applicability 
as did our model for external sorting (Section rIo3). Indeed, it does 
not address one of the most important issues to be faced in parallel 
computing: constraints on communication between the processors. 

We shall assume that such communication is far more costly than 
references to local memory, that it is most efficiently done sequentially, 
in large blocks. In a sense, processors treat other processors' memory 
as external storage devices. Again, this high-level abstract model can 
be regarded as unsatisfactory from a practical standpoint, because it 
is an oversimplification; and can be regarded as unsatisfactory from a 
theoretical standpoint, because it is not fully specified. Still, it provides 
a framework within which we can develop useful algorithms. 

Indeed, this problem (with these assumptions) provides a con
vincing example of the power of abstraction, because we can use the 
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same sorting networks that we discussed in Section I 1.2, by modifying 
the compare-exchange abstraction to operate on large blocks of data. 

Definition I I.2 A merging comparator takes as input two sorted files 
of size lvI, and produces as output two sorted files: one containing the 
l\cf smallest of the 2M inputs, and the other containing the l\;1 largest 
of the 2M inputs. 

Such an operation is easy to implement: Merge the two input 
files, and output the first half and the second half of the merged result. 

Property II.7 We can sort a file of size N by dividing it into 
blocks of size M, sorting each file, then using a sorting network built 
with merging comparators. 

Establishing this fact from the 0-1 principle is tricky (see Exer
cise 11.61), but tracing through an example, such as the one in 
ure 11. 1 8, is a persuasive exercise. _ 

We refer to the method described in Property 11.7 as block sort
ing. We have a number of design parameters to consider before we 
use the method on a particular parallel machine. Our interest in the 
method concerns the following performance characteristic: 

Property II.8 Block sorting on P processors, using Batcher's sort 
with merging comparators, can sort N records in about P)2/2 
parallel steps. 

By parallel step in this context, we mean a set of disjoint merging 
comparators. Property 11.8 is a direct consequence of Properties 11.3 

and 11.7. _ 

To implement a merging comparator on two processors, we can 
have them exchange copies of their blocks of data, both do the merge 
(in parallel), and one keep the small half of the keys and the other 
keep the large half of the keys. If block transfer is slow compared to 
the individual processor speeds, then we can estimate the total time 
required for the sort by multiplying the cost of one block transfer by 
(lg p)2 /2. This estimate embodies a large number of assumptions; for 
example, it assumes that multiple block transfers can be done in par
aBel without penalty, a rarely achieved goal in real parallel computers. 
Still, it provides a starting point for understanding what we can expect 
in a practical implementation. 
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If the block-transfer cost is comparable to individual processor 
speeds (another ideal goal that is only approached in real machines), 
then we have to account for the time to do the initial sorts. The 
processors each do about (N/P) 19(N / P) comparisons (in parallel) to 
sort the N / P blocks initially, and about p 2 (lg P)/2 stages with (N/ P)
by-(N/P) merges. If the cost of a comparison is a and the cost per 
record for a merge is (J, then the total running time is about 

a(N/P) 19(N/P) + (3(N/ P)P2 (lgP)/2. 

For huge N and small P, this performance is the best that we can hope 
for in any comparison-based parallel sorting method, because the cost 
in that case is about a(N 19 N)/P, which is optimal: Any sort requires 
N 19 N comparisons, and the best that we could do is to do P of them 
at once. For large P, the second term dominates, and the cost is about 
(3N(Plg P)/2, which is suboptimal but still perhaps is competitive. 
For example, the second term contributes about 256(3N/ P to the cost 
of sorting 1 billion elements on 64 processors, as compared to the 
contribution of 32aN/ P from the first term. 

When P is large, the communication among all the processors 
might create a bottleneck on some machines. If so, using a perfect 
shuffle as in Figure II.8 might provide a way to control such costs. 
Some parallel machines have built-in low-level interconnections that 
allow us to implement shuffles efficiently, for precisely this reason. 

This example shows that we can get a large number of proces
sors to work efficiently on a huge sort problem, under certain cir
cumstances. To find the best way to do so, we certainly would need 
to consider many other algorithms for this kind of parallel machine, 
to learn many other characteristics of a real parallel machine, and to 
consider many variations on the machine model that we are using. 
Moreover, we might need to take a completely different approach to 
parallelism. Still, the idea that increasing the number of processors 
increases the costs of communicating among them is fundamental to 
parallel computing, and Batcher's networks provide an effective way 

Figure I I. I 8 
Block sorting example 

This figure shows how we can use 
the network in Figure 11.4 to sort 
blocks of data. The comparators 
put the small half of the elements 
in the two input lines out onto the 
top line and the large half out onto 
the bottom line. Three parallel 
steps suffice. 
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of controlling these costs, as we have seen at a low level in Section I 1.2 

and at a high level in this section. 
The sorting methods described in this section and elsewhere in 

this chapter have a flavor different from those of the methods that we 
have discussed in Chapters 6 through 10, because they involve coping 
with constraints that we do not consider in ordinary programming. In 
Chapters 6 through 10, simple assumptions about the nature of our 
data were sufficient to allow us to compare a large number of different 
methods for the same basic problem. By contrast, in this chapter we 
have focused on articulating a variety of problems, and have been able 
to discuss just a few solutions for each. These examples illustrate that 
changes in real-world constraints can provide new opportunities for 
algorithmic solutions, and a critical part of the process is to develop 
useful abstract formulations of problems. 

Sorting is essential in many practical applications, and the design 
of an efficient sort is often one of the first problems to be addressed on 
new computer architectures and in new programming environments. 
To the extent that new developments build on past experience, the 
array of techniques that we have discussed here and in Chapters 6 
through 10 is important to know; to the extent that radical new depar
tures are invented, the kind of abstract thinking discussed here will be 
necessary if we are to develop fast sorting procedures on new machines. 

Exercises 

011.61 Use the 0-1 principle (Property 11.1) to prove Property II.? 

• 	 II.62 Implement a sequential version of block sorting with Batcher's odd
even merge: (i) use standard mergesort (Programs 8.3 and 8.2) to sort the 
blocks, (ii) use the standard abstract in-place merge (Program 8.2) to imple
ment the merging comparators, and (iii) use bottom-up Batcher's odd-even 
merge (Program I I.3) to implement the block sort. 

11.63 Estimate the running time of the program described in Exercise I 

as a function of Nand fJ,1, for large N . 

• 	 11.64 Do Exercises 11.62 and 11.63, but substitute bottom-up Batcher's 
odd-even merge (Program I I.3) for Program 8.2 in both instances. 

11.65 Give the values of P for which (NIP) IgN = N PIg P, for N = 103, 

106
, 109

, and 1012
• 

11.66 Give approximate expressions of the form clN 19 N + C2N for the 
number of comparisons between data items used by a parallel Batcher's block 
sort, for P = 1, 4, 16, 64, and 256. 
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11.67 How many parallel steps would be required to sort 1015 records that 
are distributed on 1000 disks, using 100 processors? 
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References for Part Three 

The primary reference for this section is Volume 3 of Knuth's series, 
on sorting and searching. Further information on virtually every topic 
that we have touched upon can be found in this book. In particular, 
the results discussed here on performance characteristics of the various 
algorithms are backed up there by complete mathematical analyses. 

There is a vast literature on sorting. Knuth and Rivest's 1973 
bibliography contains hundreds of references to articles that give in
sight into the development of many of the classic methods that we have 
considered. A more up-to-date reference, with an extensive bibliogra
phy covering recent work, is the book by Baeza-Yates and Gonnet. A 
survey of the state of our knowledge about shellsort may be found in 
Sedgewick's 1996 paper. 

For Quicksort, the best reference is Hoare's original 1962 paper, 
which suggests all the important variants, including the use for selec
tion discussed in Chapter 7. Many more details on the mathematical 
analysis and the practical effects of many of the modifications and em
bellishments suggested as the algorithm came into widespread use may 
be found in Sedgewick's 1978 paper. Bentley and McIlroy give a mod
ern treatment of the subject. The material on three-way partitioning 
in Chapter 7 and three-way radix quicksort in Chapter IO is based on 
that paper and the 1997 article by Bentley and Sedgewick. The earliest 
partitioning-style algorithm (binary quicksort, or radix-exchange sort) 
appears in the 1959 article by Hildebrandt and Isbitz. 

Vuillemin's binomial queue data structure, as implemented and 
analyzed by Brown, supports all the priority queue operations in an 
elegant and efficient manner. The pairing heap described by Fred
man, Sedgewick, Sleator, and Tarjan is a refinement that is of practical 
interest. 

The 1993 article by McIlroy, Bostic and McIlroy presents the 
state of the art in radix sort implementations. 

R. Baeza-Yates and G. H. Gonnet, Handbook ofAlgorithms and Data 
Structures, second edition, Addison-Wesley, Reading, MA, 1984. 
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PAR T 
F 0 U R 

Searching 






CHAPTER TWELVE 


Symbol Tables 
and Binary Search Trees 

T HE RETRIEVAL OF a particular piece or pieces of information 
from large volumes of previously stored data is a fundamental 

operation, called search, that is intrinsic to a great many computational 
tasks. As with sorting algorithms in Chapters 6 through II, and in 
particular priority queues in Chapter 9, we work with data divided 
into records or items, each item having a key for use in searching. The 
goal of the search is to find the items with keys matching a given search 
key. The purpose of the search is usually to access information within 
the item (not merely the key) for processing. 

Applications of search are widespread, and involve a variety of 
different operations. For example, consider a bank that needs to keep 
track of all its customers' account information and to search through 
these records to check account balances and to perform transactions. 
Another example is an airline that needs to keep track of reservations 
on all its flights, and to search through them to find empty seats or 
to cancel or otherwise modify the reservations. A third example is 
a search engine on a network software interface that looks for all 
documents in the network containing a given keyword. The demands 
of these applications are similar in some ways (the bank and the airline 
both demand accuracy and reliability) and different in others (the 
bank's data have a long life, compared to the data in the others); all 
need good search algorithms. 

Definition 12. I A symbol table is a data structure of items with keys 
that supports two basic operations: insert a new item, and return an 
item with a given key. 

477 
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Symbol tables are also sometimes called dictionaries, by analogy 
with the time-honored system of providing definitions for words by 
listing them alphabetically in a reference book. In an English-language 
dictionary, the "keys" are the words and the "items" are the entries as
sociated with the words that contain the definition, pronunciation, and 
other information. People use search algorithms to find information 
in a dictionary, usually depending on the fact that the entries appear in 
alphabetical order. Telephone books, encyclopedias, and other refer
ence books are organized in essentially the same way, and some of the 
search methods that we shall discuss (for example the binary search 
algorithm in Sections 2.6 and 12.4) also depend upon the entries being 
kept in order. 

An advantage of computer-based symbol tables is that they can 
be much more dynamic than a dictionary or a telephone book, so 
most of the methods that we shall discuss build data structures that 
not only enable efficient search algorithms, but also support efficient 
implementations of operations to add new items, to delete or modify 
items, to combine two symbol tables into one, and so forth. In this 
chapter, we shall revisit many of the issues related to such operations 
that we considered for priority queues in Chapter 9. The development 
of dynamic data structures to support search is one of the oldest and 
most widely studied problems in computer science; it will be our main 
focus in this chapter and in Chapters 13 through 16. As we shall see, 
many ingenious algorithms have been (and are still being) invented to 

solve the symbol-table implementation prublem. 

Beyond basic applications of the type just mentioned, symbol 
tables have been studied intensively by computer scientists and pro
grammers because they are indispensable aids in organizing software 
on computer systems. A symbol table is the dictionary for a program: 
The keys are the symbolic names used in the program, and the items 
contain information describing the object named. From the early days 
of computing, when symbol tables allowed programmers to move from 
using numeric addresses in machine code to using symbolic names in 
assembly language, to modern applications of the new millennium, 
when symbolic names have meaning across worldwide computer net
works, fast search algorithms have played and will play an essential 
role in computation. 
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Symbol tables are also frequently encountered in low-level ab
stractions, occasionally at the hardware level. The term associative 
memory is sometimes used to describe the concept. We shall focus on 
software implementations, but some of the methods that we consider 
are also appropriate for hardware implementation. 

As with our study of sorting methods in Chapter 6, we shall 
begin our study of search methods in this chapter by looking at some 
elementary methods that are useful for small tables and in other special 
situations and that illustrate fundamental techniques exploited by more 
advanced methods. Then, for much of the remainder of the chapter, 
we shall focus on the binary search tree (BSTJ, a fundamental and 
widely used data structure that admits fast search algorithms. 

We considered two search algorithms in Section 2.6 as an illus
tration of the effectiveness of mathematical analysis in helping us to 
develop effective algorithms. For completeness in this chapter, we re
peat some of the information that we considered in Section 2.6, though 
we refer back to that section for some proofs. Later in the chapter, we 
also refer to the basic properties of binary trees that we considered in 
Sections 5.4 and 5·5. 

12.1 Symbol-Table Abstract Data Type 

As with priority queues, we think of search algorithms as belonging to 
interfaces declaring a variety of generic operations that can be sepa
rated from particular implementations, so that we can easily substitute 
alternate implementations. The operations of interest include 

• Insert a new item. 
• Search for an item (or items) having a given key. 

• Delete a specified item. 
• Select the kth smallest item in a symbol table. 
• Sort the symbol table (visit all the items in order of their keys). 

• Join two symbol tables. 
As we do with many data structures, we might also need to add stan
dard initialize, test if empty, and perhaps destroy and copy operations 
to this set. In addition, we might wish to consider various other prac
tical modifications of the basic interface. For example, a search-and
insert operation is often attractive because, for many implementations, 
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Program 12.1 Symbol-table abstract data type 

This interface defines operations for a simple symbol table: initialize, 
return the item count, add a new item, find an item with a given key, 
delete an item with a given key, select the kth smallest item, and visit the 
items in order of theif keys (calling a procedure passed as an argument 
for each item). 

void STinit(int); 
int STcount 0 ; 

void STinsert(Item); 
Item STsearch(Key); 
void STdelete(Item); 
Item STselect(int); 
void STsort(void (*visit) (Item)); 

the search for a key, even if unsuccessful, nevertheless gives precisely 
the information needed to insert a new item with that key. 

We commonly use the term "search algorithm" to mean "symbol
table ADT implementation," although the latter more properly implies 
defining and building an underlying data structure for the symbol ta
ble and implementing ADT operations in addition to search. Symbol 
tables are so important to so many computer applications that they 
are available as high-level abstractions in many programming environ
ments (the C standard library has bsearch, an implementation of the 
binary search algorithm in Section 12.4). As usual, it is difficult for a 
general-purpose implementation to meet the demanding performance 
needs of diverse applications. Our study of many of the ingenious 
methods that have been developed to implement the symbol-table ab
straction will set a context to help us decide when to use a prepackaged 
implementation and when to develop one that is tailored to a particular 
application. 

As we did with sorting, we will consider the methods without 
specifying the types of the items being processed. In the same manner 
that we discussed in detail in Section 6.8, we consider implementations 
that use an interface that defines Item and the basic abstract operations 
on the data. We consider both comparison-based methods and radix
based methods that use keys or pieces of keys as indices. To emphasize 
the separate roles played by items and keys in search, we extend the 
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Item concept that we used in Chapters 6 through I I such that items 
contain keys of type Key. For the simple cases that we commonly use 
when describing algorithms where items consist solely of keys, Key and 
Item are the same, and this change has no effect, but adding the Key 

type allows us to be clear about when we are referring to items and 
when we are referring to keys. We also use a macro key for storing 
keys in or extracting them from items and use the basic operation 
eq for testing whether two keys are equal. In this chapter and in 
Chapter 13, we also use the operation less for comparing two key 
values, to guide us in the search; in Chapters 14 and 15, our search 
algorithms are based on extracting pieces of keys using the basic radix 
operations that we used in Chapter 10. We use the constant NULLi tem 

as a return value when no item in the symbol table has the search key. 
To use the interfaces and implementations for floating-point numbers, 
strings, and more complicated items from Sections 6.8 and 6.9 for 
search, we need only to implement appropriate definitions for Key, 

key, NULLitem, eq, and less. 

Program 12.I is an interface that defines the basic symbol-table 
operations (except join). We shall use this interface between client 
programs and all the search implementations in this and the next 
several chapters. We could also define a version of the interface in 
Program 12.1 to have each function take a symbol-table handle as 
an argument, in a manner similar to Program 9.8, to implement first
class symbol-table ADTs that provide clients with the capability to 
use multiple symbol tables (containing objects of the same type) (see 
Section 4.8), but this arrangement unnecessarily complicates programs 
that use only one table (see Exercise 12.4). We also can define a version 
of the interface in Program I2.1 to manipulate handles to items in a 
manner similar to Program 9.8 (see Exercise 12.5), but this arrange
ment unnecessarily complicates the programs in the typical situation 
where it suffices to manipulate an item by the key. By assuming, 
in our implementations, that only one symbol table is in use, main
tained by the ADT, we are able to focus on the algorithms without 
being distracted by packaging considerations. We shall return to this 
issue occasionally, when appropriate. In particular, when discussing 
algorithms for delete, we need to be aware that implementations that 
provide handles obviate the need to search before deleting, and so can 
admit faster algorithms for some implementations. Also, the join oper
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ation is defined only for first-class symbol-table ADT implementations, 
so we need a first-class ADT when we consider algorithms for join (see 
Section 12.9). 

Some algorithms do not assume any implied ordering among the 
keys and therefore use only eq (and not less) to compare keys, but 
many of the symbol-table implementations use the ordering relation
ship among keys implied by less to structure the data and to guide the 
search. Also, the select and sort abstract operations explicitly refer to 
key order. The sort function is packaged as a function that processes all 
the items in order, without necessarily rearranging them. This setup 
makes it easy, for example, to print them out in sorted order while 
still maintaining the flexibility and efficiency of the dynamic symbol 
table. Algorithms that do not use less do not require that keys be 
comparable to one another, and do not necessarily support select and 
sort. 

The possibility of items with duplicate keys should receive special 
consideration in a symbol-table implementation. Some applications 
disallow duplicate keys, so keys can be used as handles. An example of 
this situation is the use of social-security numbers as keys in personnel 
files. Other applications may involve numerous items with duplicate 
keys: for example, keyword search in document databases typically 
will result in multiple search hits. 

We can handle items with duplicate keys in one of several ways. 
One approach is to insist that the primary search data structure contain 
only items with distinct keys, and to maintain, for each key, a link to 
a list of application items with duplicate keys. That is, we use items 
that contain a key and a link in our primary data structures, and do 
not have items with duplicate keys. This arrangement is convenient 
in some applications, since all the items with a given search key are 
returned with one search or can be removed with one delete. From the 
point of view of the implementation, this arrangement is equivalent to 
leaving duplicate-key management to the client. A second possibility is 
to leave items with equal keys in the primary search data structure, and 
to return any item with the given key for a search. This convention 
is simpler for applications that process one item at a time, where 
the order in which items with duplicate keys are processed is not 
important. It may be inconvenient in terms of the algorithm design, 
because the interface might have to be extended to include a mechanism 
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to retrieve all items with a given key or to call a specified function 
for each item with the given key. A third possibility is to assume 
that each item has a unique identifier (apart from the key), and to 
require that a search find the item with a given identifier, given the 
key. Or some more complicated mechanism might be necessary. These 
considerations apply to all the symbol-table operations in the presence 
of duplicate keys. Do we want to delete all items with the given 
key, or any item with the key, or a specific item (which requires an 
implementation that provides handles to items)? When describing 
symbol table implementations, we indicate informally how items with 
duplicate keys might be handled most conveniently, without necessarily 
considering each mechanism for each implementation. 

Program 12.2 is a sample client program that illustrates these 
conventions for symbol-table implementations. It uses a symbol table 
to find the distinct values in a sequence of keys (randomly generated 
or read from standard input), then prints them out in sorted order. 

As usual, we have to be aware that differing implementations 
of the symbol-table operations have differing performance character
istics, which may depend on the mix of operations. One application 
might use insert relatively infrequently (perhaps to build a table), then 
follow up with a huge number of search operations; another applica
tion might use insert and delete a huge number of times on relatively 
small tables, intermixed with search operations. Not all implemen
tations will support all operations, and some implementations might 
provide efficient support of certain functions at the expense of others, 
with an implicit assumption that the expensive functions are performed 
rarely. Each of the fundamental operations in the symbol table inter
face has important applications, and many basic organizations have 
been suggested to support efficient use of various combinations of the 
operations. In this and the next few chapters, we shall concentrate on 
implementations of the fundamental functions initialize, insert, and 
search, with some comment on delete, select, sort, and join when 
appropriate. The wide variety of algorithms to consider stems from 
differing performance characteristics for various combinations of the 
basic operations, and perhaps also from constraints on key values, or 
item size, or other considerations. 

In this chapter, we shall see implementations where search, insert, 
delete, and select take time proportional to the logarithm of the number 
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Program 12.2 Example of a symbol-table client 

This program uses a symbol table to find the distinct keys in a sequence 
generated randomly or read from standard input. For each key, it uses 
STsearch to check whether the key has been seen before. If the key has 
not been seen before, it inserts an item with that key into the symbol 
table. The types of keys and items, and the abstract operations on them, 
are specified in Item. h. 

#include <stdio.h> 
#include <stdlib.h> 
#include "Item.h" 
#include "ST.h" 
void main(int argc, char *argv[]) 

{ int N, maxN atoi(argv[l]), sw atoi (argv [2] ) ; 
Key Vi Item item; 
STinit(maxN); 
for (N OJ N < maxN; N++) 

{ 

if (sw) v ITEMrand(); 
else if (ITEMscan(&v) == EOF) break; 

if (STsearch(v) NULLitem) continuej 
key (item) = Vi 
STinsert(item); 

} 

STsort(ITEMshow); printf("\n")i 
printf("%d keys ", N); 
printf ("%d distinct keys\n", STcount ()); 

} 

of items in the dictionary, on the average, for random keys, and sort 
runs in linear time. In Chapter 13, we shall examine ways to guarantee 
this level of performance, and we shall see one implementation in 
Section I2.2 and several in Chapters 14 and I5 with constant-time 
performance under certain circumstances. 

Many other operations on symbol tables have been studied. Ex
amples include finger search, where a search can begin from the point 
where a previous search ended; range search, where we want to count 
or visit all the nodes falling within a specified interval; and, when we 
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have a concept of distance between keys, near-neighbor search, where 
we want to find items with keys closest to a given key. We consider 
such operations in the context of geometric algorithms, in Part 6. 

Exercises 

I> 12.1 Use the symbol-table ADT Program 12.1 to implement stack and queue 
ADTs. 

I> 12.2 Use the symbol-table ADT defined by the interface Program 12.1 to 
implement a priority-queue ADT that supports both delete-the-maximum and 
delete-the-minimum operations. 

12.3 Use the symbol-table ADT defined by the interface Program 12.1 to 
implement an array sort compatible with those in Chapters 6 through 10. 

12.4 Define an interface for a first-class symbol-table ADT, which allows 
client programs to maintain multiple symbol tables and to combine tables (see 
Sections 4.8 and 9.5). 

12.5 Define an interface for a symbol-table ADT that allows client pro
grams to delete specific items via handles and to change keys (see Sections 4.8 
and 9.5). 

I> 12.6 Give an item-type interface and implementation for items with two 
fields: a 16-bit integer key and a string that contains information associated 
with the key. 

12.7 Give the average number of distinct keys that our example driver pro
gram (Program 12.2) will find among N random positive integers less than 
1000, for N = 10, 102 

, 103 
, 104 

, and 105 
• Determine your answer empirically, 

or analytically, or both. 

I2.2 Key-Indexed Search 

Suppose that the key values are distinct small numbers. In this case, 
the simplest search algorithm is based on storing the items in an 
array, indexed by the keys, as in the implementation given in Pro
gram 12.3. The code is straightforward: We initialize all the entries 
with NULLitern, then insert an item with key value k simply by storing 
it in st [k], and search for an item with key value k by looking in 
st [k]. To delete an item with key value k, we put NULLitern in st [k] . 

The select, sort, and count implementations in Program 12.3 use a lin
ear scan through the array, skipping null items. The implementation 
leaves to the client the tasks of handling items with duplicate keys and 
checking for conditions such as specifying delete for a key not in the 
table. 
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Program I2.3 Key-indexed-array-based symbol table 

This code assumes that key values are positive integers less than maxKey 
(which is defined in Item.h). The primary factors limiting its applica
bility are the amount of space required when maxKey is large, and the 
amount of time required for STinit when N is small relative to maxKey. 

Compilation of this code as a separate module requires include 
directives for <stdlib.h>, "Item.h", and "ST .h". We omit these lines 
of code in this and other symbol-table implementations. 

static Item *stj 
static int M = maxKeYj 
void STinit(int maxN) 

{ int ij 
st = malloc«M+l)*sizeof(Item)); 
for (i = 0; i <= M; i++) st[i] = NULLitem; 

} 

int STcount () 

{ int i, N = 0; 


for (i = 0; i < M; i++) 

if (st[i] != NULLitem) N++; 


return N; 

} 


void STinsert(Item item) 

{ st[key(item)] = item; } 


Item STsearch(Key v) 

{ return st[v]; } 


void STdelete(Item item) 

{ st[key(item)] = NULLitem; } 


Item STselect(int k) 

{ int i; 


for (i = 0; i < M; i++) 

if (st[i] NULLitem) 


if (k-- 0) return st[i]; 

} 

void STsort(void (*visit) (Item)) 

{ int i; 


for (i 0; i < M; i++) 

if Cst [iJ != NULLi tem) visit (st [iJ ) ; 


} 
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This implementation is a point of departure for all the symbol
table implementations that we consider in this chapter and in Chap
ters 13 through 15. With the indicated include directives, it can 
be compiled separately from any particular client and used as an im
plementation for numerous different clients, and with different item 
types. The compiler will check that interface, implementation, and 
client adhere to the same defined conventions. 

The indexing operation upon which key-indexed search is based 
is the same as the basic operation in the key-indexed counting sort 
method that we examined in Section 6.10. Key-indexed search is the 
method of choice, when it is applicable, because search and insert 
could hardly be implemented more efficiently. 

If there are no items at all (just keys), we can use a table of bits. 
The symbol table in this case is called an existence table, because we 
may think of the kth bit as signifying whether k exists among the set of 
keys in the table. For example, we could use this method to determine 
quickly whether a given 4-digit number in a telephone exchange has 
already been assigned, using a table of 313 words on a 32-bit computer 
(see Exercise I 2. I 2). 

Property I2.I If key values are positive integers less than Iv! and 
items have distinct keys, then the symbol-table data type can be imple
mented with key-indexed arrays of items such that insert, search, and 
delete require constant time; and initialize, select, and sort require time 
proportional to AI, whenever any of the operations are performed on 
an N -item table. 

This fact is immediate from inspection of the code. Note that the 
conditions on the keys imply that N Iv1.. 

Program I 2.3 does not handle duplicate keys, and it assumes that 
the key values are between 0 and maxKey-1. We could use linked lists 
or one of the other approaches mentioned in Section 12.I to store any 
items with duplicate keys, and we could do simple transformations 
of the keys before using them as indices (see Exercise 12. II), but we 
defer considering these cases in detail to Chapter 14, when we consider 
hashing, which uses this same approach to implement symbol tables 
for general keys, by transforming keys from a potentially large range 
such that they fall within a small range, then taking appropriate action 
for items with duplicate keys. For the moment, we assume that an old 
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item with a key value equal to the key in an item to be inserted can be 
silently ignored (as in Program 12.3), or treated as an error condition 
(see Exercise 12.8). 

The implementation of count in Program 12.3 is a lazy approach 
where we do work only when the function STcount is called. An 
alternative (eager) approach is to maintain the count of nonempty 
table positions in a local variable, incrementing the variable if insert 
is into a table position that contains NULLitern, and decrementing 
it if delete is for a table position that does not contain NULLitern 
(see Exercise 12.9). The lazy approach is the better of the two if 
the count operation is used rarely (or not at all) and the number of 
possible key values is small; the eager approach is better if the count 
operation is used often or the number of possible key values is huge. 
For a general-purpose library routine, the eager approach is preferred, 
because it provides optimal worst-case performance at the cost of a 
small constant factor for insert and delete; for the inner loop in an 
application with a huge number of insert and delete operations but 
few count operations, the lazy approach is preferred, because it gives 
the fastest implementation of the common operations. This type of 
dilemma is common in the design of ADTs that must support a varying 
mix of operations, as we have seen on several occasions. 

For a full implementation of a first-class symbol-table ADT (see 
Section 4.8) using a key-indexed array as the underlying data structure, 
we could allocate the array dynamically, and use its address as a handle. 
There are various other design decisions that we also need to make in 
developing such an interface. For example, should the key range be 
the same for all objects, or be different for different objects? If the 
latter option is chosen, then it may be necessary to have a function 
giving the client access to the key range. 

Key-indexed arrays are useful for many applications, but they do 
not apply if keys do not fall into a small range. Indeed, we might think 
of this and the next several chapters as being concerned with designing 
solutions for the case where the keys are from such a large range that 
it is not feasible to have an indexed table with one potential place for 
each key. 

Exercises 

12.8 Implement an interface for a first-class symbol-table ADT (see Exer
cise 12.4), using dynamically allocated key-indexed arrays. 
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[> I2.9 Modify the implementation of Program I2.3 to provide an eager im
plementation of STcount (by keeping track of the number of nonnull entries). 

[> I2.IO Modify your implementation from Exercise I2.8 to provide an eager 
implementation of STcount (see Exercise I2.9). 

I2.II Modify the implementation and interface of Program I2.1 and Pro
gram I2.3 to use a function h(Key) that converts keys to nonnegative integers 
less than M, with no two keys mapping to the same integer. (This improve
ment makes the implementation useful whenever keys are in a small range (not 
necessarily starting at 0) and in other simple cases.) 

12.12 Modify the implementation and interface of Program 12.1 and Pro
gram 12.3 for the case when items are keys that are positive integers less 
than M (no associated information). In the implementation, use a dynamically 
allocated array of about M/bitsword words, where bitsword is the number 
of bits per word on your computer system. 

I2.I3 Use your implementation from Exercise 12. I 2 for experiments to deter
mine empirically the average and standard deviation for the number of distinct 
integers in a random sequence of N nonnegative integers less than N, for N 
close to the memory available to a program on your computer, expressed as a 
number of bits (see Program I2.2). 

I2.3 Sequential Search 

For general key values from too large a range for them to be used as 
indices, one simple approach for a symbol-table implementation is to 
store the items contiguously in an array, in order. When a new item 
is to be inserted, we put it into the array by moving larger elements 
over one position as we did for insertion sort; when a search is to be 
performed, we look through the array sequentially. Because the array 
is in order, we can report a search miss when we encounter a key larger 
than the search key. Moreover, since the array is in order, both select 
and sort are trivial to implement. Program 12.4 is a symbol-table 
implementation that is based on this approach. 

We could slightly improve the inner loop in the implementation 
of search in Program I2.4 by using a sentinel to eliminate the test for 
running off the end of the array in the case that no item in the table 
has the search key. Specifically, we could reserve the position after the 
end of the array as a sentinel, then fill its key field with the search key 
before a search. Then the search will always terminate with an item 
containing the search key, and we can determine whether or not the 
key was in the table by checking whether that item is the sentinel. 
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Program 12.4 Array-based symbol table (ordered) 

Like Program I2.3, this implementation uses an array of items, but 
without any null items. We keep the array in order when inserting a 
new item by moving larger items one position to the right in the same 
manner as insertion sort. 

The STsearch function is a scan through the array that looks for 
an item with the specified key. Since the array is in order, we know that 
the search key is not in the table as soon as we encounter an item with 
a larger key. The STselect and STsort functions are trivial, and the 
implementation of STdelete is left as an exercise (see Exercise I2.14). 

static Item *st; 
stat ic int N; 
void STinit(int maxN) 

{ st = malloc«maxN)*sizeof(Item»; N O;} 
int STcount() 

{ return N; } 
void STinsert(Item item) 

{ int j N++; Key v = key(item); 
while (j>O && less(v, key(st[j-l]») 

{ st[j] = st[j-iJ; j--; } 
st [j] = item; 

} 

Item STsearch(Key v) 
{ int j; 

for (j 0; j < N; j++) 
{ 

if (eq(v, key(st[j]») return st[j]; 
if (less(v, key(st[j]») break; 

} 

return NULLitem; 
} 

Item STselect(int k) 

{ return st[k]; } 


void STsort(void (*visit)(Item» 
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Alternatively, we could develop an implementation where we 
do not insist that the items in the array be kept in order. When a 
new item is to be inserted, we put it at the end of the array; when a 
search is to be performed we look through the array sequentially. The 
characteristic property of this approach is that insert is fast but select 
and sort require substantially more work (they each require one of the 
methods in Chapters 7 through IO). We can delete an item with a 
specified key by doing a search for it, then moving the final item in 
the array to its position and decrementing the size by 1; and we can 
delete all items with a specified key by iterating this operation. If a 
handle giving the index of an item in the array is available, the search 
is unnecessary and delete takes constant time. 

Another straightforward option for a symbol-table implementa
tion is to use a linked list. Again, we can choose to keep the list in 
order, to be able to easily support the sort operation, or to leave it un
ordered, so that insert can be fast. Program 12.5 is an implementation 
of the latter. As usual, the advantage of using linked lists over arrays 
is that we do not have to predict the maximum size of the table in 
advance; the disadvantages are that we need extra space (for the links) 
and we cannot support select efficiently. 

The unordered-array and ordered-list approaches are left for ex
ercises (see Exercise 12.18 and Exercise I2.I9). These four imple
mentation approaches (array or list, ordered or unordered) could be 
used interchangeably in applications, differing only (we expect) in 
time and space requirements. In this and the next several chapters, 
we will examine numerous different approaches to the symbol-table
implementation problem. 

Keeping the items in order is an illustration of the general idea 
that symbol-table implementations generally use the keys to structure 
the data in some way to provide for fast search. The structure might 
allow fast implementations of some of the other operations, but this 
savings has to be balanced against the cost of maintaining the structure, 
which might be slowing down other operations. We shall see many 
examples of this phenomenon. For example, in an application where 
the sort function is needed frequently, we would choose an ordered 
(array or list) representation because the chosen structure of the table 
makes the sort function trivial, as opposed to it needing a full sort 
implementation. In an application where we know that the select 

49 I 
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Program 12.5 Linked-list-based symbol table (unordered) 

This implementation of initialize, count, search, and insert uses a singly
linked list with each node containing an item with a key and a link. The 
STinsert function puts the new item at the beginning of the list, and 
takes constant time. The STsearch function uses a recursive function 
searchR to scan through the list. Since the list is not in order, the sort 
and select operations are not supported. 

typedef struct STnode* link; 

struct STnode { Item item; link next; }; 

static link head, z; 

static int N; 

static link NEW(Item item, link next) 


{ 	 link x = malloc(sizeof *x); 

x->item = item; x->next next; 

return x; 


} 


void STinit(int max) 

{ N = 0; head = (z = NEW(NULLitem, NULL»; } 


int STcount() { return N; } 

Item searchR(link t, Key v) 


{ 

if (t z) return NULLitem; 
if (eq(key(t->item), v) return t->item; 
return searchR(t->next, v); 

} 


Item STsearch(Key v) 

{ return searchR(head, v); } 


void STinsert(Item item) 

{head NEW(item, head); N++; } 


operation might be performed frequently, we would choose an ordered 
array representation because this structure of the table makes select 
constant-time. By contrast, select takes linear time in a linked list, 
even an ordered one. 

To analyze the performance of sequential search for random keys 
in more detail, we begin by considering the cost of inserting new keys 
and by considering separately the costs of successful and unsuccessful 
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searches. We often refer to the former as a search hit, and to the lat
ter as a search miss. We are interested in the costs for both hits and 
misses, on the average and in the worst case. Strictly speaking, our 
ordered-array implementation (see Program I2.4) uses two compar
isons for each item examined (one eq and one less). For the purposes 
of analysis, we regard such a pair as a single comparison throughout 
Chapters 12 through 16, since we normally can do low-level optimiza
tions to effectively combine them. 

Property 12.2 Sequential search in a symbol table with N items uses 
about N /2 comparisons for search hits (on the average). 

See Property 2.I. The argument applies for arrays or linked lists, 
ordered or unordered. _ 

Property 12.3 Sequential search in a symbol table of N unordered 
items uses a constant number of steps for inserts and N comparisons 
for search misses (always). 

These facts are true for both the array and linked-list representations, 
and are immediate from the implementations (see Exercise 12.18 and 
Program 12.5).• 

Property 12.4 Sequential search in a symbol table of N ordered 
items uses about N /2 comparisons for insertion, search hits, and search 
misses (on the average). 

See Property 2.2. Again, these facts are true for both the array and 
linked-list representations, and are immediate from the implementa
tions (see Program 12.4 and Exercise 12.19). _ 

Building an ordered table by successive insertion is essentially 
equivalent to running the insertion-sort algorithm of Section 6.2. The 
total running time to build the table is quadratic, so we would not use 
this method for large tables. If we have a huge number of search oper
ations in a small table, then keeping the items in order is worthwhile, 
because Properties 12.3 and 12.4 tell us that this policy can save a fac
tor of 2 in the time for search misses. If items with duplicate keys are 
not to be kept in the table, the extra cost of keeping the table in order 
is not as burdensome as it might seem, because an insertion happens 
only after a search miss, so the time for insertion is proportional to the 
time for search. On the other hand, if items with duplicate keys may be 
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Table 12.1 Costs of insertion and search in symbol tables 

The entries in this table are running times within a constant factor as 
a function of N, the number of items in the table, and lVi, the size of 
the table (if different from N), for implementations where we can insert 
new items without regard to whether items with duplicate keys are in 
the table. Elementary methods (first four lines) require constant time 
for some operations and linear time for others; more advanced methods 
yield guaranteed logarithmic or constant-time performance for most or 
all operations. The N Ig N entries in the column for select represent the 
cost of sorting the items-a linear-time select for an unordered set of 
items is possible in theory, but is not practical (see Section 7.8). Starred 
entries indicate worst-case events that are extremely unlikely. 

worst case average case 

search search 
insert search select insert hit miss 

-.~-.--

key-indexed array 1 1 M 1 1 1 

ordered array N N 1 N/2 N/2 N/2 
ordered linked list N N N N/2 N/2 N/2 
unordered array 1 N NlgN 1 N/2 N 

unordered linked list 1 N NlgN 1 N/2 N 

binary search N 19N 1 N/2 19N 19N 
binary search tree N N N 19N 19N 19N 

red-black tree 19N 19N 19N 19N 19N 19N 
randomized tree Tv" N* lv~ 19N 19N 19N 

hashing 1 N* NlgN 1 1 1 

kept in the table, we can have a constant-time insert implementation 
with an unordered table. The use of an unordered table is preferred 
for applications where we have a huge number of insert operations 
and relatively few search operations. 

Beyond these differences, we have the standard tradeoff that 
linked-list implementations use space for the links, whereas array im
plementations require that the maximum table size be known ahead 
of time or that the table undergo amortized growth (see Section I4.5). 
Also, as discussed in Section I2.9, a linked-list implementation has the 
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flexibility to allow efficient implementation of other operations such 
as join and delete, in first-class symbol-table ADT implementations. 

Table 12.1 summarizes these results, and puts them in context 
with other search algorithms discussed later in this chapter and in 
Chapters 13 and 14. In Section 12.4 we consider binary search, which 
brings the search time down to 19 N and is therefore widely used for 
static tables (when insertions are relatively infrequent). 

In Sections 12.5 through 12.9, we consider binary search trees, 
which have the flexibility to admit search and insertion in time pro
portional to 19 N, but only on the average. In Chapter 13, we shall 
consider red-black trees and randomized binary search trees, which 
guarantee logarithmic performance or make it extremely likely, re
spectively. In Chapter 14, we shall consider hashing, which provides 
constant-time search and insertion, on the average, but does not ef
ficiently support sort and some other operations. In Chapter 15, we 
shall consider the radix search methods that are analogous to the radix 
sorting methods of Chapter 10; in Chapter 16, we shall consider meth
ods that are appropriate for files that are stored externally. 

Exercises 

I> I2.14 Add an implementation for the delete operation to our ordered-array
based symbol-table implementation (Program 12.4). 

I> I2.I5 Implement STsearchinsert functions for our list-based (Program 12.5) 
and array-based (Program 12.4) symbol-table implementations. They should 
search the symbol table for items with the same key as a given item, then insert 
the item if there is none. 

12.16 Implement a select operation for our list-based symbol-table implemen
tation (Program 12.5). 

12.I7 Give the number of comparisons required to put the keys E A S Y QUE 
S T ION into an initially empty table using ADTs that are implemented with 
each of the four elementary approaches: ordered or unordered array or list. 
Assume that a search is performed for each key, then an insertion is done for 
search misses, as in Exercise 12. I 5. 

12.18 Implement the initialize, search, and insert operations for the symbol
table interface in Program 12.1, using an unordered array to represent the 
symbol table. Your program should match the performance characteristics set 
forth in Table 12.1. 

012.19 Implement the initialize, search, insert, and sort operations for the 
symbol-table interface in Program 12.1, using an ordered linked list to repre
sent the symbol table. Your program should meet the performance character
istics set forth in Table 12.1. 
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012.20 Change our list-based symbol-table implementations (Program 12.5) 
to support a first-class symbol-table ADT with client item handles (see Exer
cises 12.4 and 12.5), then add delete and join operations. 

12.21 Write a performance driver program that uses STinsert to fill a symbol 
table, then uses STselect and STdelete to empty it, doing so multiple times 
on random sequences of keys of various lengths ranging from small to large; 
measures the time taken for each run; and prints out or plots the average 
running times. 

12.22 Write a performance driver program that uses STinsert to fill a symbol 
table, then uses STsearch such that each item in the table is hit an average 
of 10 times and there is about the same number of misses, doing so multiple 
times on random sequences of keys of various lengths ranging from small to 
large; measures the time taken for each run; and prints out or plots the average 
running times. 

12.23 Write an exercise driver program that uses the functions in our symbol
table interface Program 12.1 on difficult or pathological cases that might turn 
up in practical applications. Simple examples include files that are already in 
order, files in reverse order, files where all keys are the same, and files consisting 
of only two distinct values. 

012.24 Which symbol-table implementation would you use for an application 
that does 102 insert operations, 103 search operations, and 104 select opera
tions, randomly intermixed? Justify your answer. 

012.25 	(This exercise is five exercises in disguise.) Answer Exercise 12.24 for 
the other five possibilities of matching up operations and frequency of use. 

12.26 A self-organizing search algorithm is one that rearranges items to make 
those that are accessed frequently likely to be found early in the search. Mod
ify your search implementation for Exercise 12.18 to perform the following 
action on every search hit: move the item found to the beginning of the list, 
moving all items between the beginning of the list and the vacated position to 
the right one position. This procedure is called the move-to-front heuristic. 

t> 12.27 Give the order of the keys after items with the keys E A S Y QUE S 
T ION have been put into an initially empty table with search, then insert 
on search miss, using the move-to-front self-organizing search heuristic (see 
Exercise 12.26). 

12.28 Write a driver program for self-organizing search methods that uses 
STinsert to fill a symbol table with N keys, then does ION searches to hit 
items according to a predefined probability distribution. 

12..29 Use your solution to Exercise 12.28 to compare the running time of 
your implementation from Exercise 12.18 with your implementation from 
Exercise 12.26, for N = 10, 100, and 1000, using the probability distribution 
where search is for the ith largest key with probability 1/2i for 1 ::: i ::: N. 
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12.30 Do Exercise 12.29 for the probability distribution where search is for 
the ith largest key with probability HN Ii for 1 S; i S; N. This distribution is 
called Zipf's law. 

12.3 I Compare the move-to-front heuristic with the optimal arrangement for 
the distributions in Exercises 12.29 and 12.30, which is to keep the keys in 
increasing order (decreasing order of their expected frequency). That is, use 
Program 12.4, instead of your solution to Exercise 12. I 8, in Exercise I2.29. 

12.4 Binary Search 

In the array implementation of sequential search, we can reduce sig
nificantly the total search time for a large set of items by using a 
search procedure based on applying the standard divide-and-conquer 
paradigm (see Section 5.2): Divide the set of items into two parts, 
determine to which of the two parts the search key belongs, then con
centrate on that part. A reasonable way to divide the sets of items 
into parts is to keep the items sorted, then to use indices into the 
sorted array to delimit the part of the array being worked on. This 
search technique is called binary search. Program I2.6 is a recursive 
implementation of this fundamental strategy. Program 2.2 is a non
recursive implementation of the method-no stack is needed because 
the recursive function in Program 12.6 ends in a recursive call. 

Figure 12.1 shows the subfiles examined by binary search when 
a small table is searched; Figure 12.2 depicts a larger example. Each 
iteration eliminates slightly more than one-half of the table, so the 
number of iterations required is small. 

Property 12.5 Binary search never uses more than lJg N J+ 1 com
parisons for a search (hit or miss). 

See Property 2.3. It is amusing to note that the maximum number of 
comparisons used for a binary search in a table of size N is precisely the 
number of bits in the binary representation of N, because the operation 
of shifting 1 bit to the right converts the binary representation of N 
into the binary representation of LN/2J (see Figure 2.6) .• 

Keeping the table sorted as we do in insertion sort leads to a 
running time that is a quadratic function of the number of insert oper
ations, but this cost might be tolerable or even negligible if the number 
of search operations is huge. In the typical situation where all the 
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Figure 12.I 
Binary search 

Binary search uses only three it
erations to find a search key L in 
this sample file. On the first cal/, 
the algorithm compares L to the 
key in the middle of the file, the G. 
Since L is larger; the next iteration 
involves the right half of the file. 
Then, since L is less than the M 
in the middle of the right half, the 
third iteration involves the subfile 
of size 3 containing H, t and L Af
ter one more iteration, the subfile 
size is 1, and the algorithm finds 
the L. 

Program 12.6 Binary search (for array-based symbol table) 

This implementation of STsearch uses a recursive binary-search pro
cedure. To find whether a given key v is in an ordered array, it first 
compares v with the element at the middle position. If v is smaller, then 
it must be in the first half of the array; if v is greater, then it must be in 
the second half of the array. 

The array must be in sorted order. This function could replace 
STsearch in Program I2.4, which maintains the order dynamically 
during insertion; or we could include a construct function that uses a 
standard sort routine. 

Item search(int 1, int r, Key v) 
{ int m (1+r)/2; 

if (1 > r) return NULLitem; 
if eq(v, key(st[m])) return stem]; 
if (1 == r) return NULLitem; 
if less(v, key(st[m])) 

return search(l, m-l, v); 
else return search(m+l, r, v); 

} 

Item STsearch(Key v) 

{ return search(O, N-l, v); } 


items (or even a large number of them) are available before the search 
begins, we might use a construct function based on one of the standard 
sorting methods from Chapters 6 through 10 to sort the table. After 
doing so, we could handle updates to the table in various ways. For 
example, we could maintain order during insert, as in Program I2.4 

(see also Exercise 12.19), or we could batch them, sort, and merge (as 
discussed in Exercise 8.1). Any update could involve an item with a 
smaller key than those of any item in the table, so every item in the 
table might have to be moved to make room. This potential for a high 
cost of updating the table is the biggest liability of using binary search. 
On the other hand, there are a great many applications where a static 
table can be presorted and the fast access provided by implementations 
like Program 12.6 makes binary search the method of choice. 

If we need to insert new items dynamically, it seems that we need 
a linked structure, but a singly linked list does not lead to an efficient 
implementation, because the efficiency of binary search depends on 
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our ability to get to the middle of any subarray quickly via indexing, 
and the only way to get to the middle of a singly linked list is to follow 
links. To combine the efficiency of binary search with the flexibility 
of linked structures, we need more complicated data structures, which 
we shall begin examining shortly. 

If duplicate keys are present in the table, then we can extend bi
nary search to support symbol-table operations for counting the num
ber of items with a given key or returning them as a group. Multiple 
items with keys equal to the search key in the table form a contiguous 
block in the table (because it is in order), and a successful search in 
Program 12.6 will end somewhere within this block. If an application 
requires access to all such items, we can add code to scan both direc
tions from the point where the search terminated, and to return two 
indices delimiting the items with keys equal to the search key. In this 
case, the running time for the search will be proportional to 19 N plus 
the number of items found. A similar approach solves the more gen
eral range-search problem of finding all items with keys falling within 
a specified interval. We shall consider such extensions to the basic set 
of symbol-table operations in Part 6. 

The sequence of comparisons made by the binary search algo
rithm is predetermined: The specific sequence used depends on the 
value of the search key and on the value of N. The comparison 
structure can be described by a binary-tree structure such as the one 
illustrated in Figure 12.3. This tree is similar to the tree that we used 

Figure 12.2 

Binary search 

With binary search, we need only 
seven iterations to find a record in 
a file of 200 elements. The subfile 
sizes follow the sequence 200, 99, 
49, 24, 11, 5, 2, 1; each is slightly 
less than one-half of the previous. 
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Figure 12.3 

Comparison sequence in bi
nary search 

These divide-and-conquer tree dia
grams depict the index sequence 
for the comparisons in binary 
search. The patterns are depen
dent on only the initial file size, 
rather than on the values of the 
keys in the file. They differ slightly 
from the trees corresponding to 
mergesort and similar algorithms 
(Figures 5.6 and 8.3) because the 
element at the root is not included 
in the subtrees. 

The top diagram shows how a 
file of 15 elements, indexed from 
a to 14, is searched. We /(x)k at 
the middle element (index 7), then 
(recursively) consider the left sub
tree if the element sought is less, 
and the right subtree if the ele
ment sought is greater. Each search 
corresponds to a path from top to 
bottom in the tree; for example, 
a search for an element that falls 
between the elements 10 and 11 
would involve the sequence 7, 11, 
9, 10. For file sizes that are not 1 
less than a power of 2, the pattern 
is not quite as regular, as indicated 
by the bottom diagram, for 12 ele
ments. 
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in Chapter 8 to describe the subfile sizes for mergesort (Figure 8.3). 
For binary search, we take one path through the tree; for merge sort, 
we take all paths through the tree. This tree is static and implicit; in 
Section I2. 5, we shaH see algorithms that use a dynamic, explicitly 
constructed binary-tree structure to guide the search. 

One improvement that is possible for binary search is to guess 
where the search key falls within the current interval of interest with 
more precision (rather than blindly testing it against the middle element 
at each step). This tactic mimics the way we look up a name in the 
telephone directory or a word in a dictionary: If the entry that we are 
seeking begins with a letter near the beginning of the alphabet, we look 
near the beginning of the book, but if it begins with a letter near the 
end of the alphabet, we look near the end of the book. To implement 
this method, called interpolation search, we modify Program 12.6 as 
follows: We replace the statement 

m = (1+r)/2; 

with 

m = l+(v-key(a[l]))*(r-l)/(key(a[r])-key(a )); 

To justify this change, we note that (I + r)/2 is shorthand for I -; ~(r 
l): We compute the middle of the interval by adding one-half of the 
size of the interval to the left endpoint. Using interpolation search 
amounts to replacing ~ in this formula by an estimate of where the key 
might be-specifically (v kt)/(kr kL), where kl and kr denote the 
values of key(a[l]) and key(a[r]), respectively. This calculation is 
based on the assumption that the key values are numerical and evenly 
distributed. 

For files of random keys, it is possible to show that interpolation 
search uses fewer than 19 19 N +1 comparisons for a search (hit or miss). 
That proof is quite beyond the scope of this book. This function grows 
very slowly, and can be thought of as a constant for practical purposes: 
If N is 1 billion, 19 19 N < 5. Thus, we can find any item using only a 
few accesses (on the average)-a substantial improvement over binary 
search. For keys that are more regularly distributed than random, the 
performance of interpolation search is even better. Indeed, the limiting 
case is the key-indexed search method of Section I2.2. 

Interpolation search, however, does depend heavily on the as
sumption that the keys are well distributed over the interval-it can 
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be badly fooled by poorly distributed keys, which do commonly arise 
in practice. Also, it requires extra computation. For small N, the 19 N 
cost of straight binary search is close enough to 19 19 N that the cost 
of interpolating is not likely to be worthwhile. On the other hand, 
interpolation search certainly should be considered for large files, for 
applications where comparisons are particularly expensive, and for 
external methods where high access costs are involved. 

Exercises 

t> 12.32 Implement a nonrecursive binary search function (see Program 12.6). 

12.33 Draw trees that correspond to Figure 12.3 for N = 17 and N 24. 

o I2.34 Find the values of N for which binary search in a symbol table of size 
N becomes 10, 100, and 1000 times faster than sequential search. Predict the 
values with analysis and verify them experimentally. 

12.35 Suppose that insertions into a dynamic symbol table of size N are 
implemented as in insertion sort, but that we use binary search for search. 
Assume that searches are 1000 times more frequent than insertions. Estimate 
the percentage of the total time that is devoted to insertions, for N 103

, 104
, 

105
, and 106

• 

12.36 Develop a symbol-table implementation using binary search and lazy 
insertion that supports the initialize, count, search, insert, and sort operations, 
using the following strategy. Keep a large sorted array for the main symbol 
table and an unordered array for recently inserted items. When STsearch is 
called, sort the recently inserted items (if there are any), merge them into the 
main table, then use binary search. 

12.37 Add lazy deletion to your implementation for Exercise 12.36. 

12.38 Answer Exercise 12.35 for your implementation for Exercise 12.36. 

012.39 Implement a function similar to binary search (Program 12.6) that 
returns the number of items in the symbol table with keys equal to a given key. 

12.40 Write a program that, given a value of N, produces a sequence of N 
macro instructions, indexed from 0 to N-l, of the form compare (l, h), where 
the ith instruction on the list means "compare the search key with the value 
at table index i; then report a search hit if equal, do the lth instruction next 
if less, and do the hth instruction next if greater" (reserve index 0 to indicate 
search miss). The sequence should have the property that any search will do 
the same comparisons as would binary search on the same data. 

• 	12.41 Develop an expansion of the macro in Exercise I2.40 such that your 
program produces machine code that can do binary search in a table of size N 
with as few machine instructions per comparison as possible. 
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Figure 12.4 
BST search and insertion 
In a successful search for H in this 
sample tree (top), we move right 
at the root (since H is larger than 
A), then left at the right subtree of 
the root (since H is smaller than 
S), and so forth, continuing down 
the tree until we encounter the H. 
In an unsuccessful search for M in 
this sample tree (center), we move 
right at the root (since M is larger 
than A), then left at the right sub
tree of the root (since M is smaller 
than S), and so forth, continuing 
down the tree until we encounter 
an external link at the left of N at 
the bottom. To insert M after the 
search miss, we simply replace the 
link that terminated the search with 
a link to M (bottom). 
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12.42 Suppose that a[i] 10*i for i between 1 and N. How many table 
positions are examined by interpolation search during the unsuccessful search 
for 2k I? 

• 	12.43 Find the values of N for which interpolation search in a symbol table of 
size N becomes 1,2, and 10 times faster than binary search, assuming the keys 
to be random. Predict the values with analysis, and verify them experimentally. 

12.5 Binary Search Trees (BSTs) 

To overcome the problem that insertions are expensive, we shall use an 
explicit tree structure as the basis for a symbol-table implementation. 
The underlying data structure allows us to develop algorithms with 
fast average-case performance for the search, insert, select, and sort 
symbol-table operations. It is tbe method of choice for many appli
cations, and qualifies as one of the most fundamental algorithms in 
computer science. 

We discussed trees at some length, in Chapter 5, but it will be 
useful to review the terminology. We are working with data structures 
comprised of nodes that contain links that point to other nodes, or to 
external nodes, which have no links. In a (rooted) tree, we have the 
restriction that every node is pointed to by just one other node, which 
is called its parent. In a binary tree, we have the further restriction 
that each node has exactly two links, which are called its left and right 
links. Nodes with two links are also referred to as internal nodes. For 
search, each internal node also has an item with a key value, and we 
refer to links to external nodes as null links. The key values in internal 
nodes are compared with the search key, and control the progress of 
the search. 

Definition 12.2 A binary search tree (BST) is a binary tree that has 
a key associated with each of its internal nodes, with the additional 
property that the key in any node is larger than (or equal to) the keys 
in all nodes in that node's left subtree and smaller than (or equal to) 
the keys in alJ nodes in that node's right subtree. 

Program 12.7 uses BSTs to implement the symbol-table search, insert, 
initialize, and count operations. The first part of the implementation 
defines nodes in BSTs as each containing an item (with a key), a left 
link, and a right link. The code also maintains a field that holds the 
number of nodes in the tree, to support an eager implementation of 
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Program 12.7 BST-based symbol table 

The STsearch and STinsert functions in this implementation use the 
compact recursive functions searchR and insertR that directly mirror 
the recursive definition of BSTs (see text). The link head points to the 
root of the tree, and a tail node (z) is used to represent empty trees. 

#include <stdlib.h> 

#include "Item.h" 

typedef struct STnode* link; 

struct STnode { Item item; link 1, r; int N; }; 

static link head, z; 

link NEW(Item item, link 1, link r, int N) 


{ 	link x = malloc(sizeof *x); 
x->item = item; x->l 1; x->r r; x->N N', 
return x; 

} 

void STinitO 
{ head = (z = NEW(NULLitem, 0, 0, 0»); } 


int STcount() { return head->N; } 

Item searchR(link h, Key v) 


{ 	Key t key(h->item); 

if (h == z) return NULLitem; 

if eq(v, t) return h->item; 

if less(v, t) return searchR(h->l, v); 


else return searchR(h->r, v); 

} 


Item STsearch(Key v) 

{ return searchR(head, v); } 


link insertR(link h, Item item) 

{ 	Key v = key(item), t = key(h->item); 


if (h == z) return NEW(item, z, z, 1); 

if less(v, t) 


h->l = insertR(h->l, item); 

else h->r = insertR(h->r, item); 

(h->N)++; return h; 


} 


void STinsert(Item item) 

{ head = insertR(head, item); } 
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Figure 12.5 
BST construction 

This sequence depicts the result of 
inserting the keys A S ERe H I N 
into an initially empty BST. Each 
insertion follows a search miss at 
the bottom of the tree. 
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count. The left link points to a BST for items with smaller (or equal) 
keys, and the right link points to a BST for items with larger (or equal) 
keys. 

Given this structure, a recursive algorithm to search for a key 
in a BST follows immediately: If the tree is empty, we have a search 
miss; if the search key is equal to the key at the root, we have a search 
hit. Otherwise, we search (recursively) in the appropriate subtree. The 
searchR function in Program 12.7 implements this algorithm directly. 
We invoke a recursive routine that takes a tree as first argument and a 
key as second argument, using the root of the tree (a link maintained as 
a local variable) and the search key. At each step, we are guaranteed 
that no parts of the tree other than the current subtree can contain 
items with the search key. Just as the size of the interval in binary 
search shrinks by a little more than half on each iteration, the current 
subtree in binary-tree search is smaller than the previous (by about 
half, ideally). The procedure stops either when an item with the search 
key is found (search hit) or when the current subtree becomes empty 
(search miss). 

The diagram at the top in Figure 12.4 illustrates the search pro
cess for a sample tree. Starting at the top, the search procedure at each 
node involves a recursive invocation for one of that node's children, so 
the search defines a path through the tree. For a search hit, the path 
terminates at the node containing the key. For a search miss, the path 
terminates at an external node, as illustrated in the middle diagram in 
Figure 12.4. 

Program 12.7 uses a dummy node z to represent external nodes, 
rather than having explicit NULL links in the BST-links that point 
to z are null links. This convention simplifies the implementation 
of some of the intricate tree-processing functions that we shall be 
considering. We could also use a dummy head node to provide a 
handle when using BSTs to implement a first-class symbol-table ADT; 
in this implementation, however, head is simply a link that points to 

the BST. Initially, to represent an empty BST, we set head to point to 
z. 

The search function in Program 12.7 is as simple as binary search; 
an essential feature of BSTs is that insert is as easy to implement as 
search. A recursive function insertR to insert a new item into a BST 
follows from logic similar to that we used to develop searchR: If the 
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Program 12.8 Sorting with a BST 

An inorder traversal of a BST visits the items in order of their keys. In 
this implementation, visit is a function supplied by the client that is 
called with each of the items as its argument, in order of their keys. 

void sortR(link h, void (*visit)(Item)) 
{ 


if (h z) return; 

sortR(h->l, visit); 

visit (h->item) ; 

sortR(h->r, visit); 


} 

void STsort(void (*visit) (Item)) 
{ sortR(head, visit); } 

tree is empty, we return a new node containing the item; if the search 
key is less than the key at the root, we set the left link to the result of 
inserting the item into the left subtree; otherwise, we set the right link 
to the result of inserting the key into the right subtree. For the simple 
BSTs that we are considering, resetting the link after the recursive call 
is usually unnecessary, because the link changes only if the subtree 
was empty, but it is as easy to set the link as to test to avoid setting 
it. In Section I2.8 and in Chapter 13, we shall study more advanced 
tree structures that are naturally expressed with this same recursive 
scheme, because they change the subtree on the way down, then reset 
the links after the recursive calls. 

Figures 12.5 and 12.6 show how we construct a sample BST by 
inserting a sequence of keys into an initially empty tree. New nodes 
are attached to null links at the bottom of the tree; the tree structure 
is not otherwise changed. Because each node has two links, the tree 
tends to grow out, rather than down. 

The sort function for symbol tables is available with little extra 
work when BSTs are used. Constructing a binary search tree amounts 
to sorting the items, since a binary search tree represents a sorted file 
when we look at it the right way. In our figures, the keys appear in 
order if read from left to right on the page (ignoring their height and 
the links). A program has only the links with which to work, but a 
simple inorder traversal does the job, by definition, as shown by the 
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Figure 12.6 


BST construction (continued) 


This sequence depicts insertion 
of the keys G X M P L to the BST 
started in Figure 12.5. 
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Program 12.9 Insertion in BSTs (nonrecursive) 

Inserting an item into a BST is equivalent to doing an unsuccessful search 
for it, then attaching a new node for the item in place of the null link 
where the search terminates. Attaching the new node requires that we 
keep track of the parent p of x as we proceed down the tree. When we 
reach the bottom of the tree, p points to the node whose link we must 
change to point to the new node inserted. 

void STinsert(Item item) 
{ Key v ; key(item); link p = head, x = p; 

if (head == NULL) 
{ head = NEW(item, NULL, NULL, 1); return; } 

while (x != NULL) 
{ 

p x; x->N++; 
x = less(v, key(x->item» ? x->l x->r; 

} 

x NEW(item, NULL, NULL, 1); 
if (less(v, key(p->item») p->l x; 

else p->r x; 
} 

recursive implementation sortR in Program I2.8. To visit the items 
in a BST in order of their keys, we visit the items in the left subtree in 
order of their keys (recursively), then visit the root, then visit the items 
in the right subtree in order of their keys (recursively). This deceptively 
simple implementation is a classic and important recursive program. 

Thinking nonrecursively when contemplating search and insert in 
BSTs is also instructive. In a nonrecursive implementation, the search 
process consists of a loop where we compare the search key against 
the key at the root, then move left if the search key is less and right 
if it is greater. Insertion consists of a search miss (ending in an empty 
link), then replacement of the empty link with a pointer to a new node. 
This process corresponds to manipulating the links explicitly along a 
path down the tree (see Figure 12-4). In particular, to be able to insert 
a new node at the bottom, we need to maintain a link to the parent of 
the current node, as in the implementation in Program I2.9. As usual, 
the recursive and nonrecursive versions are essentially equivalent, but 
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understanding both points of view enhances our understanding of the 
algorithm and data structure. 

The BST functions in Program 12.7 do not explicitly check for 
items with duplicate keys. When a new node whose key is equal to 
some key already in the tree is inserted, it falls to the right of the node 
already in the tree. One side effect of this convention is that nodes with 
duplicate keys do not appear contiguously in the tree (see Figure 12.7). 

However, we can find them by continuing the search from the point 
where STsearch finds the first match, until we encounter z. There are 
several other options for dealing with items that have duplicate keys, 
as mentioned in Section 9.I. 

BSTs are dual to quicksort. The node at the root of the tree 
corresponds to the partitioning element in quicksort (no keys to the 
left are larger, and no keys to the right are smaller). In Section 12.6, 

we shall see how this observation relates to the analysis of properties 
of the trees. 

Exercises 
r> 12.44 Draw the BST that results when you insert items with the keys E A S Y 

Q UTI 0 N, in that order, into an initially empty tree. 

r> 12.45 Draw the BST that results when you insert items with the keys E A S Y 
QUE S T ION, in that order, into an initially empty tree. 

r> 12.46 Give the number of comparisons required to put the keys E A S Y Q U 
EST ION into an initially empty symbol table using a BST. Assume that a 
search is performed for each key, followed by an insert for each search miss, 
as in Program 12.2. 

012.47 Inserting the keys in the order A S E R H I N G C into an initially empty 
tree also gives the top tree in Figure 12.6. Give ten other orderings of these 
keys that produce the same result. 

12.48 Implement an STsearchinsert function for binary search trees (Pro
gram 12.7). It should search the symbol table for an item with the same key 
as a given item, then insert the item if it finds none. 

r> 12.49 Write a function that returns the number of items in a BST with keys 
equal to a given key. 

12.50 Suppose that we have an estimate ahead of time of how often search 
keys are to be accessed in a binary tree. Should the keys be inserted into the 
tree in increasing or decreasing order of likely frequency of access? Explain 
your answer. 

12.51 Modify the BST implementation in Program 12.7 to keep items with 
duplicate keys in linked lists hanging from tree nodes. Change the interface to 

have search operate like sort (for all the items with the search key). 

Ar--=======~ 
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Figure 12.7 
Duplicate keys in BSTs 

When a BST has records with du
plicate keys (top), they appear scat
tered throughout the tree, as il
lustrated by the three highlighted 
A's. Duplicate keys do all appear 
on the search path for the key 
from the root to an external node, 
so they can readily be accessed. 
However; to avoid confusing us
ages such as "the A below the C," 
we use distinct keys in our exam
ples (bottom). 
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12.52 The nonrecursive insertion procedure in Program 12.9 uses a redundant 
comparison to determine which link of p to replace with the new node. Give 
an implementation that uses pointers to links to avoid this comparison. 

12.6 Performance Characteristics of BSTs 

The running times of algorithms on binary search trees are dependent 
on the shapes of the trees. In the best case, the tree could be perfectly 
balanced, with about 19 N nodes between the root and each external 
node, but in the worst case there could be N nodes on the search path. 

We might expect the search times also to be logarithmic in the 
average case, because the first element inserted becomes the root of 
the tree: it N keys are to be inserted at random, then this element 
would divide the keys in half (on the average), which would yield 
logarithmic search times (using the same argument on the subtrees). 
Indeed, it could happen that a BST would lead to precisely the same 
comparisons as binary search (see Exercise 12.55). This case would 
be the best for this algorithm, with guaranteed logarithmic running 
time for all searches. In a truly random situation, the root is equally 
likely to be any key, so such a perfectly balanced tree is extremely 
rare, and we cannot easily keep the tree perfectly balanced after every 
insertion. However, highly unbalanced trees are also extremely rare 
for random keys, so the trees are rather well-balanced on the average. 
In this section, we shall quantify this observation. 

Specifically, the path-length and height measures of binary trees 
that we considered in Section 5.5 relate directly to the costs of searching 
in BSTs. The height is the worst-case cost of a search, the internal path 
length is directly related to the cost of search hits, and external path 
length is directly related to the cost of search misses. 

Property I2.6 Search hits require about 21n N ~ 1.:391g N compar
isons, on the average, in a BST built from N random keys. 

We regard successive eq and less operations as a single compar
ison, as discussed in Section 12.3. The number of comparisons used 
for a search hit ending at a given node is 1 plus the distance from 
that node to the root. Adding these distances for all nodes, we get the 
internal path length of the tree. Thus, the desired quantity is 1 plus the 
average internal path length of the BST, which we can analyze with a 
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familiar argument: If CN denotes the average internal path length of 
a binary search tree of N nodes, we have the recurrence 

1 
CN = N -1+ N L (Ck-l +CN-k) , 

l$k~N 

with C1 = 1. The N 1 term takes into account that the root con
tributes 1 to the path length of each of the other N - 1 nodes in the 
tree; the rest of the expression comes from observing that the key at the 
root (the first inserted) is equally likely to be the kth smallest, leaving 
random subtrees of size k 1 and N - k. This recurrence is nearly 
identical to the one that we solved in Chapter 7 for quicksort, and we 
can solve it in the same way to derive the stated result. _ 

Property I2.7 Insertions and search misses require about 21nN ~ 
1.391g N comparisons, on the average, in a BST built from N random 
keys. 

A search for a random key in a tree of N nodes is equally likely 
to end at any of the N + 1 external nodes on a search miss. This 
property, coupled with the fact that the difference between the external 
path length and the internal path length in any tree is merely 2N (see 
Property 5.7), establishes the stated result. In any BST, the average 
number of comparisons for an insertion or a search miss is about 1 
greater than the average number of comparisons for a search hit. _ 

Property 12.6 says that we should expect the search cost for 
BSTs to be about 39% higher than that for binary search for random 
keys, but Property 12.7 says that the extra cost is well worthwhile, 
because a new key can be inserted at about the same cost-flexibility 
not available with binary search. Figure 12.8 shows a BST built from a 

Figure 12.8 
Example of a binary search 

tree 

In this aST, which was built by in
serting about 200 random keys into 
an initially empty tree, no search 
uses more than 12 comparisons. 
The average cost for a search hit is 
about 7. 
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Figure 12.9 
A worst-case BST 

If the keys arrive in increasing or
der at a BST, it degenerates to a 
form equivalent to a singly linked 
list, leading to quadratic tree
construction time and linear search 
time. 
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long random permutation. Although it has some short paths and some 
long paths, we can characterize it as well balanced: Any search requires 
less than 12 comparisons, and the average number of comparisons for 
a random search hit is 7.06, as compared to 5.55 for binary search. 

Properties 12.6 and 12.7 are results on average-case performance 
that depend on the keys being randomly ordered. If the keys are not 
randomly ordered, the algorithm can perform badly. 

Property 12.8 In the worst case, a search in a binary search tree with 
N keys can require N comparisons. 

Figures 12.9 and 12.10 depict two examples of worst-case BSTs. 
For these trees, binary-tree search is no better than sequential search 
using singly linked lists. • 

Thus, good performance of the basic BST implementation of 
symbol tables is dependent on the keys being sufficiently similar to 
random keys that the tree is not likely to contain many long paths. 
Furthermore, this worst-case behavior is not unlikely in practice-it 
arises when we insert keys in order or in reverse order into an initially 
empty tree using the standard algorithm, a sequence of operations that 
we certainly might attempt without any explicit warnings to avoid 
doing so. In Chapter 13, we shall examine techniques for making this 
worst case extremely unlikely and for eliminating it entirely, making 
all trees look more like best-case trees, with all path lengths guaranteed 
to be logarithmic. 

None of the other symbol-table implementations that we have 
discussed can be used for the task of inserting a huge number of random 
keys into a table, then searching for each of them-the running time of 
each of the methods that we discussed in Sections 12.2 through 12.4 

goes quadratic for this task. Furthermore, the analysis tells us that 
the average distance to a node in a binary tree is proportional to 
the logarithm of the number of nodes in the tree, which gives us 
the flexibility to efficiently handle intermixed searches, insertions, and 
other symbol-table ADT operations, as we shall soon see. 

Exercises 

t> I2.53 Write a recursive program that computes the maximum number of 
comparisons required by any search in a given BST (the height of the tree). 
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I> 12.54 \V'rite a recursive program that computes the average number of com
parisons required by a search hit in a given BST (the internal path length of 
the tree divided by N). 

12.55 Give an insertion sequence for the keys E A S Y QUE S T ION into an 
initially empty BST such that the tree produced is equivalent to binary search, 
in the sense that the sequence of comparisons done in the search for any key 
in the BST is the same as the sequence of comparisons used by binary search 
for the same set of keys. 

012.56 Write a program that inserts a set of keys into an initially empty BST 
such that the tree produced is equivalent to binary search, in the sense described 
in Exercise 12.55. 

12.57 Draw all the structurally different BSTs that can result when N keys 
are inserted into an initially empty tree, for 2 ::; N ::; 5 . 

• 	12.58 Find the probability that each of the trees in Exercise 12.57 is the result 
of inserting N random distinct elements into an initially empty tree . 

• 	12.59 How many binary trees of N nodes are there with height N? How 
many different ways are there to insert N distinct keys into an initially empty 
tree that result in a BST of height N? 

012.60 Prove by induction that the difference between the external path length 
and the internal path length in any binary tree is 2N (see Property 5.7). 

12.61 Run empirical studies to compute the average and standard deviation 
of the number of comparisons used for search hits and for search misses in 
a binary search tree built by inserting N random keys into an initially empty 
tree, for N 103 , 104, 105 , and 106 • 

12.62 Write a program that builds t BSTs by inserting N random keys into an 
initially empry tree, and that computes the maximum tree height (the maximum 
number of comparisons involved in any search miss in any of the t trees), for 
N 103, 104 

, 105 
, and 106 with t 10, 100, and 1000. 

I2.7 Index Implementations with Symbol Tables 

For many applications we want a search structure simply to help us 
find items, without moving them around. For example, we might have 
an array of items with keys, and we might want the search method to 
give us the index into that array of the item matching a certain key. 
Or we might want to remove the item with a given index from the 
search structure, but still keep it in the array for some other use. In 
Section 9.6, we considered the advantages of processing index items 
in priority queues, referring to data in a client array indirectly. For 
symbol tables, the same concept leads to the familiar index: a search 

5II 
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Figure 12.10 
Another worst-case BST 
Many other key insertion orders, 
such as this one, lead to degen
erate BSTs. Still, a BST built from 
randomly ordered keys is likely to 
be well balanced. 
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o call me ishmael some .. . 
5 me ishmael some year .. . 
8 ishmael some years a .. . 

16 some years ago never .. . 
21 years ago never mind .. . 
27 ago never mind how 1 .. . 
31 never mind how long .. . 
37 mind how long precis .. . 
42 how long precisely h .. . 
46 long precisely havin .. . 
51 precisely having lit .. . 

Figure I2.II 

Text string index 

In this example of a string index, 
we define a string key to begin 
with each word in a text; then, we 
build a BST, accessing the keys 
with their string index. The keys 
are arbitrarily long in principle, but 
only a few leading characters are 
generally examined, in practice. 
For example, to find out whether 
the phrase never mind appears 
in this text, we compare with 
call. .. at the root (string index 
0), tllen me. .. at the right child of 
the root (index 5), then some ... 
at the right child of that node (in
dex 16), then we find never mind 
on the left of that node (index 31). 
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structure external to a set of items that provides quick access to items 
with a given key. In Chapter I6, we shall consider the case where 
the items and perhaps even the index are in external storage; in this 
section, we briefly consider the case when both the items and the index 
fit in memory. 

We can adapt binary search trees to build indices in precisely the 
same manner as we provided indirection for heaps in Section 9.6: use 
an item's array index as the item in the BST, and arrange for keys to 
be extracted from items via the key macro; for example, 

#define key(A) realkey(a[A]). 

Extending this approach, we can use parallel arrays for the links, as we 
did for linked lists in Chapter 3. We use three arrays, one each for the 
items, left links, and right links. The links are array indices (integers), 
and we replace link references such as 

x = x->l 

in all our code with array references such as 

x = l[x]. 

This approach avoids the cost of dynamic memory allocation-the 
items occupy an array without regard to the search function, and we 
preallocate two integers per item to hold the tree links, recognizing 
that we will need at least this amount of space when all the items are 
in the search structure. The space for the links is not always in use, 
but it is there for use by the search routine without any time overhead 
for allocation. Another important feature of this approach is that it 
allows extra arrays (extra information associated with each node) to 
be added without the tree-manipulation code being changed at all. 
When the search routine returns the index for an item, it gives a way 
to access immediately all the information associated with that item, by 
using the index to access an appropriate array. 

This way of implementing BSTs to aid in searching large arrays of 
items is useful, because it a voids the extra expense of copying items into 
the internal representation of the ADT, and the overhead of the malloc 
storage-allocation mechanism. The use of arrays is not appropriate 
when space is at a premium and the symbol table grows and shrinks 
markedly, particularly if it is difficult to estimate the maximum size of 
the symbol table in advance. If no accurate size prediction is possible, 
unused links might waste space in the item array. 
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Program I2.IO Example of indexing a text string 

This program assumes that Item. h defines keyType and itemType to 
be char*; and also defines less and eq for string keys using strcmp 
(see text). The #include directives are the same as in Program 12.2 
(plus <string.h» and are omitted. The main program reads a text 
string from a specified file and uses a symbol table to build an index 
from the strings defined by starting at each character in the text string. 
Then, it reads query strings from standard input, and prints the position 
where the query is found in the text (or prints not found). With a BST 
symbol-table implementation, the search is fast, even for huge strings. 

#define null(A) (eq(key(A), key(NULLitem))) 
static char text [maxN] ; 
main(int argc, char *argv[]) 

{ int i, t, N 0; char query [maxQ] ; char *v; 
FILE *corpus = fopen(*++argv, "r"); 
while «t = getc(corpus)) != EOF) 

if (N < maxN-l) text[N++] = t; else break; 
text [N] = '\0'; 
STinit(maxN); 
for (i = 0; i < N; i++) STinsert(&text[i]); 
while (gets(query) != NULL) 

if (!null(v = STsearch(query))) 
printf ("%l1d %s\n", v-text, query); 

else printf(" (not found) %s\n", query); 
} 

An important application of the indexing concept is to provide 
keyword searching in a string oftext (see Figure 12.II). Program 12.10 

is an example of such an application. It reads a text string from an 
external file. Then, considering each position in the text string to define 
a string key starting at that position and going to the end of the string, 
it inserts all the keys into a symbol table, using string pointers as in 
the string-item type definition in Program 6.II. The string keys used 
to build the BST are arbitrarily long, but we maintain only pointers 
to them, and we look at only enough characters to decide whether 
one string is less than another. No two strings are equal (they are 
all of different lengths), but if we modify eq to consider two strings 
to be equal if one is a prefix of the other, we can use the symbol table 
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to find whether a given query string is in the text, simply by calling 
STsearch. Program 12.10 reads a series of queries from standard 
input, uses STsearch to determine whether each query is in the text, 
and prints out the text position of the first occurrence of the query. 
If the symbol table is implemented with BSTs, then we expect from 
Property 12.6 that the search will involve about 2N In N comparisons. 
For example, once the index is built, we could find any phrase in a 
text consisting of about 1 million characters (such as Mohy Dick) with 
about 30 string comparisons. This application is the same as indexing, 
because string pointers are like indices into a character array in C. 
If p points to text [i], then the difference between the two pointers, 
p-text, is equal to i. 

There are many other issues for us to consider when we are 
building indices in practical applications, and there are many ways 
that we can take particular advantage of the properties of string keys 
to speed up our algorithms. More sophisticated methods for string 
search and for providing indices with useful capabilities for string keys 
will be primary topics in Part 5. 

Table 12.2 gives empirical results that support the analytic results 
that we have been examining, and demonstrates the utility of BSTs for 
dynamic symbol tables with random keys. 

Exercises 

12.63 Modify our BST implementation (Program 12.7) to use an indexed 
array of items, rather than allocated memory. Compare the performance of 
your program with that of the standard implementation, using one of the 
drivers in Exercise 12.21 or Exercise 12.22. 

12.64 Modify our BST implementation (Program 12.7) to support a first-class 
symbol-table ADT with client item handles (see Exercises 12.4 and 12.5), 

using parallel arrays. Compare the performance of your program with that 
of the standard implementation, using one of the drivers in Exercise 12.21 or 
Exercise 12.22. 

12.65 Modify our BST implementation (Program 12.7) to use the following 
idea to represent BSTs: Keep an array of items with keys and an array of 
links (one associated with each item) in tree nodes. A left link in the BST 
corresponds to a move to the next position in the array in the tree node, and 
a right link in the BST corresponds to a move to another tree node. 

o 12.66 Give an example of a text string where the number of character com
parisons for the index-construction part of Program 12.10 is quadratic in the 
length of the string. 
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Table 12.2 Empirical study of symbol-table implementations 

This table gives relative times for constructing a symbol table, then 
searching for each of the keys in the table. BSTs provide fast implemen
tations of search and insertion; all the other methods require quadratic 
time for one of the two tasks. Binary search is generally slightly faster 
than BST search, but cannot be used for huge files unless the table can 
be presorted. The standard EST implementation allocates memory for 
each tree node, whereas the index implementation preallocates memory 
for the whole tree (which speeds up construction) and uses array indices 
instead of pointers (which slows down searching). 

construction search hits 
" __ H_ 

N A L B T T* A L B T T* 

1250 5 6 1 0 6 13 0 

2500 0 21 24 2 27 52 

5000 0 87 101 4 3 111 211 2 2 3 

12500 645 732 12 9 709 1398 7 8 9 

25000 2551 2917 24 20 2859 5881 15 21 

50000 61 50 38 48 

100000 154 122 104 122 

200000 321 275 200 272 

Key: 
A Unordered array (Exercise 12.18) 

L Ordered linked list (Exercise 12.19) 

B Binary search (Program 12.6) 

T Binary search tree, standard (Program 12.7) 

T* Binary search tree index (Exercise 12.64) 


12.67 Modify our string index implementation (Program 12.10) to use only 
the keys that start on word boundaries to build the index (see Figure 12.II). 
(For Moby Dick, this change cutS the size of the index by more than a factor 
of five.) 

012.68 Implement a version of Program 12.10 that uses binary search on an 
array of string pointers, using the implementation described in Exercise 12.36. 

12.69 Compare the running time of your implementation from Exercise 12.68 
with Program 12.10, to construct an index for a random text string of N 
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Figure 12.12 

Right rotation in a BST 

This diagram shows the result (bot

tom) of a right rotation at S in an 

example BST (top), The node con

taining S moves down in the tree, 

becoming the right child of its for

mer left child. 


We accomplish the rotation by 
getting the link to the new root E 
from the left link of S, setting the 
left link of S by copying the right 
link of E, setting the right link of E 
to S, and setting the link to S from 
A to point to E instead. 

The effect of the rotation is to 
move E and its left subtree up one 
level, and to move S and its right 
subtree down one level. The rest 
of the tree is not affected at all, 
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characters, for N 103, 10\ lOS, and 106 
, and to do 1000 (unsuccessful) 

searches for random keys in each index. 

I2.8 Insertion at the Root in BSTs 

In the standard implementation of BSTs, every new node inserted goes 
somewhere at the bottom of the tree, replacing some external node. 
This state of affairs is not an absolute requirement; it is just an artifact 
of the natural recursive insertion algorithm. In this section, we consider 
an alternative insertion method, where we insist that each new item be 
inserted at the root, so recently inserted nodes are at the top of the tree. 
Trees built in this way have some interesting properties, but our main 
reason for considering this method is that it plays a crucial role in two 
of the improved BST algorithms that we consider in Chapter 13. 

Suppose that the key of the item to be inserted is larger than the 
key at the root. We might start to make a new tree by putting the new 
item into a new root node, with the old root as the left subtree and 
the right subtree of the old root as the right subtree. However, the 
right subtree may contain some smaller keys, so we need to do more 
work to complete the insertion. Similarly, if the key of the item to be 
inserted is smaller than the key at the root and is larger than all the 
keys in the left subtree of the root, we can again make a new tree with 
the new item at the root, but more work is needed if the left subtree 
contains some larger keys. To move all nodes with smaller keys to the 
left subtree and all nodes with larger keys to the right subtree seems 
a complicated transformation in general, since the nodes that have to 
be moved can be scattered along the search path for the node to be 
inserted. 

Fortunately, there is a simple recursive solution to this problem, 
which is based on rotation, a fundamental transformation on trees. 
Essentially, a rotation allows us to interchange the role of the root 
and one of the root's children in a tree while still preserving the BST 
ordering among the keys in the nodes. A right rotation involves the 
root and the left child (see Figure 12.(2). The rotation puts the root 
on the right, essentially reversing the direction of the left link of the 
root: Before the rotation, it points from the root to the left child; after 
the rotation, it points from the old left child (the new root) to the old 
root (the right child of the new root). The tricky part, which makes 
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Program n.lI Rotations in BSTs 

These t\vin routines perform the rotation operation on a BST. A right 
rotation makes the old root the right subtree of the new root (the old left 
subtree of the root); a left rotation makes the old root the left subtree 
of the new root (the old right subtree of the root). For implementations 
where a count field is maintained in the nodes (for example, to support 
select, as we will see in Section 14-9), we need also to exchange the 
count fields in the nodes involved in the rotation (see Exercise 12.72). 

link rotR(link h) 

{ link x h->l; h->l x->r; x->r h'. 


return x; } 


link rotL(link h) 

{ link x = h->r; h->r x->lj x->l h; 


return x; } 


the rotation work, is to copy the right link of the left child to be the 
left link of the old root. This link points to all the nodes with keys 
between the two nodes involved in the rotation. Finally, the link to the 
old root has to be changed to point to the new root. The description 
of a left rotation is identical to the description just given, with "right" 
and "left" interchanged everywhere (see Figure 12.13). 

A rotation is a local change, involving only three links and two 
nodes, that allows us to move nodes around in trees without changing 
the global ordering properties that make BSTs useful for search (see 
Program I 2.II). We use rotations to move specific nodes through a 
tree and to keep the trees from becoming unbalanced. In Section 12.9 

we implement delete, join, and other ADT operations with rotations; in 
Chapter 13 we use them to help us build trees that afford near-optimal 
performance. 

The rotation operations provide a straightforward recursive im
plementation of root insertion: Recursively insert the new item into 
the appropriate subtree (leaving it, when the recursive operation is 
complete, at the root of that tree), then rotate to make it the root of 
the main tree. Figure 12.14 depicts an example, and Program 12.12 is 
a direct implementation of this method. This program is a persuasive 
example of the power of recursion-any reader not so persuaded is 
encouraged to try Exercise 12.73. 

Figure 12.13 
Left rotation in a BST 
This diagram shows the result (bot
tom) of a left rotation at A in an 
example BST (top). The node con
taining A moves down in the tree, 
becoming the left child of its for
mer right child. 

We accomplish the rotation by 
getting the link to the new root E 
from the right link of A, setting the 
right link of A by copying the left 
link of E, setting the left link of E 
to A, and setting the link to A (the 
head link of the tree) to point to E 
instead. 



§I2.8 	 CHAPTER TWELVE 

G 
E S 

C HR X~ 


Figure 12.14 

BST root insertion 

This sequence depicts the result of 
inserting G into the BST at the top, 
with (recursive) rotation after in
sertion to bring the newly inserted 
node G to the root. The process is 
equivalent to inserting G, then per
forming a sequence of rotations to 
bring it to the root. 

Program 12.12 Root insertion in BSTs 

With the rotation functions in Program 12. I I, a recursive function that 
inserts a new node at the root of a BST is immediate: Insert the new 
item at the root in the appropriate subtree, then perform the appropriate 
rotation to bring it to the root of the main tree. 

link insertT(link h, Item item) 
{ 	Key v ~ key(item); 


if (h =~ z) return NEW(item, z, z, 1); 

if (less(v, key(h->item») 


{h->l insertT(h->l, item); h rotR(h);} 
else 

{ h->r insertT(h->r, item); h rotL(h); } 
return h; 

} 

void STinsert(Item item) 
{ head = 

Figures 12.15 and 12.16 show how we construct a BST by in
serting a sequence of keys into an initially empty tree, using the root 
insertion method. If the key sequence is random, a BST built in this 
way has precisely the same stochastic properties as does a BST built 
by the standard method. For example, Properties 12.6 and 12.7 hold 
for BSTs built by root insertion. 

In practice, an advantage of the root insertion method is that 
recently inserted keys are near the top. The cost for search hits on 
recently inserted keys therefore is likely to be lower than that for the 
standard method. This property is significant, because many appli
cations have precisely this kind of dynamic mix among their search 
and insert operations. A symbol table might contain a great many 
items, but a large fraction of the searches might refer to the items that 
were most recently inserted. For example, in a commercial transaction 
processing system, active transactions could remain near the top and 
be processed quickly, without access to old transactions being lost. 
The root insertion method gives the data structure this and similar 
properties automatically. 

If we also change the search function to bring the node found to 
the root when we have a search hit, then we have a self-organizing 
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search method (see Exercise 12.26) that keeps frequently accessed 
nodes near the top of the tree. In Chapter 13, we shall see a systematic 
application of this idea to provide a symbol-table implementation that 
has guaranteed fast performance characteristics. 

As is true of several other methods that we have mentioned in 
this chapter, it is difficult to make precise statements about the per
formance of the root insertion method versus the standard insertion 
method for practical applications, because the performance depends 
on the mixture of symbol-table operations in a way that is difficult 
to characterize analytically. Our inability to analyze the algorithm 
should not necessarily dissuade us from using root insertion when 
we know that the preponderance of searches are for recently inserted 
data, but we always seek precise performance guarantees-our main 
focus in Chapter 13 is methods for constructing BSTs such that these 
guarantees can be provided. 

Exercises 

L> 12.70 Draw the BST that results when you insert items with the keys E A S Y 

QUE S T ION into an initially empty tree, using the root insertion method. 

I2.7I Give a sequence of 10 keys (use the letters A through J) that, when 
inserted into an initially empty tree via the root insertion method, requires 
a maximal number of comparisons to build the tree. Give the number of 
comparisons used. 

I2.72 Add the code necessary to have Program 12.1I properly modify the 
count fields that need to be changed after the rotation. 

o I2.73 Implement a nonrecursive BST root insertion function (see Pro
gram 12.I2). 

I2.74 Run empirical studies to compute the average and standard deviation of 
the number of comparisons used for search hits and for search misses in a BST 
built by inserting N random keys into an initially empty tree, then performing 
a sequence of N random searches for the N /10 most recently inserted keys, 
for N = 103, 10\ lOS, and 106 

• Run your experiment both for the standard 
insertion method and for the root insertion method; then, compare the results. 

12.9 BST Implementations of Other ADT Functions 

The recursive implementations given in Section 12.5 for the funda
mental search, insert, and sort functions using binary tree structures 
are straightforward. In this section, we consider implementations of 

C R 
A E S~ 

~~
O"}§Z 


Figure 12.15 

BST construction with root 
insertion 

This sequence depicts the result of 
inserting the keys A S ERe H I 
into an initially empty 857; using 
the root insertion method. Each 
new node is inserted at the root, 
with links along its search path 
changed to make a proper 85T. 
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Figure 12.16 

BST construction with root 
insertion (continued) 

This sequence depicts insertion of 
the keys N G X M P L to the BST 
started in Figure 12.15. 
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select, join, and delete. One of these, select, also has a natural recursive 
implementation, but the others can be cumbersome to implement, and 
can lead to performance problems. The select operation is important 
to consider because the ability to support select and sort efficiently is 
one reason that BSTs are preferred over competing structures for many 
applications. Some programmers avoid using BSTs to avoid having to 
deal with the delete operation; in this section, we shall see a com
pact implementation that ties together these operations and uses the 
rotation-to-the-root technique of Section 12.8. 

Generally, the operations involve moving down a path in the tree; 
so, for random BSTs, we expect the costs to be logarithmic. However, 
we cannot take for granted that BSTs will stay random when multiple 
operations are performed on the trees. We shall return to this issue at 
the end of this section. 

To implement select, we can use a recursive procedure that is 
analogous to the quicksort-based selection method that is described in 
Section 7.8. In this discussion, as in Section 7.8, we use zero-based 
indexing, so that, for example, we choose k 3 to get the item with the 
fourth smallest key because that one would be in a [3] if the items were 
in sorted order in the array a. (Some C programmers would insist that 
the interface be designed in accordance with this convention; others 
find it confusing to call the smallest key the Oth and the second smallest 
the 1st, so we leave this question to be resolved differently, if necessary, 
in different applications.) Now, to find the item with the kth smallest 
key in a BST, we check the number of nodes in the left subtree. If there 
are k nodes there, then we return the item at the root. Otherwise, if 
the left subtree has more than k nodes, we (recursively) look for the 
item with the kth smallest key there. If neither of these conditions 
holds, then the left subtree has t items with t < k, and the item with 
the kth smallest key in the BST is the item with the (k - t - 1 )st smallest 
key in the right subtree. Program 12.13 is a direct implementation of 
this method. As usual, since each execution of the function ends with 
at most one recursive call, a nonrecursive version is immediate (see 
Exercise 12.75). 

The primary algorithmic reason for including the count field in 
BST nodes is to support the implementation of select. It also allows us 
to support a trivial implementation of the count operation (return the 
count field in the root), and we shall see another use in Chapter 13. 
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Program 12. I 3 Selection with a BST 

The recursive function selectR finds the item with the kth smallest key 
in a BST. It uses zero-based indexing-for example, we take k 0 to 
look for the item with the smallest key. This code assumes that each 
tree node has its subtree size in the N field. Compare the program with 
quicksort-based selection in an array (Program 9.6). 

Item selectR(link h, int k) 
{ int tj 

if (h == z) return NULLitemj 
t = (h->l == z) ? 0 : h->l->Nj 
if (t > k) return selectR(h->l, k); 
if (t < k) return selectR(h->r, k-t-l); 
return h->item; 

} 

Item STselect(int k) 

The drawbacks to having the count field are that it uses extra space 
in every node, and that every function that changes the tree needs to 
update the field. Maintaining the count field may not be worth the 
trouble in some applications where insert and search are the primary 
operations, but it might be a small price to pay if it will be important 
to support the select operation in a dynamic symbol table. 

We can change this implementation of the select operation into a 
partition operation, which rearranges the tree to put the kth smallest 
element at the root, with precisely the same recursive technique that 
we used for root insertion in Section I2.8: If we (recursively) put the 
desired node at the root of one of the subtrees, we can then make 
it the root of the whole with a single rotation. Program 12.14 gives 
an implementation of this method. Like rotations, partitioning is not 
an ADT operation because it is a function that transforms a particu
lar symbol-table representation and should be transparent to clients. 
Rather, it is an auxiliary routine that we can use to implement ADT 
operations or to make them run more efficiently. Figure 12.I7 depicts 
an example showing how, in the same way as in Figure 12.14, this 
process is equivalent to proceeding down the path from the root to the 
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Figure 12.17 

Partitioning of a BST 

This sequence depicts the result 
(bottom) of partitioning an example 
BST (top) about the median key, 
using (recursive) rotation in the 
same manner as for root insertion. 

CHAPTER TWELVE 

Program 12.14 Partitioning of a BST 

Adding rotations after the recursive calls transforms the selection func
tion of Program 12. I 3 into a function that puts the selected item at the 
root. 

link partR(link h, int k) 
{ int t = h->l->N; 

if (t > k ) 

{ h->l = partR(h->l, k); h = rotR(h); } 
if (t < k ) 

{ h->r = partR(h->r, k-t-l); h = rotL(h); } 
return h; 

} 

desired node in the tree, then climbing back up, performing rotations 
to bring the node up to the root. 

To delete a node with a given key from a BST, we first check 
whether the node is in one of the subtrees. If it is, we replace that 
subtree with the result of (recursively) deleting the node from it. If the 
node to be deleted is at the root, we replace the tree with the result of 
combining the two subtrees into one tree. Several options are available 
for accomplishing the combination. One approach is illustrated in 
Figure 12.18, and an implementation is given in Program 12.15. To 
combine two BSTs with all keys in the second known to be larger than 
all keys in the first, we apply the partition operation on the second tree, 
to bring the smallest element in that tree to the root. At this point, the 
left subtree of the root must be empty (else there would be a smaller 
element than the one at the root-a contradiction), and we can finish 
the job by replacing that link with a link to the first tree. Figure 12.19 

shows a series of deletions in an example tree, which illustrate some 
of the situations that can arise. 

This approach is asymmetric and is ad hoc in one sense: Why use 
the smallest key in the second tree as the root for the new tree, rather 
than the largest key in the first tree? That is, why do we choose to 
replace the node that we are deleting with the next node in the inorder 
traversal of the tree, rather than the previous node? We also might 
want to consider other approaches. For example, if the node to be 
deleted has a null left link, why not just make its right child the new 
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root, rather than using the node with smallest key in the right subtree? 
Various similar modifications to the basic delete procedure have been 
suggested. Unfortunately, they all suffer from a similar flaw: The tree 
remaining after deletion is not random, even if the tree was random 
beforehand. Moreover, it has been shown that Program I2. I 5 tends to 
leave a tree slightly unbalanced (average height proportional to VN) 
if the tree is subjected to a large number of random delete-insert pairs 
(see Exercise I2.8I). 

These differences may not be noticed in practical applications 
unless N is huge. Still, this combination of an inelegant algorithm with 
undesirable performance characteristics is unsatisfying. In Chapter 13, 
we shall examine two different ways to address this situation. 

It is typical of search algorithms to require significantly more 
complicated implementations for deletion than for search. The key 
values play an integral role in shaping the structure, so removal of 
a key can involve complicated repairs. One alternative is to use a 
lazy deletion strategy, leaving deleted nodes in the data structure but 
marking them as "deleted" so that they can be ignored in searches. 
In the search implementation in Program I 2.7, we can implement this 
strategy by skipping the equality test for such nodes. We must make 
sure that large numbers of marked nodes do not lead to excessive waste 
of time or space, but if deletions are infrequent, the extra cost may not 
be significant. We could reuse the marked nodes on future insertions 
when convenient (for example, it would be easy to do so for nodes at 
the bottom of the tree). Or, we could periodically rebuild the entire 
data structure, leaving out the marked nodes. These considerations 
apply to any data structure involving insertions and deletions-they 
are not peculiar to symbol tables. 

We conclude this chapter by considering the implementation of 
delete with handles and join for first-class symbol-table ADT imple
mentations that use BSTs. We assume that handles are links and omit 
further discussion about packaging issues, so that we can concentrate 
on the two basic algorithms. 

The primary challenge in implementing a function to delete a 
node with a given handle (link) is the same as it was for linked lists: 
We need to change the pointer in the structure that points to the node 
being deleted. There are at least four ways to address this problem. 
First, we could add a third link in each tree node, pointing to its 
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Figure 12.18 

Deletion of the root in a BST 

This diagram shows the result (bot
tom) of deleting the root of an 
example BST (top). First, we re
move the node, leaving two sub
trees (second from top). Then, we 
partition the right subtree to put 
its smallest element at the root 
(third from top), leaving the left 
link pointing to an empty subtree. 
Finally, we replace this link with a 
link to the left subtree of the origi
nal tree (bottom). 
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Figure I2.I9 
BST node deletion 

This sequence depicts the result 
of deletingthe nodes with keys 
L, HI and E from the SST at the 
top. First, the L is simply removed, 
since it is at the bottom. Second, 
the H is replaced with its right 
child, the I, since the left child of I 
is empty. Finally, the E is replaced 
with its successor in the tree, the 
G. 

Program I2.IS Deletion of a node with a given key in a BST 

This implementation of the delete operation removes the first node with 
key v encountered in the BST. Working top down, it makes recursive 
calls for the appropriate subtree until the node to be deleted is at the 
root. Then, it replaces the node with the result of combining its two 
subtrees-the smallest node in the right subtree becomes the root, then 
its left link is set to point to the left subtree. 

link joinLR(link a, link b) 
{ 


if (b == z) return a; 

b = partR(b, 0); b->l a; 


return b; 

} 

link deleteR(link h, Key v) 
{ 	 link x; Key t = key(h->item); 

if (h == z) return z; 
if (less(v, t)) h->l deleteR(h->l, v); 
if (less(t, v)) h->r = deleteR(h->r, v); 
if (eq(v, t)) 

{x h; h joinLR(h->l, h->r); free(x); } 
return h; 

} 

(Key v) 
deleteR(head, v) j } 

parent. The disadvantage of this arrangement is that it is cumbersome 
to maintain extra links, as we have noted before on several occasions. 
Second, we could use the key in the item to search in the tree, stopping 
when we find a matching pointer. This approach suffers from the 
disadvantage that the average position of a node is near the bottom 
of the tree, and this approach therefore requires an unnecessary trip 
through the tree. Third, we could use a pointer to the pointer to the 
node as the handle. This method is a solution in C, but not in many 
other languages. Fourth, we could adopt a lazy approach, marking 
deleted nodes and periodically rebuilding the data structure, as just 
described. 
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The last operation for first-class symbol-table ADTs that we 
need to consider is the join operation. In a BST implementation, 
this amounts to merging two trees. How do we join two BSTs into 
one? Various algorithms present themselves to do the job, but each 
has certain disadvantages. For example, we could traverse the first 
BST, inserting each of its nodes into the second BST (this algorithm is 
a one-liner: use STinsert into the second BST as the visi t procedure 
in a STsort of the first BST). This solution does not have linear running 
time, since each insertion could take linear time. Another idea is to 
traverse both BSTs, to put the items into an array, to merge them, and 
then to build a new BST. This operation can be done in linear time, 
but it also uses a potentially large array. 

Program I2.I6 is a compact linear-time recursive implementation 
of the join operation. First, we insert the root of the first BST into 
the second BST, using root insertion. This operation gives us two 
subtrees with keys known to be smaller than this root, and two subtrees 
with keys known to be larger than this root, so we get the result by 
(recursively) combining the former pair to be the left subtree of the 
root and the latter to be the right subtree of the root (0. Each node 
can be the root node on a recursive call at most once, so the total time 
is linear. An example is shown in Figure I2.20. Like deletion, this 
process is asymmetric and can lead to trees that are not well balanced, 
but randomization provides a simple fix, as we shall see in Chapter I3. 

Note that the number of comparisons used for join must be 
at least linear in the worst case; otherwise we could develop a sorting 
algorithm that uses fewer than N 19 N comparisons, using an approach 
such as hottom-up mergesort (see Exercise I2.85). 

We have not included the code necessary to maintain the count 
field in BST nodes during the transformations for join and delete, 

which is necessary for applications where we want to support select 
(Program 12. I 3) as well. This task is conceptually simple, but requires 
some care. One systematic way to proceed is to implement a small 
utility routine that sets the count field in a node with a value one 
greater than the sum of the count fields of its children, then call that 
routine for every node whose links are changed. Specifically, we can do 
so for both nodes in rotL and rotR in Program I2.II, which suffices 
for the transformations in Program I2.I2 and Program 12.14, since 
they transform trees solely with rotations. For j 0 inLR and deleteR 

E H X 
A IRe pS~~ 


Figure 12.20 

Joining of two BSTs 

This diagram shows the result (bot
tom) of combining two example 
BSTs (top). First! we insert the root 
G of the first tree into the second 
tree, using root insertion (second 
from top). We are left with two 
subtrees with keys less than G and 
two subtrees with keys greater than 
G. Combining both pairs (recur
sively) gives the result (bottom). 
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Program 12.16 Joining of two BSTs 

If either BST is empty, the other is the result. Otherwise, we combine 
the two BSTs by (arbitrarily) choosing the root of the first as the root, 
root inserting that root into the second, then (recursively) combining the 
pair of left subtrees and the pair of right subtrees. 

link STjoin(link a, link b) 
{ 

if (b == z) return a; 

if (a == z) return b; 

b = insertT(b, a->item); 

b->l = STjoin(a->l, b->l); 

b->r = STjoinCa->r, b->r); 

free(a); 

return b; 


} 

in Program 12.15 and STjoin in Program 12.16 it suffices to call the 
node-count update routine for the node to be returned, just before the 
return statement. 

The basic search, insert, and sort operations for BSTs are easy 
to implement and perform well with even a modicum of randomness 
in the sequence of operations, so BSTs are widely used for dynamic 
symbol tables. They also admit simple recursive solutions to support 
other kinds of operations, as we have seen for select, delete, and join in 
this chapter, and as we shall see for many examples later in the book. 

Despite their utility, there are two primary drawbacks to using 
BSTs in applications. The first is that they require a substantial amount 
of space for links. We often think of links and records as being about 
the same size (say one machine word)-if that is the case, then a BST 
implementation uses two-thirds of its allocated memory for links and 
only one-third for keys. This effect is less important in applications 
with large records and more important in environments where pointers 
are large. If memory is at a premium, we may prefer one of the open
addressing hashing methods of Chapter 14 to using BSTs. 

The second drawback of using BSTs is the distinct possibility 
that the trees could become poorly balanced and lead to slow perfor
mance. In Chapter 13, we examine several approaches to providing 
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performance guarantees. If memory space for links is available, these 
algorithms make BSTs an attractive choice to serve as the basis for im
plementation of symbol-table ADTs, because they lead to guaranteed 
fast performance for a large set of useful ADT operations. 

Exercises 

t> 12.75 Implement a nonrecursive BST select function (see Program 12.13). 

t> 12.76 Draw the BST that results when you insert items with the keys E A S Y 
Q UTI 0 N into an initially empty tree, then delete the Q. 

t> 12.77 Draw the binary search tree that results when you insert items with the 
keys E A S Y into one initially empty tree, and insert items with the keys QUE 
S T ION into another initially empty tree, then combine the result. 

12.78 Implement a nonrecursive BST delete function (see Program 12.15). 

12.79 Implement a version of delete for BSTs (Program 12. I 5) that deletes 
all nodes in the tree that have keys equal to the given key. 

012.80 	Develop a symbol-table implementation using BSTs that supports the 
initialize, count, search, insert, delete, join, select, and sort operations for 
first-class symbol-table ADTs with client item handles (see Exercises 12.4 
and 12.5). 

12.81 Run experiments to determine how the height of a BST grows as a long 
sequence of alternating random insertions and deletions is made in a random 
tree of N nodes, for N = 10, 100, and 1000, and for up to N 2 insertion
deletion pairs for each N. 

12.82 Implement a version of STdelete (see Program 12. I 5) that makes a 
random decision whether to replace the node to be deleted with that node's 
predecessor or successor in the tree. Run experiments as described in Exer
cise 12.8 I for this version. 

012.83 	Implement a version of STdelete that uses a recursive function to 
move the node to be deleted to the bottom of the tree through rotations, in 
the manner of root insertion (Program 12.12). Draw the tree produced when 
your program deletes the root from a complete tree of 31 nodes. 

o 12.84 Run experiments to determine how the height of a BST grows as you 
repeatedly reinsert the item at the root into the tree that results when you 
combine the subtrees of the root in a random tree of N nodes, for N = 10, 
100, and 1000. 

012.85 	Implement a version of bottom-up mergesort based on the join opera
tion: Start by putting keys into N one-node trees, then combine the one-node 
trees in pairs to get N/2 two-node trees, then combine the two-node trees in 
pairs to get N /4 four-node trees, and so forth. 

12.86 Implement a version of STjoin (see Program 12.16) that makes a ran
dom decision whether to use the root of the first tree or the root of the second 
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tree for root of the result tree. Run experiments as described in Exercise 12.84 
for this version. 
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Balanced Trees 

T HE BST ALGORITHMS in the previous chapter work well for 
a wide variety of applications, but they do have the problem of 

bad worst-case performance. What is more, it is embarrassingly true 
that the bad worst case for the standard BST algorithm, like that for 
quicksort, is one that is likely to occur in practice if the user of the 
algorithm is not watching for it. Files already in order, files with large 
numbers of duplicate keys, files in reverse order, files with alternating 
large and small keys, or files with any large segment having a simple 
structure can all lead to quadratic BST construction times and linear 
search times. 

In the ideal case, we could keep our trees perfectly balanced, like 
the tree depicted in Figure 13. I. This structure corresponds to binary 
search and therefore allows us to guarantee that all searches can be 
completed in less than 19 N + 1 comparisons, but is expensive to main
tain for dynamic insertions and deletions. The search performance 
guarantee holds for any BST for which all the external nodes are on 
the bottom one or at most two levels, and there are many such BSTs, 
so we have some flexibility in arranging for our tree to be balanced. If 
we are satisfied with near-optimal trees, then we can have even more 
flexibility. For example, there are a great many BSTs of height less than 
21g N. If we relax our standard but can guarantee that our algorithms 
build only such BSTs, then we can provide the protection against bad 
worst-case performance that we would like to have in practical appli
cations in a dynamic data structure. As a side benefit, we get better 
average-case performance, as well. 
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Figure 13.I 
A large BST that is perfectly 

balanced 

The external nodes in this BST all 
fall on one of two levels, and the 
number of comparisons for any 
search is the same as the number 
of comparisons that would be used 
by binary search for the same key 
(if the items were in an ordered ar
ray). The goal of a balanced-tree 
algorithm is to keep a BST as close 
as possible to being as well bal
anced as this one, while still sup
porting efficient dynamic insertion, 
deletion, and other dictionary ADT 
operations. 

One approach to producing better balance in BSTs is periodi
cally to rebalance them explicitly. Indeed, we can balance most BSTs 
completely in linear time, using the recursive method shown in Pro
gram 13.I (see Exercise I3.4). Such rebalancing is likely to improve 
performance for random keys, but does not provide guarantees against 
quadratic worst-case performance in a dynamic symbol table. On the 
one hand, the insertion time for a sequence of keys between rebalanc
ing operations can grow quadratic in the length of the sequence; on 
the other hand, we do not want to rebalance huge trees frequently, 
because each rebalancing operation costs at least linear time in the size 
of the tree. This tradeoff makes it difficult to use global rebalancing 
to guarantee fast performance in dynamic BSTs. All the algorithms 
that we will consider, as they walk through the tree, do incremental, 
local operations that collectively improve the balance of the whole 
tree, yet they never have to walk through all the nodes in the way that 
Program I3.I does. 

The problem of providing guaranteed performance for symbol
table implementations based on BSTs gives us an excellent forum for 
examining precisely what we mean when we ask for performance guar
antees. We shall see solutions to this problem that are prime examples 
of each of the three general approaches to providing performance guar
antees in algorithm design: we can randomize, amortize, or optimize. 
We now consider each of these approaches briefly, in turn. 

A randomized algorithm introduces random decision making 
into the algorithm itself, to reduce dramatically the chance of a worst
case scenario (no matter what the input). We have already seen a 
prime example of this arrangement, when we used a random element 
as the partitioning element in quicksort. In Sections 13. I and 13.5, 
we shall examine randomized BSTs and skip lists-two simple ways 
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Program 13.1 Balancing a BST 

This recursive function puts a BST into perfect balance, using the par
titioning function partR from Program 12.14. We partition to put the 
median node at the root, then (recursively) do the same for the subtrees. 

link balanceR(link h) 
{ 


if (h->N < 2) return h; 

h = partR(h, h->N/2); 

h->l = balanceR(h->l); 

h->r = balanceR(h->r); 

return h; 


} 

to use randomization in symbol-table implementations to give efficient 
implementations of all the symbol-table ADT operations. These algo
rithms are simple and are broadly applicable, but went undiscovered 
for decades (see reference section). The analysis that proves these algo
rithms to be effective is not elementary, but the algorithms are simple 
to understand, to implement, and to put to practical use. 

An amortization approach is to do extra work at one time to 
avoid more work later, to be able to provide guaranteed upper bounds 
on the average per-operation cost (the total cost of all operations di
vided by the number of operations). In Section 13.2, we shall examine 
splay BSTs, a variant of BSTs that we can use to provide such guar
antees for symbol-table implementations. The development of this 
method was one impetus for the development of the concept of amor
tization (see reference section). The algorithm is a straightforward ex
tension of the root insertion method that we discussed in Chapter 12; 

again, however, the analysis that proves the performance bounds is 
sophisticated. 

An optimization approach is to take the trouble to provide per
formance guarantees for every operation. Various methods have been 
developed that take this approach, some dating back to the 1960s. 
These methods require that we maintain some structural information 
in the trees, and programmers typically find the algorithms cumber
some to implement. In this chapter, we shall examine two simple 
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abstractions that not only make the implementation straightforward, 
but also lead to near-optimal upper bounds on the costs. 

After examining implementations of symbol-table ADTs with 
guaranteed fast performance using each of these three approaches, we 
conclude the chapter with a comparison of performance characteris
tics. Beyond the differences suggested by the differing natures of the 
performance guarantees that each of the algorithms provides, the meth
ods each carry a (relatively slight) cost in time or space to provide those 
guarantees; the development of a truly optimal balanced-tree ADT is 
still a research goaL Still, the algorithms that we consider in this chap
ter are all important ones that can provide fast implementations of 
search and insert (and several other symbol-table ADT operations) in 
dynamic symbol tables for a variety of applications. 

Exercises 

o I3.I Implement an efficient function that rebalances BSTs that do not have 
a count field in their nodes. 

13.2 Modify the standard BST insertion function in l)rogram 12.7 to use 
Program 13. I to rebalance the tree each time that the number of items in 
the symbol table reaches a power of 2. Compare the running time of your 
program with that of Program 12.7 for the tasks of (i) building a tree from 
N random keys and (ii) searching for N random keys in the resulting tree, for 
N = 10', 104

, 105
, and 106

• 

I3.3 Estimate the number of comparisons used by your program from Ex
ercise I 3.2 when inserting an increasing sequence of N keys into a symbol 
table . 

•• 13.4 Show that Program I 3. I runs in time proportional to N log N for a 
degenerate tree. Then give as weak a condition on the tree as you can that 
implies that the program runs in linear time. 

I3.5 Modify the standard BST insertion function in Program 12.7 to parti
tion about the median any node encountered that has less than one-quarter of 
its nodes in one of its subtrees. Compare the running time of your program 
with that of Program 12.7 for the tasks of (i) building a tree from N random 
keys, and (ii) searching for N random keys in the resulting tree, for N = 103 

, 

10\ 105, and 106 
• 

13.6 Estimate the number of comparisons used by your program from Ex
ercise 13.5 when inserting an increasing sequence of N keys into a symbol 
table . 

• 	I3.7 Extend your implementation in Exercise I3.5 to rebalance in the same 
way while performing the delete function. Run experiments to determine 
whether the height of the tree grows as a long sequence of alternating random 
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insertions and deletions are made in a random tree of N nodes, for N = 10, 
100, and 1000, and for N 2 insertion-deletion pairs for each N. 

I3.I Randomized BSTs 

To analyze the average-case performance costs for binary search trees, 
we made the assumption that the items are inserted in random order 
(see Section 12.6). The primary consequence of this assumption in the 
context of the BST algorithm is that each node in the tree is equally 
likely to be the one at the root, and this property also holds for the 
subtrees. Remarkably, it is possible to introduce randomness into 
the algorithm so that this property holds without any assumptions 
about the order in which the items are inserted. The idea is simple: 
When we insert a new node into a tree of N nodes, the new node 
should appear at the root with probability l/(N + 1), so we simply 
make a randomized decision to use root insertion with that probability. 
Otherwise, we recursively use the method to insert the new record into 
the left subtree if the record's key is less than the key at the root, and 
into the right subtree if the record's key is greater. Program 13.2 is an 
implementation of this method. 

Viewed nonrecursively, doing randomized insertion is equivalent 
to performing a standard search for the key, making a randomized 
decision at every step whether to continue the search or to terminate it 
and do root insertion. Thus, the new node could be inserted anywhere 
on its search path, as illustrated in Figure 13.2. This simple probabilis
tic combination of the standard BST algorithm with the root insertion 
method gives guaranteed performance in a probabilistic sense. 

Property 13.1 Building a randomized BST is equivalent to building 
a standard BST from a random initial permutation ofthe keys. We use 
about 2N In N comparisons to construct a randomized BST with N 
items (no matter in what order the items are presented for insertion), 
and about 2ln N comparisons for searches in such a tree. 

Each element is equally likely to be the root of the tree, and this prop
erty holds for both subtrees, as well. The first part of this statement 
is true by construction, but a careful probabilistic argument is needed 
to show that tbe root insertion method preserves randomness in the 
subtrees (see reference section). _ 
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Figure 13.2 
Insertion into a randomized 

BST 
The final position of a new record 
in a randomized 8ST may be any
where on the record's search path, 
depending on the outcome of ran
domized decisions made during 
the search. This figure shows each 
of the possible final positions for a 
record with key F when the record 
is inserted into a sample tree (top). 

Program 13.2 Randomized BST insertion 

This function makes a randomized decision whether to use the root 
insertion method of Program 12.12 or the standard insertion method 
of Program 12.7. In a random BST, each of the nodes is at the root with 
equal probability; so we get random trees by putting a new node at the 
root of a tree of size N with probability 1/(N + 1). 

link insertR(link h, Item item) 
{ 	Key v = key(item) , t = key(h->item); 


if (h == z) return NEW(item, z, z, 1); 

if (rand()< RAND_MAX/(h->N+1)) 


return insertT(h, item); 

if less(v, t) h->l = insertR(h->l, item); 


else h->r insertR(h->r, item); 

(h->N)++; return h; 


} 


void STinsert(Item item) 

item); } 


The distinction between average-case performance for random
ized BSTs and for standard BSTs is subtle, but essential. The average 
costs are the same (though the constant of proportionality is slightly 
higher for randomized trees), but for standard trees the result de
pends on the assumption that the items are presented for insertion in 
a random ordering of their keys (all orderings equally likely). This as
sumption is not valid in many practical applications, and therefore the 
significance of the randomized algorithm is that it allows us to remove 
the assumption, and to depend instead on the laws of probability and 
randomness in the random-number generator. If the items are inserted 
with their keys in order, or in reverse order, or any order whatever, 
the BST will still be random. Figure 13.3 depicts the construction of a 
randomized tree for an example set of keys. Since the decisions made 
by the algorithm are randomized, the sequence of trees is likely to 

be different each time that we run the algorithm. Figure 13.4 shows 
that a randomized tree constructed from a set of items with keys in 
increasing order looks to have the same properties as a standard BST 
constructed from randomly ordered items (cf. Figure 12.8). 
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There is still a chance that the random number generator could 
lead to the wrong decision at every opportunity, and thus leave us with 
poorly balanced trees, but we can analyze this chance mathematically 
and prove it to be vanishingly small. 

Property 13.2 The probability that the construction cost of a ran
domized BST is more than a factor of Q times the average is less than 
e-O: 

This result and similar ones with the same character are implied by a 
general solution to probabilistic recurrence relations that was devel
oped by Karp in 1995 (see reference section). _ 

For example, it takes about 2.3 million comparisons to build 
a randomized BST of 100,000 nodes, but the probability that the 
number of comparisons will be more than 23 million is much less than 
0.01 percent. Such a performance guarantee is more than adequate 
for meeting the practical requirements of processing real data sets of 
this size. When using a standard BST for such a task, we cannot 
provide such a guarantee: for example, we are subject to performance 
problems if there is significant order in the data, which is unlikely in 
random data, but certainly would not be unusual in real data, for a 
host of reasons. 

A result analogous to Property I3.2 also holds for the running 
time of quicksort, by the same argument. But the result is more impor
tant here, because it also implies that the cost of searching in the tree is 
close to the average. Regardless of any extra costs in constructing the 
trees, we can use the standard BST implementation to perform search 
operations, with costs that depend only on the shape of the trees, 
and no extra costs at all for balancing. This property is important in 
typical applications, where search operations are far more numerous 
than are any others. For example, the 100,000-node BST described in 
the previous paragraph might hold a telephone directory, and might 
be used for millions of searches. We can be nearly certain that each 
search will be within a small constant factor of the average cost of 
about 23 comparisons, and, for practical purposes, we do not have 
to worry about the possibility that a large number of searches would 
cost close to 100,000 comparisons, whereas, with standard BSTs, we 
would need to be concerned. 
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Figure 13.3 
Construction of a randomized 

BST 

This sequence depicts the inser
tion of the keys ABC 0 E F G H 
I into an initially empty BST, with 
randomized insertion. The tree at 
the bottom appears to have been 
built with the standard BST algo
rithm, with the same keys inserted 
in random order. 
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Program 13.3 Randomized BST combination 

This function uses the same method as Program 12.16, except that it 
makes a randomized, rather than an arbitrary, decision about which 
node to use for the root in a combined tree, using probabilities that 
ensure that each node is equally likely to be the root. The function f ixN 
updates b->N to be 1 plus the sum of the corresponding fields in the 
subtrees (0 for null trees). 

link joinR(link a. link b) 
{ 


if (a == z) return b; 

b = insertR(b, a->item); 

b->l = STjoin(a->l, b->l); 

b->r = STjoin(a->r, b->r); 

fixN(b); free(a); 

return b; 


} 

link STjoin(link a, link b) 
{ 

if (rand()/(RAND_MAX/(a->N+b->N)+l) < a->N) 
joinR(a, b); 

else joinR(b, a); 
} 

One of the main drawbacks to randomized insertion is the cost 
of generating random numbers at every node during every insertion. A 
high-quality system-supported random number generator might work 
hard to produce pseudo-random numbers with more randomness than 
randomized BSTs require, so constructing a randomized BST might be 
slower than constructing a standard BST in certain practical situations 
(for example, if the assumption that the items are in random order 
is valid). As we did with quicksort, we can reduce this cost by using 
numbers that are less than perfectly random, but that are cheap to gen
erate and are sufficiently similar to random numbers that they achieve 
the goal of avoiding the bad worst case for BSTs for key insertion 
sequences that are likely to arise in practice (see Exercise 13.14). 

Another potential drawback of randomized BSTs is that they need 
to have a field in each node for the number of nodes in that node's 
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Program 13.4 Deletion in a randomized BST 

We use the same STdelete function as we did for standard BSTs 
Program 12.15), but replace the joinLR function with the one shown 
here, which makes a randomized, rather than an arbitrary, decision 
about whether to replace the deleted node with the predecessor or the 
successor, using probabilities that ensure that each node in the resulting 
tree is equally likely to be the root. To properly maintain the node 
counts, we also need to include a call to fixN (see Program 13.3) for h 
before returning from removeR. 

link joinLR(link a, link b) 
{ 

if (a == z) return b; 
if (b == z) return a; 
if (rand()/(RAND_MAX/(a->N+b->N)+l) < a->N) 

{a->r joinLR(a->r, b); return a; } 
else {b->l joinLR(a, b->l); return b; } 

subtree. The extra space required for this field may be a liability for 
large trees. On the other hand, as we discussed in Section T2.9, this 
field may be needed for other reasons-for example, to support the 
select operation, or to provide a check on the integrity of the data 
structure. In such cases, randomized BSTs incur no extra space cost, 
and are an attractive choice. 

The basic guiding principle of preserving randomness in the trees 
also leads to efficient implementations of the delete, join, and other 
symbol-table ADT operations, still producing random trees. 

To join an N -node tree with an lvI-node tree, we use the basic 
method from Chapter I2, except that we make a randomized decision 
to choose the root based on reasoning that the root of the combined 
tree must come from the N -node tree with probability N j (M +N) and 
from the AI-node tree with probability Mj(M + N). Program 13.3 is 
an implementation of this operation. 

In the same way, we replace the arbitrary decision in the delete 
algorithm by a randomized one, as shown in Program 13.4- This 
method corresponds to an option that we did not consider for deleting 
nodes in standard BSTs because it would seem-in the absence of 
randomization-to lead to unbalanced trees (see Exercise 13.21). 
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Figure I3.4 
A large randomized BST 
This BST is the result of insert
ing 200 keys in increasing order 
into an initially empty tree, using 
randomized insertion. The tree 
appears to have been built from 
randomly ordered keys (see Fig
ure 12.8). 

Property I3.3 Making a tree with an arbitrary sequence of ran
domized insert, delete, and join operations is equivalent to building a 
standard BST from a random permutation of the keys in the tree. 

As it is for Property 13.1, a careful probabilistic argument is needed 
to establish this fact (see reference section). _ 

Proving facts about probabilistic algorithms requires having a 
good understanding of probability theory, but understanding these 
proofs is not necessarily a requirement for programmers using the 
algorithms. A careful programmer will check claims such as Prop
erty I3.3 no matter how they are proved (to check, for example, 
the quality of the random-number generator or other properties of 
the implementation), and therefore can use these methods with confi
dence. Randomized BSTs are perhaps the easiest way to support a full 
symbol-table ADT with near-optimal performance guarantees; they 
are therefore useful for many practical applications. 

Exercises 

I> I3.8 Draw the randomized BST that results when you insert items with the 
keys E A S Y Q UTI 0 N in that order into an initially empty tree, assuming 
a bad randomization function that results in the root insertion option being 
taken whenever the tree size is odd. 

I3.9 Write a driver program that performs the following experiment 1000 
times, for N 10 and 100: Insert items with keys 0 through N I (in that 
order) into an initially empty randomized BST using Program I 3 .2. Then 
print, for each N, the Xl statistic for the hypothesis that each key falls at the 
root with probability liN (see Exercise 14· 5). 

o 13.IO Give the probability that F lands in each of the positions depicted in 
Figure I3.2. 
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13.1 I Write a program to compute the probability that a randomized insertion 
ends at one of the internal nodes in a given tree, for each of the nodes on the 
search path. 

13.12 Write a program to compute the prohability that a randomized insertion 
ends at one of the external nodes of a given tree. 

013.13 	Implement a non recursive version of the randomized insertion function 
in Program 13.2. 

13.14 Draw the randomized BST that results when you insert items with the 
keys E A S YOU T ION in that order into an initially empty tree, using a 
version of Program I3.2 where you replace the expression involving randO 
with the test (111 %h->N) 3 to decide to switch to root insertion. 

13.15 Do Exercise I 3.9 for a version of Program 13.2 where you replace the 
expression involving randO with the test (111 %h->N) == 3 to decide to 
switch to root insertion. 

13.16 Show the sequence of randomized decisions that would result in the 
keys E A S YOU T ION being built into a degenerate tree (keys in order, left 
links null). What is the probability that this event will happen? 

13.17 Could every BST containing the keys E A S YOU T ION be constructed 
by some sequence of randomized decisions when those keys are inserted in 
that order into an initially empty tree? Explain your answer. 

13.18 Run empirical studies to compute the average and standard deviation 
of the number of comparisons used for search hits and for search misses in a 
randomized BST built by inserting N random keys into an initially empty tree, 
for N = 103

, 104
, 105

, and 106
• 

[> I3.I9 Draw the BST that results from using Program 13.4 to delete the 0 
from your tree in Exercise I 3.I4, using the test (111 % (a->N + b->N)) < 
a->N to decide to join with a at the root. 

13.20 Draw the BST that results when you insert items with the keys E A S 
Y into one initially empty tree, and items with the keys 0 U EST ION into 
another initially empty tree, then combine the result, using Program 13.3 with 
the test described in Exercise I3.I9. 

13.21 Draw the BST that results when you insert items with the keys E A S Y 
OUT ION in that order into an initially empty tree, then use Program 13.4 
to delete the 0, assuming a bad randomization function that always returns O. 

13.22 Run experiments to determine how the height of a BST grows as a long 
sequence of alternating random insertions and deletions using Programs 13.2 
and 13.3 is made in a tree of N nodes, for N = 10, 100, and 1000, and for 
N 2 insertion-deletion pairs for each N. 

013.23 Compare your results from Exercise 13.22 with the result of delet
and reinserting the largest key in a random tree of N nodes using Pro

grams 13.2 and 13.3, for N = 10, 100, and 1000, and for insertion-
deletion pairs for each N. 
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Figure 13.5 
Double rotation in a BST (ori

entations different) 
In this sample tree (top), a left ro
tation at G followed by a right 
rotation at L brings I to the root 
(bottom). These rotations might 
complete a standard or splay BST 
root-insertion process. 
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13.24 Instrument your program from Exercise 13.22 to determine the average 
number of calls to randO that it makes per item deleted. 

I3.2 Splay BSTs 

In the root-insertion method of Section 12.8, we accomplished our 
primary objective of bringing the newly inserted node to the root of 
the tree by using left and right rotations. In this section, we examine 
how we can modify root insertion such that the rotations balance the 
tree in a certain sense, as well. 

Rather than considering (recursively) the single rotation that 
brings the newly inserted node to the top of the tree, we consider 
the two rotations that bring the node from a position as one of the 
grandchildren of the root up to the top of the tree. First, we perform 
one rotation to bring the node to be a child of the root. Then, we 
perform another rotation to bring it to the root. There are two es
sentially different cases, depending on whether or not the two links 
from the root to the node being inserted are oriented in the same way. 
Figure 13.5 shows the case where the orientations are different; the 
left part of Figure 13.6 shows the case where the orientations are the 
same. Splay BSTs are based on the observation that there is an alter
native way to proceed when the links from the root to the node being 
inserted are oriented in the same way: Simply perform two rotations 
at the root, as shown at the right in Figure 13.6. 

Splay insertion brings newly inserted nodes to the root using the 
transformations shown in Figure 13.5 (standard root insertion when 
the links from the root to the grandchild on the search path have 
different orientation) and on the right in Figure 13.6 (two rotations 
at the root when the links from the root to the grandchild on the 
search path have the same orientation). The BSTs built in this way 
are splay BSTs. Program 13.5 is a recursive implementation of splay 
insertion; Figure 13.7 depicts an example of a single insertion, and 
Figure 13.8 shows the construction process for a sample tree. The 
difference between splay insertion and standard root insertion may 
seem inconsequential, but it is quite significant: the splay operation 
eliminates the quadratic worst case that is the primary liability of 
standard BSTs. 
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Property 13.4 The number of comparisons used when a splay BST 
is built from N insertions into an initially empty tree is O(N 19 N). 

This bound is a consequence of Property 13.5, a stronger property that 
we will consider shortly. • 

The constant implied in the O-notation is 3. For example, it 
always takes less than 5 million comparisons to build a BST of 100,000 
nodes using splay insertion. This result does not guarantee that the 
resulting search tree will be well-balanced, and does not guarantee that 
each operation will be efficient, but the implied guarantee on the total 
running time is significant, and the actual running time that we observe 
in practice is likely to be lower still. 

When we insert a node into a BST using splay insertion, we not 
only bring that node to the root, but also bring the other nodes that 
we encounter (on the search path) closer to the root. Precisely, the 
rotations that we perform cut in half the distance from the root to 
any node that we encounter. This property also holds if we implement 

Figure q.6 
Double rotation in a BST (ori

entations alike) 

We have two options when both 
links in a double rotation are ori
ented in the same direction. With 
the standard root insertion method, 
we perform the lower rotation first 
(left); with splay insertionl we per
form the higher rotation first (right) 
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Program 13.5 Splay insertion in BSTs 

This function differs from the root insertion algorithm of Program 12. I 2 

in just one essential detail: If the search path goes left-left or right-right, 
the node is brought to the root with a double rotation from the top, 
rather than from the bottom (see Figure 13.6). 

The program checks the four possibilities for two steps of the 
search path from the root and performs the appropriate rotations: 

left-left: Rotate right at the root twice. 
left-right: Rotate left at the left child, then right at the root. 

right-right: Rotate left at the root twice. 
right-left: Rotate right at the right child, then left at the root. 

For economy, we use macros so that we can write hI instead of h->I 
and hrl instead of h->r->I, and so forth. 

link splay(link h, Item item) 
{ 	Key v = key(item); 

if (h == z) return NEW(item, z, z, 1); 
if (less(v, key(h->item») 

{ 

if (hI == z) return NEW(item, z, h, h->N+1); 
if (v, key(hl->item») 

{hll splay(hll, item); h rotR(h);} 
else 

{ hlr = splay (hlr, item); hI rotL(hl); } 
return rotR(h); 

} 

else 
{ 

if (hr == z) return NEW(item, h, z, h->N+l); 
if (less (key (hr->item), v» 

{hrr splay (hrr, item); h rotL(h);} 
else 

{ hrl splay(hrl, item); hr rotR(hr); } 
return rotL(h); 

} 

} 

void STinsert(Item item) 
{ head = splay (head , item); } 



543 BALANCED TREES §I3.2 

the search operation such that it performs the splay transformations 
during the search. Some paths in the trees do get longer: If we do not 
access nodes on those paths, that effect is of no consequence to us. If 
we do access nodes on a long path, it becomes one-half as long after 
we do so; thus, no one path can build up high costs. 

Property 13.5 The number of comparisons required for any se
quence of At insert or search operations in an N -node splay BST 
is O((N + Ai) 19(N + M)). 

The proof of this result, by Sleator and Tarjan in 1985, is a classic 
example of amortized analysis of algorithms (see reference section). 
We will examine it in detail in Part 8. • 

Property 13.5 is an amortized performance guarantee: We guar
antee not that each operation is efficient, but rather that the average 
cost of all the operations performed is efficient. This average is not a 
probabilistic one; rather, we are stating that the total cost is guaran
teed to be low. For many applications, this kind of guarantee suffices, 
but it may not be adequate for some other applications. For example, 
we cannot provide guaranteed response times for each operation when 
using splay BSTs, because some operations could take linear time. If 
an operation does take linear time, then we are guaranteed that other 
operations will be that much faster, but that may be no consolation to 
the customer who had to wait. 

The bound given in Property 13.5 is a worst-case bound on the 
total cost of all operations: As is typical with worst-case bounds, it 
may be much higher than the actual costs. The splaying operation 
brings recently accessed elements closer to the top of the tree; there
fore, this method is attractive for search applications with nonuniform 
access patterns-particularly applications with a relatively small, even 
if slowly changing, working set of accessed items. 

Figure 13.9 gives two examples that show the effectiveness of 
the splay-rotation operations in balancing the trees. In these figures, 
a degenerate tree (built via insertion of items in order of their keys) 
is brought into relatively good balance by a small number of search 
operations. 

If duplicate keys are maintained in the tree, then the splay op
eration can cause items with keys equal to the key in a given node to 
fall on both sides of that node (see Exercise I3.38). This observation 

Figure 13.7 
Splay insertion 

This figure depicts the result (bot
tom) of inserting a record with key 
D into the sample tree at top, us
ing splay root insertion. In this 
case, the insertion process con
sists of a left-right double rotation 
followed by a right-right double 
rotation (from the top). 
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Figure 13.8 
Splay BST construction 
This sequence depicts the insertion 
of records with keys A S ERe H 
I N G into an initially empty tree 
using splay insertion. 
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tells us that we cannot find all items with a given key by continuing 
the searching procedure, as we can for standard binary search trees. 
Instead, we must check for duplicates in both subtrees, or use some 
alternative method to work with duplicate keys, as discussed in Chap
ter 12. 

Exercises 

[> 13.25 Draw the splay BST that results when you insert items with the keys E A 
S Y Q UTI 0 N in that order into an initially empty tree, using splay insertion. 

[> 13.26 How many tree links must be changed for a double rotation? How 
many are actually changed for each of the double rotations in Program 13.5? 

13.27 Add an implementation of search, with splaying, to Program 13.5. 

a 13.28 Implement a nonrecursive version of the splay insertion function in 
Program 13.5. 

13.29 Use your driver program from Exercise 12.28 to determine the ef
fectiveness of splay BSTs as self-organizing search structures by comparing 
them with standard BSTs for the search query distributions defined in Exer
cises 12.29 and 12.30. 

a 13.30 Draw all the structurally different BSTs that can result when you insert 
N keys into an initially empty tree using splay insertion, for 2 :::; N :::; 7. 

• 	13.31 Find the probability that each of the trees in Exercise 13 .30 is the result 
of inserting N random distinct elements into an intially empty tree. 

a 13.32 Run empirical studies to compute the average and standard deviation 
of the number of comparisons used for search hits and for search misses in 
a BST built by insertion of N random keys into an initially empty tree with 
splay insertion, for N = 103, 104 

, 105 
, and 106

• You do not need to do any 
searches: Just build the trees and compute their path lengths. Are splay BSTs 
more nearly balanced than random BSTs, less so, or the same? 

13.33 Extend your program for Exercise 13.32 to do N random searches 
(they most likely will be misses) with splaying in each tree constructed. How 
does splaying affect the average number of comparisons for a search miss? 

13.34 Instrument your programs for Exercises 13.32 and 13.33 to mea
sure running time, rather than just to count comparisons. Run the same 
experiments. Explain any changes in the conclusions that you draw from the 
empirical results. 

13.35 Compare splay BSTs with standard BSTs for the task of building an 
index from a piece of real-world text that has at least 1 million characters. 
Measure the time taken to build the index and the average path lengths in the 
BSTs. 
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Figure 13.9 
Balancing of a worst-case 

splay tree with searches 

Inserting keys in sorted order into 
an initially empty tree using splay 
insertion takes only a constant 
number of steps per insertion, 
but leaves an unbalanced tree, 
shown at the top on the left and 
on the right. The sequence on the 
left shows the result of searching 
(with splaying) for the smallest, 
second-smallest, third-smallest, and 
fourth-smallest keys in the tree. 
Each search halves the length of 
the path to the search key (and 
most other keys in the tree). The 
sequence on the right shows the 
same worst-case starting tree being 
balanced by a sequence of random 
search hits. Each search halves the 
number of nodes on its path, re
ducing the length of search paths 
for many other nodes in the tree. 
Collectively, a small number of 
searches improves the tree balance 
substantially. 



Figure I3.IO 
A 2-3-4 tree 
This depicts a 2-3-4 tree that 
contains the keys A S R CHI N 
G E X M P L. We can find a key 
in such a tree by using the keys in 
the node at the root to find a link 
to a subtree, then continuing re
cursively. For example, to search 
for P in this tree, we would fol
low the right link from the root 
since P is larger than t follow the 
middle /ink from the right child of 
the root, since P is between Nand 
R, then terminate the successful 
search at the 2-node containing the 
P. 
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I3.36 Empirically determine the average number of comparisons for search 
hits in a splay BST built by inserting random keys, for N 103

, 104
, 105

, and 
106 , 

I3.37 Run empirical studies to test the idea of using splay insertion, instead 
of standard root insertion, for randomized BSTs. 

I> I3.38 Draw the splay BST that results when you insert items with the keys 0 
o0 0 0 0 0 0 0 0 0 0 1 in that order into an initially empty tree. 

I3.3 Top-Down 2-3-4 Trees 

Despite the performance guarantees that we can provide with random
ized BSTs and with splay BSTs, both still admit the possibility that a 
particular search operation could take linear time. They therefore do 
not help us answer the fundamental question for balanced trees: Is 
there a type of BST for which we can guarantee that each and every 
insert and search operation will be logarithmic in the size of the tree? 
In this section and Section I3.4, we consider an abstract generalization 
of BSTs and an abstract representation of these trees as a type of BST 
that allows us to answer this question in the affirmative. 

To guarantee that our BSTs will be balanced, we need flexibility 
in the tree structures that we use. To get this flexibility, let us assume 
that the nodes in our trees can hold more than one key. Specifically, 
we will allow 3-nodes and 4-nodes, which can hold two and three 
keys, respectively. A 3-node has three links coming out of it: one 
for all items with keys smaller than both its keys, one for all items 
with keys in between its two keys, and one for all items with keys 
larger than both its keys. Similarly, a 4-node has four links coming 
out of it: one for each of the intervals defined by its three keys. The 
nodes in a standard BST could thus be called 2-nodes: one key, two 
links. Later, we shall see efficient ways to define and implement the 
basic operations on these extended nodes; for now, let us assume that 
we can manipulate them conveniently, and see how they can be put 
together to form trees. 

Definition 13.1 A 2-3-4 search tree is a tree that either is empty or 
comprises three types of nodes: 2-nodes, with one key, a left link to 
a tree with smaller keys, and a right link to a tree with larger keys; 
3-nodes, with two keys, a left link to a tree with smaller keys, a middle 
link to a tree with key values between the node's keys and a right link 
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to a tree with larger keys; and 4-nodes, with three keys and four links 
to trees with key values defined by the ranges subtended by the node's 
keys. 

Definition 13.2 A balanced 2-3-4 search tree is a 2-3-4 search tree 
with all links to empty trees at the same distance from the root. 

In this chapter, we shall use the term 2-3-4 tree to refer to bal
anced 2-3-4 search trees (it denotes a more general structure in other 
contexts). Figure 13.10 depicts an example of a 2-3-4 tree. The search 
algorithm for keys in such a tree is a generalization of the search algo
rithm for BSTs. To determine whether a key is in the tree, we compare 
it against the keys at the root: If it is equal to any of them, we have a 
search hit, otherwise, we follow the link from the root to the subtree 
corresponding to the set of key values containing the search key, and 
recursively search in that tree. There are a number of ways to represent 
2-, 3-, and 4-nodes and to organize the mechanics of finding the proper 
link; we defer discussing these solutions until Section 13.4, where we 
shall discuss a particularly convenient arrangement. 

To insert a new node in a 2-3-4 tree, we could do an unsuccessful 
search and then hook on the node, as we did with BSTs, but the new 
tree would not be balanced. The primary reason that 2-3-4 trees are 
important is that we can do insertions and still maintain perfect balance 
in the tree, in every case. For example, it is easy to see what to do if 
the node at which the search terminates is a 2-node: We just turn the 
node into a 3-node. Similarly, if the search terminates at a 3-node, we 
just turn the node into a 4-node. But what should we do if the search 
terminates at a 4-node? The answer is that we can make room for 
the new key while maintaining the balance in the tree, by first splitting 
the 4-node into two 2-nodes, passing the middle key up to the node's 
parent. These three cases are illustrated in Figure 13.11. 

Now, what do we do if we need to split a 4-node whose parent is 
also a 4-node? One method would be to split the parent also, but the 
grandparent could also be a 4-node, and so could its parent, and so 
forth-we could wind up splitting nodes all the way back up the tree. 
An easier approach is to make sure that the search path will not end 
at a 4-node, by splitting any 4-node we see on the way down the tree. 

Specifically, as shown in Figure 13.12, every time we encounter 
a 2-node connected to a 4-node, we transform the pair into a 3-node 
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Figure I3.II 
Insertion into a 2-3-4 tree 

A 2-3-4 tree consisting only of 2
nodes is the same as a BST (top). 
We can insert C by converting 
the 2-node where the search for 
C terminates into a 3-node (second 
from top). Similarly, we can insert 
H by converting the 3-node where 
the search for it terminates into a 
4-node (third from top). We need 
to do more work to insert I, be
cause the search for it terminates at 
a 4-node. Firstl we split up the 4
node, pass its middle key up to its 
parentI and convert that node into 
a 3-node (fourth from top, high
lighted). This transformation gives 
a valid 2-3-4 tree containing the 
keys, one that has room for I at the 
bottom. Finally, we insert I into 
the 2-node that now terminates the 
search and convert that node into 
a 3-node (bottom). 



Figure 13.12 
Splitting 4-nodes in a 2-3-4 

tree 

In a 2-3-4 tree, we can split any 
4-node that is not the child of a 4
node into two 2-nodes, passing its 
middle record up to its parent. A 
2-node attached to a 4-node (top 
left) becomes a 3-node attached to 
two 2-nodes (top right), and a 3
node attached to a 4-node (bottom 
left) becomes a 4-node attached to 
two 2-nodes (bottom right). 
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connected to two 2-nodes, and every time we encounter a 3-node 
connected to a 4-node, we transform the pair into a 4-node connected 
to two 2-nodes. Splitting 4-nodes is possible because of the way not 
only the keys but also the links can be moved around. Two 2-nodes 
have the same number (four) of links as a 4-node, so we can execute 
the split without having to propagate any changes below (or above) the 
split node. A 3-node is not changed to a 4-node just by the addition of 
another key; another pointer is needed also (in this case, the extra link 
provided hy the split). The crucial point is that these transformations 
are purely local: No part of the tree needs to be examined or modified 
other than the pan shown in Figure 13. I 2. Each of the transformations 
passes up one of the keys from a 4-node to that node's parent in the 
tree, and restructures links accordingly. 

On our way down the tree, we do not need to worry explicitly 
about the parent of the current node being a 4-node, because our 
transformations ensure that, as we pass through each node in the tree, 
we come out on a node that is not a 4-node. In particular, when we 
reach the bottom of the tree, we are not on a 4-node, and we can insert 
the new node directly by transforming either a 2-node to a 3-node 
or a 3-node to a 4-node. We can think of the insertion as a split of 
an imaginary 4-node at the bottom that passes up the new key to be 
inserted. 

One final detail: Whenever the root of the tree becomes a 4-node, 
we just split it into a triangle of three 2-nodes, as we did for our first 
node split in the preceding example. Splitting the root after an insertion 
is slightly more convenient than is the alternative of waiting until the 
next insertion to do the split because we never need to worry about the 
parent of the root. Splitting the root (and only this operation) makes 
the tree grow one level higher. 

Figure 13. I 3 depicts the construction of a 2-3-4 tree for a sample 
set of keys. Unlike standard BSTs, which grow down from the top, 
these trees grow up from the bottom. Because the 4-nodes are split on 
the way from the top down, the trees are called top-down 2-3-4 trees. 
The algorithm is significant because it produces search trees that are 
nearly perfectly balanced, yet it makes only a few local transformations 
as it walks through the tree. 

Property 13.6 Searches in N-node 2-3-4 trees uisit at most 19 N + 1 
nodes. 
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The distance from the root to every external node is the same: The 
transformations that we perform have no effect on the distance from 
any node to the root, except when we split the root, and in this case 
the distance from all nodes to the root is increased by 1. If all the 
nodes are 2-nodes, the stated result holds, since the tree is like a full 
binary tree; if there are 3-nodes and 4-nodes, the height can only be 
lower.• 

Property 13.7 Insertions into N-node 2-3-4 trees require fewer than 
19 N T 1 node splits in the worst case, and seem to require less than 
one node split on the average. 

The worst that can happen is that all the nodes on the path to the 
insertion point are 4-nodes, all of which will be split. But in a tree 
built from a random permutation of N elements, not only is this worst 
case unlikely to occur, but also few splits seem to be required on the 
average, because there are not many 4-nodes in the trees. For example, 
in the large tree depicted in Figure 13.14, all but two of the 4-nodes 
are on the bottom level. Precise analytic results on the average-case 
performance of 2-3-4 trees have so far eluded the experts, but it is 
clear from empirical studies that very few splits are used to balance 
the trees. The worst case is only 19 N, and that is not approached in 
practical situations. • 

The preceding description is sufficient to define an algorithm 
for searching using 2-3-4 trees that has guaranteed good worst-case 
performance. However, we are only half of the way to an imple
mentation. Although it would be possible to write algorithms which 
actually perform transformations on distinct data types representing 
2-, 3-, and 4-nodes, most of the tasks that are involved are inconve
nient to implement in this direct representation. As in splay BSTs, the 
overhead incurred in manipulating the more complex node structures 
could make the algorithms slower than standard BST search. The pri
mary purpose of balancing is to provide insurance against a bad worst 
case, but we would prefer the overhead cost for that insurance to be 
low and we also would prefer to avoid paying the cost on every run 
of the algorithm. Fortunately, as we will see in Section 13.4, there is 
a relatively simple representation of 2-, 3-, and 4-nodes that allows 
the transformations to be done in a uniform way with little overhead 
beyond the costs incurred by standard binary-tree search. 
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Figure 13.13 
2-3-4 search tree construction 

This sequence depicts the result of 
inserting items with keys A S E R 
CHI N G X into an initially empty 
2-3-4 tree. We split each 4-node 
that we encounter on the search 
path, thus ensuring that there is 
room for the new item at the bot
tom. 
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Figure 13.14 
A large 2-3-4 tree 

This 2-3-4 tree is the result of 200 
random insertions into an initially 
empty tree. All search paths in the 
trees have six or fewer nodes. 

The algorithm that we have described is just one possible way 
to maintain balance in 2-3-4 search trees. Several other methods that 
achieve the same goals have been developed. 

For example, we can balance from the bottom up. First, we do a 
search in the tree to find the bottom node where the item to be inserted 
belongs. If that node is a 2-node or a 3-node, we grow it to a 3-node or 
a 4-node, just as before. If it is a 4-node, we split it as before (inserting 
the new item into one of the resulting 2-nodes at the bottom), and 
insert the middle item into the parent, if the parent is a 2-node or a 
3-node. If the parent is a 4-node, we split that node (inserting the 
middle node from the bottom into the appropriate 2-node), and insert 
the middle item into its parent, if the parent is a 2-node or a 3-node. If 
the grandparent is also a 4-node, we continue up the tree in the same 
way, splitting 4-nodes until we encounter a 2-node or a 3-node on the 
search path. 

We can do this kind of bottom-up balancing in trees that have 
only 2- or 3-nodes (no 4-nodes). This approach leads to more node 
splitting during the execution of the algorithm, but is easier to code 
because there are fewer cases to consider. In another approach, we 
seek to reduce the amount of node splitting by looking for siblings 
that are not 4-nodes when we are ready to split a 4-node. 

Implementations of all these methods involve the same basic 
recursive scheme, as we shall see in Section 13.4. We shall also discuss 
generalizations, in Chapter 16. The primary advantage of the top
down insertion approach that we are considering over other methods 
is that it can achieve the necessary balancing in one top-down pass 
through the tree. 

Exercises 

I> 13.39 Draw the balanced 2-3-4 search tree that results when you insert items 
with the keys E A S Y Q UTI 0 N in that order into an initially empty tree, 
using the top-down insertion method. 

I> 13.40 Draw the balanced 2-3-4 search tree that results when you insert items 
with the keys E A S Y Q UTI 0 N in that order into an initially empty tree, 
using the bottom-up insertion method. 
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013.41 	What are the minimum and maximum heights possible for balanced 
2-3-4 trees with N nodes? 

013.42 What are the minimum and maximum heights possible for balanced 
2-3-4 BSTs with N keys? 

013.43 Draw all the structurally different balanced 2-3-4 BSTs with N keys for 
2:S N :s 12 . 

• 	13.44 Find the probability that each of the trees in Exercise 13.43 is the result 
of the insertion of N random distinct elements into an initially empty tree. 

13.45 Make a table showing the number of trees for each N from Exer
cise 13.43 that are isomorphic, in the sense that they can be transformed to 
one another by exchanges of subtrees in nodes. 

[> 13.46 Describe algorithms for search and insertion in balanced 2-3-4-5-6 
search trees. 

[> 13.47 Draw the unbalanced 2-3-4 search tree that results when you insert 
items with the keys E A S Y Q UTI 0 N in that order into an initially empty tree, 
using the following method. If the search ends in a 2-node or a 3-node, change 
it to a 3-node or a 4-node, as in the balanced algorithm; if the search ends in 
a 4-node, replace the appropriate link in that 4-node with a new 2-node. 

I3.4 Red-Black Trees 

The top-down 2-3-4 insertion algorithm described in the previous sec
tion is easy to understand, but implementing it directly is cumbersome 
because of all the different cases that can arise. We need to maintain 
three different types of nodes, to compare search keys against each of 
the keys in the nodes, to copy links and other information from one 
type of node to another, to create and destroy nodes, and so forth. 
In this section, we examine a simple abstract representation of 2-3-4 
trees that leads us to a natural implementation of the symbol-table 
algorithms with near-optimal worst-case performance guarantees. 

The basic idea is to represent 2-3-4 trees as standard BSTs (2
nodes only), but to add one extra bit of information per node to encode 
3-nodes and 4-nodes. We think of the links as being of two different 
types: red links, which bind together small binary trees comprising 
3-nodes and 4-nodes, and black links, which bind together the 2-3-4 
tree. Specifically, as illustrated in Figure 13.15, we represent 4-nodes 
as three 2-nodes connected by red links, and 3-nodes as two 2-nodes 
connected by a single red link. The red link in a 3-node may he a left 
link or a right link, so there are two ways to represent each 3-node. 

Figure 13.15 
3-nodes and 4-nodes in red-

black trees 
The use of two types of links pro
vides us with an efficient way to 
represent 3-nodes and 4-nodes in 
2-3-4 trees. We use red links (thick 
lines in our diagramsi for internal 
connections in nodes, and black 
links (thin lines in our diagrams) 
for 2-3-4 tree links. A 4-node (top 
left) is represented by a balanced 
subtree of three 2-nodes connected 
by red links (top right). Both have 
three keys and four black links. A 
3-node (bottom left) is represented 
by one 2-node connected to an
other (either on the right or the 
left) with a Single red link (bottom 
right). All have two keys and three 
black links. 
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Figure I3.16 
A red-black tree 

This figure depicts a red-black tree 
thai contains the keys A S R CHI 
N G E X M P L. We can find a key 
in such a tree with standard BST 
search. Any path from the root to 
an external node in this tree has 
three black links. If we collapse 
the nodes connected by red links 
in this tree, we get the 2-3-4 tree 
of Figure 13.10. 
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In any tree, each node is pointed to by one link, so coloring the 
nodes is equivalent to coloring the links. Accordingly, we use one 
extra bit per node to store the color of the link pointing to that node. 
We refer to 2-3-4 trees represented in this way as red-black BSTs. 
The orientation of each 3-node is determined by the dynamics of the 
algorithm that we shall describe. It would be possible to enforce a rule 
that 3-nodes all slant the same way, but there is no reason to do so. 
Figure 13. I 6 shows an example of a red-black tree. If we eliminate 
the red links and collapse together the nodes they connect, the result 
is the 2-3-4 tree in Figure 13.IO. 

Red-black trees have two essential properties: (i) the standard 
search procedure for BSTs works without modification; and (ii) they 
correspond directly to 2-3-4 trees, so we can implement the balanced 2
3-4 tree algorithm by maintaining the correspondence. We get the best 
of both worlds: the simple search procedure from the standard BST, 
and the simple insertion-balancing procedure from the 2-3-4 search 
tree. 

The search procedure never examines the field that represents 
node color, so the balancing mechanism adds no overhead to the time 
taken by the fundamental search procedure. Since each key is inserted 
just once, but may be searched for many times in a typical application, 
the end result is that we get improved search times (because the trees 
are balanced) at relatively little cost (because no work for balancing 
is done during the searches). Moreover, the overhead for insertion is 
small: we have to take action for balancing only when we see 4-nodes, 
and there are not many 4-nodes in the tree because we are always 
breaking them up. The inner loop of the insert procedure is the code 
that walks down the tree (the same as for the search or search-and
insert operations in standard BSTs), with one extra test added: If a 
node has two red children, it is a part of a 4-node. This low overhead 
is a primary reason for the efficiency of red-black BSTs. 

Now, let us consider the red-black representation for the two 
transformations that we might need to perform when we do encounter 
a 4-node: If we have a 2-node connected to a 4-node, then we should 
convert the pair into a 3-node connected to two 2-nodes; if we have a 
3-node connected to a 4-node, then we should convert the pair into a 
4-node connected to two 2-nodes. When a new node is added at the 
bottom, we imagine it to be a 4-node that has to be split and its middle 
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Figure 13.17 
Splitting 4-nodes in a red

black tree 

In a red-black tree, we implement 
the operation of splitting a 4-node 
that is not the child of a 4-node 
by changing the node colors in 
the three nodes comprising the 4
node, then possibly doing one or 
two rotations. If the parent is a 2
node (top), or a 3-node that has 
a convenient orientation (second 
from top), no rotations are needed. 
If the 4-node is on the center link 
of the 3-node (bottom), a double 
rotation is needed; otherwise, a 
Single rotation suffices (third from 
top). 

node passed up to be inserted into the bottom node where the search 
ends, which is guaranteed by the top-down process to be either a 2
node or a 3-node. The transformation required when we encounter 
a 2-node connected to a 4-node is easy, and the same transformation 
works if we have a 3-node connected to a 4-node in the "right" way, 
as shown in the first two cases in Figure 13.17. 

We are left with the two other situations that can arise if we 
encounter a 3-node connected to a 4-node, as shown in the second 
two cases in Figure 13.17. (There are actually four situations, because 
the mirror images of these two can also occur for 3-nodes of the other 
orientation.) In these cases, the naive 4-node split leaves two red 
links in a row-the tree that results does not represent a 2-3-4 tree 
in accordance with our conventions. The situation is not too bad, 
because we do have three nodes connected by red links: all we need 
to do is to transform the tree such that the red links point down from 
the same node. 

Fortunately, the rotation operations that we have been using are 
precisely what we need to achieve the desired effect. Let us begin with 
the easier of the two remaining cases: the third case in Figure 13.17, 
where a 4-node attached to a 3-node has split, leaving two red links in 
a row that are oriented the same way. This situation would not have 
arisen if the 3-node had been oriented the other way: Accordingly, we 
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Program I3.6 Insertion in red-black BSTs 

This function implements insertion in 2-3-4 trees using the red-black 
representation. We add a color bit red to the type STnode (and extend 
NEW accordingly), with 1 signifying that the node is red, and 0 signifying 
that it is black. An empty tree is a link to the sentinel node z-a black 
node with links to itself. 

On the way down the tree (before the recursive call), we check 
for 4-nodes, and split them by flipping the color bits in all three nodes. 
\Vhen we reach the bottom, we create a new red node for the item to be 
inserted and return a pointer to it. 

On the way up the tree (after the recursive call), we set the link 
down which we went to the link value returned, then check whether a 
rotation is needed. If the search path has two red links with the same 
orientation, we do a single rotation from the top node, then flip the color 
bits to make a proper 4-node. If the search path has two red links with 
different orientations, we do a single rotation from the bottom node, 
reducing to the other case for the next step up. 

link RBinsert(link h, Item item, int sw) 
{ 	Key v key(item); 

if (h == z) return NEW(item, z, Z, 1, 1); 
if «hl->red) && (hr->red» 

{ h->red = 1; hl->red = 0; hr->red = 0; } 
if (less(v, key(h->item») 

{ 

hI = RBinsert(hl, item, 0); 

if (h->red && hl->red && sw) h rotR(h); 

if (hl->red && hll->red) 


{ h = rotR(h); h->red = 0; hr->red = 1; } 
} 

else 
{ 

hr RBinsert(hr, item, 1); 

if (h->red && hr->red && !sw) h = rotL(h); 

if (hr->red && hrr->red) 


{ h = rotL(h); h->red = 0; hl->red = 1; } 
} 

fixN(h); return h; 

} 


void STinsert(Item item) 
{ head = RBinsert(head, item, 0); head->red O;} 
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restructure the tree to switch the orientation of the 3-node, and thus 
reduce this case to be the same as the second case, where the naive 
4-node split was sufficient. Restructuring the tree to reorient a 3-node 
is a single rotation with the additional requirement that the colors of 
the two nodes have to be switched. 

Finally, to handle the case where a 4-node attached to a 3-node 
has split leaving two red links in a row that are oriented differently, we 
rotate to reduce immediately to the case where the links are oriented 
the same way, which we then handle as before. This transformation 
amounts to the same operations as the left-right and right-left double 
rotations that we used for splay BSTs in Section 13.2, although we have 
to do slightly more work to maintain the colors properly. Figures 13.18 
and 13.19 depict examples of red-black insertion operations. 

Program 13.6 is an implementation of insert for red-black 
trees that performs the transformations that are summarized in Fig
ure 13.17. The recursive implementation makes it possible to perform 
the color flips for 4-nodes on the way down the tree (before the recur
sive calls), then to perform rotations on the way up the tree (after the 
recursive calls). This program would be difficult to understand with
out the two layers of abstraction that we have developed to implement 
it. We can check that the recursive trickery implements the rotations 
depicted in Figure 13.17; then, we can check that the program imple
ments our high-level algorithm on 2-3-4 trees-break up 4-nodes on 
the way down the tree, then insert the new item into the 2- or 3-node 
where the search path ends at the bottom of the tree. 

Figure 13.20 (which we can think of as a more detailed version of 
Figure 13.13) shows how Program 13.6 constructs the red-black trees 
that represent balanced 2-3-4 trees as a sample set of keys is inserted. 
Figure 13.21 shows a tree built from the larger example that we have 
been using; the average number of nodes visited during a search for a 
random key in this tree is just 5.81, as compared to 7.00 for the tree 
built from the same keys in Chapter 12, and to 5.74, the best possible 
for a perfectly balanced tree. At a cost of only a few rotations, we get 
a tree that has far better balance than any of the others that we have 
seen in this chapter for the same keys. Program 13.6 is an efficient, 
relatively compact algorithm for insertion using a binary tree structure 
that is guaranteed to take a logarithmic number of steps for all searches 
and insertions. It is one of the few symbol-table implementations with 
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Figure 13.18 
Insertion into a red-black tree 

This figure depicts the result (bot
tom) of inserting a record with key 
I into the sample red-black tree 
at the top. In this case, the inser
tion process consists of splitting the 
4-node at C with a color flip (cen
ter), then adding the new node at 
the bottom, converting the node 
containing H from a 2-node to a 
3-node. 
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Figure I3.I9 
Insertion into a red-black 

tree, with rotations 

This figure depicts the result (bot
tom) of inserting a record with key 
G into the red-black tree at the 
top. In this case, the insertion pro
cess consists of splitting the 4-node 
at f with a color flip (second from 
top), then adding the new node at 
the bottom (third from top), then 
(returning to each node on the 
search path in the code after the 
recursive function calls) doing a 
left rotation at C and a right rota
tion at R to finish the process of 
splitting the 4-node. 
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that property, and its use is justified in a library implementation where 
properties of the key sequence to be processed cannot be characterized 
accurately. 

Property I3.8 A search in a red-black tree with N nodes requires 
fewer than 21g N + 2 comparisons. 

Only splits that correspond to a 3-node connected to a 4-node in a 
2-3-4 tree require a rotation in the corresponding red-black tree, so 
this property follows from Property 13.2. The worst case arises when 
the path to the insertion point consists of alternating 3- and 4-nodes . 

• 
Moreover, Program 13.6 incurs little overhead for balancing, and 

the trees that it produces are nearly optimal, so it is also attractive to 

consider as a fast general-purpose searching method. 

Property I3.9 A search in a red-black tree with N nodes built from 
random keys uses about 1.0021g N comparisons, on the average. 

The constant 1.002, which has been confirmed through partial anal
yses and simulations (see reference section) is sufficiently low that we 
can regard red-black trees as optimal for practical purposes, but the 
question of whether red-black trees are truly asymptotically optimal 
is still open. Is the constant equal to I? • 

Because the recursive implementation in Program 13.6 does some 
work before the recursive calls and some work after the recursive calls, 
it makes some modifications to the tree on the way down the search 
path and some modifications to the tree on the way back up. Therefore, 
it does not have the property that the balancing is accomplished in one 
top-down pass. This fact is of little consequence for most applications 
because the depth of the recursion is guaranteed to be low. For some 
applications that involve multiple independent processes with access 
to the same tree, we might need a nonrecursive implementation that 
actively operates on only a constant number of nodes at any given time 
(see Exercise I3.66). 

For an application that carries other information in the trees, 
the rotation operation might be an expensive one, perhaps causing 
us to update information in all the nodes in the subtrees involved 
in the rotation. For such an application, we can ensure that each 
insertion involves at most one rotation by using red-black trees to 
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implement the bottom-up 2-3-4 search trees that are described at the 
end of Section I 3.3. An insertion in those trees involves splitting 
4-nodes along the search path, which involves color changes but no 
rotations in the red-black representation, followed by one single or 
double rotation (one of the cases in Figure 13.17) when the first 2
node or a 3-node is encountered on the way up the search path (see 
Exercise 13.59). 

If duplicate keys are to be maintained in the tree, then, as we did 
with splay BSTs, we must allow items with keys equal to a given node 
to fall on both sides of that node. Otherwise, severe imbalance could 
result from long strings of duplicate keys. Again, this observation tells 
us that finding all items with a given key requires specialized code. 

As mentioned at the end of Section I3.3, red-black represen
tations of 2-3-4 trees are among several similar strategies that have 
been proposed for implementing balanced binary trees (see reference 
section). As we saw, it is the rotate operations that balance the trees: 
We have been looking at a particular view of the trees that makes it 
easy to decide when to rotate. Other views of the trees lead to other 
algorithms, a few of which we shall mention briefly here. 

The oldest and most well-known data structure for balanced trees 
is the height-balanced, or AVL, tree, discovered in 1962 by Ade1'son
Vel'skii and Landis. These trees have the property that the heights 
of the two subtrees of each node differ by at most 1. If an insertion 
causes one of the subtrees of some node to grow in height by 1, then the 
balance condition might be violated. However, one single or double 
rotation will bring the node back into balance in every case. The 
algorithm that is based on this observation is similar to the method of 
balancing 2-3-4 trees from the bottom up: Do a recursive search for 
the node, then, after the recursive call, check for imbalance and do a 
single or double rotation to correct it if necessary (see Exercise 13.61). 
The decision about which rotations (if any) to perform requires that we 
know whether each node has a height that is 1 less than, the same as, or 
1 greater than the height of its sibling. Two bits per node are needed 
to encode this information in a straightforward way, although it is 
possible to get by without using any extra storage, using the red-black 
abstraction (see Exercises I3.62 and 13.65). 

Because 4-nodes play no special role in the bottom-up 2-3-4 
algorithm, it is possible to build balanced trees in essentially the same 
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Figure I3.20 

Construction of a red-black 
tree 

This sequence depicts the result of 
inserting records with keys A S E R 
CHI N G X into an initially empty 
red-black tree. 
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Figure 13.21 
A large red-black BST 

This red-black BST is the result of 
inserting 200 randomly ordered 
keys into an initially empty tree. 
All search misses in the tree use 
between six and 12 comparisons. 

way, but using only 2-nodes and 3-nodes. Trees built in this way are 
called 2-3 trees, and were discovered by Hopcroft in 1970. There 
is not enough flexibility in 2-3 trees to give a convenient top-down 
insertion algorithm. Again, the red-black framework can simplify the 
implementation, but bottom-up 2-3 trees offer no particular advantage 
over bottom-up 2-3-4 trees, because single and double rotations are 
still needed to maintain balance. Bottom-up 2-3-4 trees have slightly 
better balance and have the advantage of using at most one rotation 
per insertion. 

In Chapter 16, we shall study another important type of balanced 
tree, an extension of 2-3-4 trees called B-trees. B-trees allow up to A1 

keys per node for large "~1, and are widely used for search applications 
that involve huge files. 

We have defined red-black trees by correspondence to 2-3-4 trees. 
It is also amusing to formulate direct structural definitions. 

Definition 13.3 A red-black BST is a binary search tree in which 
each node is marked to be either red or black, with the additional 
restriction that no two red nodes appear consecutively on any path 
from an external link to the root. 

Definition 13.4 A balanced red-black BST is a red-black BST in 
which all paths from external links to the root have the same number 
of black nodes. 

Now, an alternative approach to developing a balanced tree al
gorithm is to ignore the 2-3-4 tree abstraction entirely and formulate 
an insertion algorithm that preserves the defining property of balanced 
red-black BSTs through rotations. For example, using the bottom-up 
algorithm corresponds to attaching the new node at the bottom of 
the search path with a red link, then proceeding up the search path, 
doing rotations or color changes, as per the cases in Figure 13.17, to 
break up any pair of consecutive red links encountered on the path. 
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The fundamental operations that we perform are the same as in Pro
gram I3-6 and its bottom-up counterpart, but subtle differences arise, 
because 3-nodes can orient either way, operations can be performed in 
different orders, and various different rotation decisions can be used 
successfully_ 

Let us summarize: Using red-black trees to implement balanced 
2-3-4 trees, we can develop a symbol table where a search operation for 
a key in a file of, say, 1 million items can be completed by comparing 
that key with about 20 other keys. In the worst case, no more than 
40 comparisons are needed. Furthermore, little overhead is associated 
with each comparison, so a fast search is ensured, even in a huge file. 

Exercises 

[> I3.48 Draw the red-black BST that results when you insert items with the 
keys E A S Y Q UTI 0 N in that order into an initially empty tree, the 
top-down insertion method. 

[> I3.49 Draw the red-black BST that results when you insert items with the 
keys E A S Y Q UTI 0 N in that order into an initially empty tree, using the 
bottom-up insertion method. 

o I3.50 Draw the red-black tree that results when you insert letters A through 
K in order into an initially empty tree, then describe what happens in general 
when trees are built by insertion of keys in ascending order. 

I3.5I Give a sequence of insertions that will construct the red-black tree 
shown in Figure I 

I3.52 Generate two random 32-node red-black trees. Draw them (either by 
hand or with a program). Compare them with the (unbalanced) BSTs built 
with the same keys. 

I3-53 How many different red-black trees correspond to a 2-3-4 tree that has 
t 3-nodes? 

o I3.54 Draw all the structurally different red-black search trees with N keys 
for 2::; N::; 12. 

• 	I3.55 Find the probabilities that each of the trees in Exercise I3-43 is the 
result of inserting N random distinct elements into an initially empty tree. 

13.56 Make a table showing the number of trees for each N from Exer
cise I 3.54 that are isomorphic, in the sense that they can be transformed to 

one another by exchanges of subtrees in nodes . 

•• 13.57 Show that, in the worst case, almost all the paths from the root to an 
external node in a red-black tree of N nodes are of length 21g N. 

13-58 How many rotations are required for an insertion into a red-black tree 
of N nodes, in the worst case? 
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013.59 Implement initialize, search, and insert for symbol tables with bottom
up balanced 2-3-4 trees as the underlying data structure, using the red-black 
representation and the same recursive approach as Program 13.6. Hint: Your 
code can be similar to Program 13.6, but should perform the operations in a 
different order. 

13.60 Implement initialize, search, and insertfor symbol tables with bottom
up balanced 2-3 trees as the underlying data structure, using the red-black 
representation and the same recursive approach as Program 13.6. 

13.61 Implement initialize, search, and insert for symbol tables with height
balanced (AVL) trees as the underlying data structure, using the same recursive 
approach as Program 13.6. 

• 	13.62 Modify your implementation from Exercise 13.61 to use red-black 
trees (1 bit per node) to encode the balance information . 

• 	13.63 Implement balanced 2-3-4 trees using a red-black tree representation 
in which 3-nodes always lean to the right. Note: This change allows you to 
remove one of the bit tests from the inner loop for insert . 

• 	13.64 Program 13.6 does rotations to keep 4-nodes balanced. Develop an 
implementation for balanced 2-3-4 trees using a red-black tree representation 
where 4-nodes can be represented as any three nodes connected by two red 
links (perfectly balanced or not). 

013.65 	Implement initialize, search, and insert for red-black trees without 
using any extra storage for the color bit, based on the following trick. To 
color a node red, swap its two links. Then, to test whether a node is red, 
test whether its left child is larger than its right child. You have to modify the 
comparisons to accommodate the possible pointer swap, and this trick replaces 
bit comparisons with key comparisons that are presumably more expensive, 
but it shows that the bit in the nodes can be eliminated, if necessary . 

• 	13.66 Implement a nonrecursive red-black BST insert function (see Pro
gram 13.6) that corresponds to balanced 2-3-4 tree insertion with one top
down pass. Hint: Maintain links gg, g, and p that point, respectively, to the 
current node's great-grandparent, grandparent, and parent in the tree. All 
these links might be needed for double rotation. 

13.67 Write a program that computes the percentage of black nodes in a given 
red-black BST. Test your program by inserting N random keys into an initially 
empty tree, for N = 103

, 10\ 105
, and 106 

• 

13.68 Write a program that computes the percentage of items that are in 3
nodes and 4-nodes in a given 2-3-4 search tree. Test your program by inserting 
N random keys into an initially empty tree, for N = 103

, 104
, 105

, and 106
• 

1> 13.69 With 1 bit per node for color, we can represent 2-, 3-, and 4-nodes. 
How many bits per node would we need to represent 5-, 6-, 7-, and 8-nodes 
with a binary tree? 
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13.70 Run empirical studies to compute the average and standard deviation 
of the number of comparisons used for search hits and for search misses in 
a red-black tree built by insertion of IV random keys into an initially empty 
tree, for IV 103

, 104
, lOS, and 106 

• 

13.71 Instrument your program for Exercise 13.70 to compute the number 
of rotations and node splits that are used to build the trees. Discuss the results. 

13.72 Use your driver program from Exercise 12.28 to compare the self
organizing-search aspect of splay BSTs with the worst-case guarantees of red
black BSTs and with standard BSTs for the search query distributions defined 
in Exercises 12.29 and 12.30 (see Exercise 13.29). 

• 	13.73 Implement a search function for red-black trees that performs rotations 
and changes node colors on the way down the tree to ensure that the node at 
the bottom of the search path is not a 2-node . 

• 	13.74 Use your solution to Exercise 13.73 to implement a delete function for 
red-black trees. Find the node to be deleted, continue the search to a 3-node 
or 4-node at the bottom of the path, and move the successor from the bottom 
to replace the deleted node. 

13.5 Skip Lists 

In this section, we consider an approach ro developing fast implemen
tations of symbol-table operations that seems at first to be completely 
different from the tree-based methods that we have been considering, 
but actually is closely related to them. It is based on a randomized data 
structure and is almost certain to provide near-optimal performance 
for all the basic operations for the symbol-table ADT that we have been 
considering. The underlying data structure, which was developed by 
Pugh in 1990 (see reference section}, is called a skip list. It uses extra 
links in the nodes of a linked list to skip through large portions of a 
list at a time during a search. 

Figure 13.22 gives a simple example, where every third node in 
an ordered linked list contains an extra link that allows us to skip three 
nodes in the list. We can use the extra links to speed up search: We 
scan through the top list until we find the key or a node with a smaller 

Figure 13.22 
A two-level Hnked list 

Every third node in this list has 
a second link, so we can skip 
through the list at nearly three 
times the speed that we could go 
by following the first links, For ex
ample, we can get to the twelfth 
node in the list, the P, from the be
ginning by following just five links: 
second links to C, G, L, N, and 
then through N's first link, p, 



Figure 13.23 
Search and insertion in a skip 

list 

By adding more levels to the struc
ture in Figure 13.22 and allowing 
links to skip variable numbers of 
nodes, we get an example of a 
general skip list. To search for a 
key in the list, we start at the high
est level, moving down each time 
that we encounter a key that is not 
smaller than the search key Here 
(top), we find L by starting at level 
3, moving across the first link, then 
down at G (treating the null link 
as a link to a sentinel), then across 
to I, then down to level 2 because 
S is greater than L, then down to 
level 1 because M is greater than 
L. To insert a node L with three 
links, we link it into the three lists 
at precisely the places where we 
found links to greater keys during 
the search. 
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key with a link to a node with a larger key, then use the links at the 
bottom to check the two intervening nodes. This method speeds up 
search by a factor of 3, because we examine only about k/3 nodes in 
a successful search for the kth node on the list. 

We can iterate this construction, and provide a second extra link 
to be able to scan faster through the nodes with extra links, and so 
forth. Also, we can generalize the construction by skipping a variable 
number of nodes with each link. 

Definition 13.5 A skip list is an ordered linked list where each node 
contains a variable number of links, with the ith links in the nodes 
implementing singly linked lists that skip the nodes with fewer than i 
links. 

Figure 13.23 depicts a sample skip list, and shows an example of 
searching and inserting a new node. To search, we scan through the 
top list until we find the search key or a node with a smaller key that 
has a link to a node with a larger key; then, we move to the second
from-top list and iterate the procedure, continuing until the search key 
is found or a search miss happens on the bottom level. To insert, we 
search, linking in the new node when moving from level k to level k 1 
if the new node has at least k extra links. 

The internal representation of the nodes is straightforward. We 
replace the single link in a singly linked list by an array of links, and 
an integer that contains the number of links in the node. Memory 
management is perhaps the most complicated aspect of skip li5ts
we will examine the type declarations and the code for allocating 
new nodes shortly, when we consider insertion. For the moment, it 
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Program 13.7 Searching in skip lists 

For k equal to 0, this code is equivalent to Program 12.5, for searching 
in singly linked lists. For general k, we move to the next node in the list 
on level k if its key is smaller than the search key, and down to level k-l 
if its key is not smaller. To simplify the code, we assume that all the lists 
end with a sentinel node z that has NULLitem with maxKey. 

Item searchR(link t, Key Y, int k) 
{ if (t == z) return NULLitemj 

if (eg(y, key(t->item))) return t->itemj 
if (less(y, key(t->next[k]->item))) 

{ 

if (k 0) return NULLitemj 
return searchR(t, Y, k-l); 

} 

return searchR(t->next[k], Y, k)j 
} 

Item STsearch(Key y) 

{ return searchR(head, Y, 19N); } 


suffices to note that we can access the node that follows node t on the 
(k + l)st level in the skip list by accessing t->next [k]. The recursive 
implementation in Program 13.7 shows that searching in skip lists not 
only is a straightforward generalization of searching in singly linked 
lists, but also is similar to binary search or searching in BSTs. We test 
whether the current node has the search key. Then, if it does not, we 
compare the key in the current node with the search key. We do one 
recursive call if it is larger and a different recursive call if it is smaller. 

The first task that we face when we want to insert a new node 
into a skip list is to determine how many links we want that node 
to have. All the nodes have at least one link; following the intuition 
depicted in Figure 13.22, we can skip t nodes at a time on the second 
level if one out of every t nodes has at least two links; iterating, we 
come to the conclusion that we want one out of everytj nodes to have 
at least j + 1 links. 

To make nodes with this property, we randomize, using a func
tion that returns j + 1 with probability l/tl. Given .1, we create a new 
node with .1 links and insert it into the skip list using the same recursive 
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Program 13.8 Skip-list initialization 

Nodes in skip lists have an array of Jinks, so NEW needs to allocate the 
array and to set all the links to the sentinel z. The constant 19Nmax is 
the maximum number of levels that we will allow in the list: It might be 
set to five for tiny lists, or to 30 for huge lists. The variable N keeps the 
number of items in the list, as usual, and 19N is the number of levels. 
An empty list is a head node with 19Nmax links, all set to z, with Nand 
19N set to O. 

typedef struct STnode* link; 
struct STnode { Item item; link* next; int sz; }; 
static link head, z; 
static int N, 19N; 
link NEW (Item item, int k) 

{ int i; link x = malloc(sizeof *x); 
x->next = malloc(k*sizeof(link)); 
x->item = item; x->sz = k; 
for (i = 0; i < k; i++) x->next[i] z; 
return x; 

} 

void STinit(int max) 
{ 

N 0; 19N = 0; 
z = NEW(NULLitem, 0); 
head = NEW(NULLitem, 19Nmax+l); 

} 

~ 


~ 

Figure 13.24 
Skip-list construction 
This sequence depicts the result of 
inserting items with keys A S E R 
CHI N G into an initially empty 
skip list. Nodes have (j + 1) finks 
with probability 1/2J. 

schema as we did for search, as illustrated in Figure 13.23. After we 
have reached level j, we link in the new node each time that we move 
down to the next level. At that point, we have established that the 
item in the current node is less than the search key and links (on level 
j) to a node that is not less than the search key. 

To initialize a skip list, we build a head node with the maximum 
number of levels that we will allow in the list, with pointers at all 
levels to a tail node containing a sentinel key. Programs I3.8 and I3.9 
implement initialization and insertion for skip lists. 

Figure I3 .24 shows the construction of a skip list for a sample 
set of keys when inserted in random order; Figure I3.26 shows the 
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Program I3.9 Insertion in skip lists 

To insert an item into a skip list, we generate a new j-link node 
with probability 1/2j 

, then follow the search path precisely as in Pro
gram T3.7, but link in the new node when we move down to each of 
the bottom j levels. 

int randX() 
{ int i, j, t = rand(); 

for (i = 1, j = 2; i < 19Nmax; i++, j += j) 
if (t > RAND_MAX/j) break; 


if (i > 19N) 19N = i; 

return i; 


} 


void insertR(link t, link x, int k) 

{ Key v = key(x->item); 


if (less(v, key(t->next[k]->item))) 

{ 


if (k < x->sz) 
{ x->next[k] = t->next[k]; 

t->next[k] = x; } 
if (k == 0) return; 
insertR(t, x, k-l); return; 

} 

insertR(t->next[k], x, k); 
} 

void STinsert(Item item) 
{ insertR(head, NEW(item, randX()), 19N); N++; } 

construction of a skip list for the same set of keys inserted in increasing 
order. Like those of randomized BSTs, the stochastic properties of skip 
lists do not depend on the order in which keys are inserted. 

Property I3.IO Search and insertion in a randomized skip list with 
parameter t require about (t logt N)/2 = (tj(21g t)) 19 N comparisons, 
on the average. 

We expect the skip list to have about logt N levels, because logt N is 
greater than the smallest j for which t j = N. On each level, we expect 
that there are about t nodes that were skipped on the previous level, 
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Figure I3.25 
A large skip list 

This skip list is the result of insert
ing 50 randomly ordered keys into 
an initially empty list. We can ac
cess any node by following 8 or 
fewer links. 

and that we should have to go through about half of them, on the 
average, before dropping to the next level. The number of levels is 
small, as is clear from the example in Figure I3.25, but the precise 
analysis that establishes this is not elementary (see reference section). 

• 

Property I3.II Skip lists have (t I (t - 1))N links on the average. 

There are N links on the bottom, Nit links on the first level, about 
Nlt2 links on the second level, and so forth, for a total of about 

links in the whole list. • 

Picking an appropriate value of t leads us immediately to a time
space tradeoff. When t = 2, skip lists need about 19 N comparisons 
and 2N links, on the average-performance comparable with the best 
that we have seen with BSTs. For larger t, the time for search and 
insert is longer, but the extra space for links is smaller. Differentiating 
the expression in Property I 3. IO, we find that the choice t e mlm
mizes the expected number of comparisons for searching in a skip list. 
The following table gives the value of the coefficient of N 19 N in the 
number of comparisons needed to construct a table of N items: 

t 2 e 3 4 8 16 

19 t 1.00 1.44 1.58 2.00 3.00 4.00 
t/lgt 2.00 1.88 1.89 2.00 2.67 4.00 

If doing comparisons, following links, and moving down recursively 
have costs that differ substantially, we can do a more refined calculation 
along these lines (see Exercise 13.83). 

Because the search time is logarithmic, we can reduce the space 
overhead to not much more than that for singly-linked lists (if space 
is tight) by increasing t. Precise estimates of running time depend on 
assessment of the relative costs of following links across the lists and 
the recursive calls to move down to the next level. We shall revisit this 
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Program 13.10 Deletion in skip lists 

To delete a node with a given key from a skip list, we unlink it at each 
level that we find a link to it, then free it when we reach the bottom 
level. 

void deleteR(link t, Key v, int k) 

{ link x t->next[k]; 


if (!less(key(x->item), v)) 

{ 


if (eq(v, key(x->item))) 

{ t->next[k] = x->next[k]; } 

if (k == 0) { free(x); return; } 
deleteR(t, v, k-l); return; 

} 


deleteR(t->next[k], v, k); 

} 


void STdelete(Key v) 

{ deleteR(head, v, 19N); N--; } 


kind of time-space tradeoff again in Chapter 16, when we look at the 
problem of indexing huge files. 

Other symbol-table functions are straightforward to implement 
with skip lists. For example, Program 13.10 gives an implementation 
of the delete function, using the same recursive scheme that we used 
for insert in Program 13.9. To delete, we unlink the node from the 
lists at each level (where we linked it in for insert), and we free the 
node after unlinking it from the bottom list (as opposed to creating it 
before traversing the list for insert). To implement join, we merge the 
lists (see Exercise 13.78); to implement select, we add a field to each 
node that gives the number of nodes skipped by the highest-level link 
to it (see Exercise 13.77). 

Although skip lists are easy to conceptualize as a systematic way 
to move quickly through a linked list, it is also important to understand 
that the underlying data structure is nothing more than an alternative 
representation of a balanced tree. For example, Figure 13.27 shows the 
skip-list representation of the balanced 2-3-4 tree in Figure 13.10. We 
can implement the balanced 2-3-4 tree algorithms of Section 13.3 using 
the skip-list abstraction, rather than the red-black tree abstraction of 
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Figure I3.26 
Skip-list construction with 

keys in order 

This sequence depicts the result of 
inserting items with keys ACE G 
H I N R S into all initially empty 
skip list. Stochastic properties of 
the list do Ilot depend 011 the key 
insertion order. 
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Figure 13.27 
Skip-list representation of a 

2-3-4 tree 

This skip list is a representation of 
the 2-3-4 tree in Figure 13.10. In 
general, skip lists correspond to 
balanced multiway trees with one 
or more links per node (1-nodes, 
with no keys and 1 link, are al
lowed). To build the skip list cor
responding to a tree, we give each 
node a number of links equal to its 
height in the tree, and then link the 
nodes horizontally. To build the 
tree corresponding to a skip list, 
we group skipped nodes, and re
cursively link them to nodes at the 
next level. 
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Section I3 + The resulting code is somewhat more complicated than 
the implementations that we have considered (see Exercise 13.80). We 
shall revisit this relationship between skip lists and balanced trees in 
Chapter I6. 

The ideal skip list illustrated in Figure 13.22 is a rigid structure 
that is as difficult to maintain, when we insert a new node, as is 
the ordered array for binary search, because the insertion involves 
changing all the links in all the nodes after the node inserted. One way 
to loosen the structure is to build lists where each link skips either one, 
two, or three links on the level below: this arrangement corresponds to 
2-3-4 trees, as illustrated in Figure I3.27. The randomized algorithm 
discussed in this section is another effective wa y to loosen the structure; 
we shall consider other alternatives in Chapter I6. 

Exercises 
13.75 Draw the skip list that results when you insert items with the keys E A 
S Y Q UTI 0 N in that order into an initially empty list, assuming that randX 
returns the sequence of values 1, 3, 1, 1, 2, 2, 1, 4, 1, and 1. 

t> 13.76 Draw the skip list that results when you insert items with the keys A E 
I N 0 Q STU Y in that order into an initially empty list, assuming the same 
randX return values as for Exercise 13.75. 

13.77 Implement the select operation for a skip-list-based symbol table . 

• I3.78 Implement the join operation for a skip-list-based symbol table. 

t> I3.79 Modify the implementations of search and insert given in Program I3· 7 
and Program I 3.9 to end lists with NULL, instead of with a sentinel node. 

o I3.80 Use skip lists to implement initialize, search, and insert for symbol 
tables with the balanced 2-3-4 tree abstraction. 

013.81 	How many random numbers are needed, on the average, to build a skip 
list with parameter t, using the randXO function in Program 13.9? 

o q.82 For t = 2, modify Program I3.9 to eliminate the for loop in randX. 
Hint: The final j bits in the binary representation of a number t assume any 
particular j-bit value with probability 1/2]. 

13.83 Choose the value of t that minimizes the search cost for the case that 
following a link costs a times as much as doing a comparison and that moving 
down one level of recursion costs ,8 times as much as doing a comparison. 



BALANCED TREES 

013.84 Develop a skip list implementation that has the pointers themselves 
in the nodes instead of the pointer to an array of pointers that we used in 
Programs 13.7 through 13. I o. Hint: Put the array at the end of STnode. 

I 3.6 Performance Characteristics 

How do we choose among randomized BSTs, splay BSTs, red-black 
BSTs, and skip lists for a particular application? We have concentrated 
on the differing nature of these algorithms' performance guarantees. 
Time and space are always primary considerations, but we must also 
consider a number of other factors. In this section, we shall briefly 
discuss implementation issues, empirical studies, estimates of running 
time, and space requirements. 

All the tree-based algorithms depend on rotations; implementa
tion of rotations along the search path is an essential ingredient of 
most balanced tree algorithms. We have used recursive implementa
tions that implicitly save pointers to nodes on the search path in local 
variables on the recursion stack, but each of the algorithms can be 
implemented in a nonrecursive fashion, operating on a constant num
ber of nodes and performing a constant number of link operations per 
node in one top-down pass through the tree. 

Randomized BSTs are the simplest to implement of the three tree
based algorithms. The prime requirements are to have confidence in 
the random-number generator and to avoid spending too much time 
generating the random bits. Splay BSTs are slightly more complicated, 
but are a straightforward extension to the standard root insertion 
algorithm. Red-black BSTs involve slightly more code still, to check 
and manipulate the color bits. One advantage of red-black trees over 
the other two is that the color bits can be used for a consistency check 
for debugging, and for a guarantee of a quick search at any time during 
the lifetime of the tree. There is no way to know from examining a 
splay BST whether or not the code that produced it made all the proper 
transformations; a bug might lead (only!) to performance problems. 
Similarly, a bug in the random-number generator for randomized BSTs 
or skip lists could lead to otherwise-unnoticed performance problems. 

Skip lists are easy to implement, and are particularly attractive 
if a full range of symbol-table operations is to be supported, because 
search, insert, delete, join, select, and sort all have natural implemen
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tations that are easy to formulate. The inner loop for searching in skip 
lists is longer than that for trees (it involves an additional index into 
the pointer array or an additional recursive call to move down a level), 
so the time for search and insert is longer. Skip lists also put the pro
grammer at the mercy of the random-number generator--debugging 
a program whose behavior is random is a challenge, and some pro
grammers find it particularly unsettling to work with nodes having a 
random number of links. 

Table 13.I gives empirical data on the performance of the four 
methods that we have discussed in this chapter, and on the elementary 
BST implementations from Chapter 12, for keys that are random 32
bit integers. The information in this table confirms what we expect 
from the analytic results in Sections 13.2, I3 .4, and 13.5. Red-black 
BSTs are much faster than the others for random keys. Paths in red
black BSTs are 35 percent shorter than in randomized or splay BSTs, 
and there is less work to do in the inner loop. Randomized trees and 
skip lists require that we generate at least one new random number for 
every insertion, and splay BSTs involve a rotation at every node for 
every insertion and every search. By contrast, the overhead for red
black BSTs is that we check the value of 2 bits at every node during 
insertion, and occasionally need to do a rotation. For nonuniform 
access, splay BSTs may involve shorter paths, but this savings is likely 
to be offset by the fact that both search and insertion involve rotations 
at every node in the inner loop, except possibly in extreme cases. 

Splay BSTs require no extra space for balance information, red
black BSTs require 1 extra bit, and randomized BSTs require a count 
field. For many applications, the count field is maintained for other 
reasons, so it may not represent an extra cost for randomized BSTs. 
Indeed, we might need to add this field if we use splay BSTs, red-black 
BSTs or skip lists. If necessary, we can make red-black BSTs as space
efficient as splay BSTs by eliminating the color bit (see Exercise 13.65). 
In modern applications, space is less critical than it once was, but 
the careful programmer still needs to be vigilant against waste. For 
example, we need to be aware that some systems might use a whole 
32-bit word for a small count field or a I-bit color field in a node, and 
that some other systems might pack the fields in memory such that 
unpacking them requires a significant amount of extra time. If space 
is tight, skip lists with large t can reduce by nearly one-half the space 
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Table I3.I Empirical study of balanced tree implementations 

These relative timings for building and searching BSTs from random 
sequences of N 32-bit integers, for various values of indicate that 
all the methods have good performance, even for huge tables, but that 
red-black trees are significantly faster than are the other methods. All 
the methods use standard BST search, except splay BSTs, where we splay 
on search to bring frequently accessed keys near the top, and skip lists, 
which use essentially the same algorithm with a different underlying data 
structure. 

construction search misses 

1V B T R s c L B T R s c L 

1250 0 3 2 1 2 0 0 0 2 

2500 2 4 6 3 1 4 1 2 3 

5000 4 7 14 8 5 10 3 3 3 3 2 7 

12500 11 23 43 24 16 28 10 9 9 9 7 18 

25000 27 51 101 50 32 57 19 19 26 21 16 43 

50000 63 114 220 117 74 133 48 49 60 46 36 98 

100000 159 277 447 282 177 310 118 106 132 112 84 229 

200000 347 621 996 636 411 670 235 234 294 247 193 523 

Key: 
B Standard BST(Program I2.7) 

T BST built by root insertion (Program I 


R Randomized BST (Program 13.2) 

S Splay BST(Exercise 13.33 and Program 13.5) 

C Red-black BST (Program 13.6) 

L Skip list (Programs 13.7 and I 3.9) 


for links, at the cost of a slower-but still logarithmic-search. With 
some programming, the tree-based methods can also be implemented 
with one link per node (see Exercise I2.65). 

In summary, all the methods that we have discussed in this chap
ter will provide good performance for typical applications, and each 
has its virtues for people interested in developing a high-performance 
symbol-table implementation. Splay BSTs will provide good perfor
mance as a self-organizing search method, particularly when frequent 
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access to a small set of keys is a typical pattern; randomized BSTs are 
likely to be faster and easier to implement for a full-function symbol 
table BST; skip lists are easy to understand and can provide logarithmic 
search with less space than the other methods, and red-black BSTs are 
attractive for symbol-table library implementations, because they pro
vide guaranteed performance bounds in the worst case and the fastest 
search and insertion algorithms for random data. 

Beyond specific uses in applications, this panoply of solutions 
to the problem of developing efficient implementations of the symbol
table ADT is important because it illustrates fundamental approaches 
to algorithm design that are available to us when we consider solutions 
to other problems. In our constant quest for simple, optimal algo
rithms, we often encounter useful near-optimal algorithms, such as the 
ones discussed here. Moreover, as we saw with sorting, comparison
based algorithms such as these are only the beginning of the story-by 
moving to a lower-level abstraction, where we can process pieces of 
keys, we can develop implementations that are even faster than the 
ones discussed in this chapter, as we shall see in Chapters 14 and IS. 

Exercises 

13.85 Develop a symbol-table implementation using randomized BSTs that 
supports the initialize, count, search, insert, delete, join, select, and sort op
erations for first-class symbol-table ADTs with client item handles (see Exer
cises 12.4 and 12.5). 

13.86 Develop a symbol-table implementation using skip lists that supports 
the initialize, count, search, insert, delete, join, select, and sort operations 
for first-class symbol-table ADTs with client item handles (see Exercises 12-4 

and 12.5). 
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Hashing 

T HE SEARCH ALGORITHMS that we have been considering are 
based on an abstract comparison operation. A significant excep

tion to this assertion is the key-indexed search method in Section 12.2, 

where we store the item with key i in table position i, ready for im
mediate access. Key-indexed search uses key values as array indices 
rather than comparing them, and depends on the keys being distinct 
integers falling in the same range as the table indices. In this chapter, 
we consider hashing, an extension of key-indexed search that handles 
more typical search applications where we do not happen to have keys 
with such fortuitous properties. The end result is a completely different 
approach to search from the comparison-based methods-rather than 
navigating through dictionary data structures by comparing search 
keys with keys in items, we try to reference items in a table directly by 
doing arithmetic operations to transform keys into table addresses. 

Search algorithms that use hashing consist of two separate parts. 
The first step is to compute a hash function that transforms the search 
key into a table address. Ideally, different keys would map to dif
ferent addresses, but often two or more different keys may hash to 
the same table address. Thus, the second part of a hashing search is 
a collision-resolution process that deals with such keys. One of the 
collision-resolution methods that we shall study uses linked lists, and 
is thus immediately useful in dynamic situations where the number of 
search keys is difficult to predict in advance. The other two collision
resolution methods that we shall examine achieve fast search times on 
items stored within a fixed array. We shall also examine a way to 
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.513870656 51 

.175725579 17 

.308633685 30 

.534531713 53 

.947630227 94 

.171727657 17 

.702230930 70 

.226416826 22 

.494766086 49 

.124698631 12 

.083895385 8 

.389629811 38 

. 277230144 27 

.368053228 36 

.983458996 98 

.535386205 53 

.765678883 76 

.646473587 64 

. 767143786 76 

.780236185 78 

.822962105 82 

.151921138 15 

.625476837 62 

.314676344 31 

.346903890 34 

Figure 14.1 

Multiplicative hash function 
for floating-point keys 

To transform floating-point num
bers between 0 and 1 into table 
indices for a table of size 97, we 
multiply by 97. In this example, 
there are three collisions: at 17, 
53, and 76. The most significant 
bits of the keys determine the hash 
values; the least significant bits of 
the keys play no role. One goal 
of hash-function design is to avoid 
such imbalance by having each bit 
of data playa role in the computa
tion. 
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improve these methods to handle the case where we cannot predict the 
table size in advance. 

Hashing is a good example of a time-space tradeoff If there 
were no memory limitation, then we could do any search with only 
one memory access by simply using the key as a memory address, as 
in key-indexed search. This ideal often cannot be achieved, however, 
because the amount of memory required is prohibitive when the keys 
are long. On the other hand, if there were no time limitation, then 
we could get by with only a minimum amount of memory by using a 
sequential search method. Hashing provides a way to use a reasonable 
amount of both memory and time to strike a balance between these 
two extremes. In particular, we can strike any balance we choose, 
merely by adjusting hash table size, not by rewriting code or choosing 
different algorithms . 

Hashing is a classical computer-science problem: The various 
algorithms have been studied in depth and are widely used. We shall 
see that, under generous assumptions, it is not unreasonable to expect 
to support the search and insert symbol-table operations in constant 
time, independent of the size of the table . 

This expectation is the theoretical optimum performance for any 
symbol-table implementation, but hashing is not a panacea, for two 
primary reasons. First, the running time does depend on the length 
of the key, which can be a liability in practical applications with long 
keys. Second, hashing does not provide efficient implementations for 
other symbol-table operations, such as select or sort. We shall examine 
these and other matters in detail in this chapter. 

I4. I Hash Functions 

The first problem that we must address is the computation of the hash 
function, which transforms keys into table addresses. This arithmetic 
computation is normally simple to implement, but we must proceed 
with caution to avoid various subtle pitfalls. If we have a table that 
can hold 1v1 items, then we need a function that transforms keys into 
integers in the range [0, AI - Ij. An ideal hash function is easy to 

compute and approximates a random function: For each input, every 
output should be in some sense equally likely. 
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The hash function depends on the key type. Strictly speaking, 
we need a different hash function for each kind of key that might be 
used. For efficiency, we generally want to avoid explicit type conver
sion, striving instead for a throwback to the idea of considering the 
binary representation of keys in a machine word as an integer that 
we can use for arithmetic computations. Hashing predates high-level 
languages-on early computers, it was common practice to view a 
value as a string key at one moment and an integer the next. Some 
high-level languages make it difficult to write programs that depend 
on how keys are represented on a particular computer, because such 
programs, by their very nature, are machine dependent and therefore 
are difficult to transfer to a new or different computer. Hash functions 
generally are dependent on the process of transforming keys to inte
gers, so machine independence and efficiency are sometimes difficult to 
achieve simultaneously in hashing implementations. We can typically 
hash simple integer or floating-point keys with just a single machine 
operation, but string keys and other types of compound keys require 
more care and more attention to efficiency. 

Perhaps the simplest situation is when the keys are floating-point 
numbers known to be in a fixed range. For example, if the keys are 
numbers that are greater than 0 and less than 1, we can just multiply by 
Af and round off to the nearest integer to get an address between 0 and 
M - 1; an example is given in Figure 14.1. If the keys are greater than 
s and less than t for any fixed sand t, we can rescale by subtracting s 
and dividing by t - s, which puts them between 0 and 1, then multiply 
by Iv! to get a table address. 

If the keys are w-bit integers, we can convert them to floating
point numbers and divide by 2W to get floating-point numbers between 
oand 1, then multiply by M as in the previous paragraph. If floating
point operations are expensive and the numbers are not so large as 
to cause overflow, we can accomplish the same result with integer 
arithmetic operations: Multiply the key by 114, then shift right w bits 
to divide by 2W (or, if the multiply would overflow, shift then multiply). 
Such functions are not useful for hashing unless the keys are evenly 
distributed in the range, because the hash value is determined only by 
the leading digits of the keys. 

A simpler and more efficient method for w-bit integers-one that 
is perhaps the most commonly used method for hashing-is to choose 

16838 57 38 6 

5758 35 58 58 


10113 25 13 50 

17515 55 15 24 

31051 11 51 90 


5627 1 27 77 

23010 21 10 20 


7419 47 19 85 

16212 13 12 19 

4086 12 86 25 

2749 33 49 98 


12767 60 67 90 

9084 63 84 14 


12060 32 60 53 

32225 21 25 16 

17543 83 43 42 

25089 63 89 5 

21183 37 83 91 

25137 14 37 35 

25566 55 66 0 

26966 0 66 65 


4978 31 78 76 

20495 28 95 66 

10311 29 11 72 

11367 18 67 25 


Figure I4.2 
Modular hash functions for 

integer keys 

The three rightmost columns show 
the result of hashing the 16-bit 
keys on the left with these func
tions: 

v %97 (left) 

v %100 (center) and 

(int) (a * v) %100 (right) 


where a = .618033. The table 

sizes for these functions are 97, 

100, and 100, respectively. The 

values appear random (because the 

keys are random). The center func
tion (v %100) uses just the right-

most two digits of the keys and is 

therefore susceptible to bad perfor
mance for nonrandom keys. 




now 6733767 1816567 55 29 
for 6333762 1685490 50 20 
tip 7232360 1914096 48 1 
ilk 6473153 1734251 43 18 
dim 6232355 1651949 45 21 
tag 7230347 1913063 39 22 
jot 6533764 1751028 52 24 
sob 7173742 1898466 34 26 
nob 6733742 1816546 34 8 
sky 7172771 1897977 57 2 
hut 6435364 1719028 52 16 
ace 6070745 1602021 37 3 
bet 6131364 1618676 52 11 
men 6671356 1798894 46 26 
egg 6271747 1668071 39 23 
few 6331367 1684215 55 16 
jay 6530371 1749241 57 4 
owl 6775754 1833964 44 4 
joy 6533771 1751033 57 29 
rap 7130360 1880304 48 30 
gig 6372347 1701095 39 1 
wee 7371345 1962725 37 22 
was 7370363 1962227 51 20 
cab 6170342 1634530 34 24 
wad 7370344 1962212 36 5 

Figure 14.3 
Modular hash functions for 

encoded characters 

Each line in this table shows a 3
character word, that words ASCII 
encoding as a 27 -bit number in 
octal and decimal, and standard 
modular hash functions for table 
sizes 64 and 31, respectively (right
most two columns). The table size 
64 leads to undesirable results, be
cause only the rightmost bits of the 
keys contribute to the hash value, 
and characters in natural-language 
words are not evenly distributed. 
For example, all words ending in 
y hash to the value 57. By con
trast, the prime value 31 leads to 
fewer collisions in a table less than 
one-half the size. 
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the table size lv! to be prime, and, for any integer key k, to compute 
the remainder when dividing k by M, or h(k) k mod lvl. Such a 
function is called a modular hash function. It is easy to compute (k % 
M, in C), and is effective in dispersing the key values evenly among the 
values less than l'vL Figure 14.2 gives a small example. 

We can also use modular hashing for floating-point keys. If the 
keys are in a small range, we can scale to convert them to numbers 
between 0 and 1, multiply by 2W to get a w-bit integer result, then use 
a modular hash function. Another alternative is just to use the binary 
representation of the key (if available) as the operand for the modular 
hashing function. 

Modular hashing applies whenever we have access to the bits that 
our keys comprise, whether they are integers represented in a machine 
word, a sequence of characters packed into a machine word, or any 
of a myriad of other possibilities. A sequence of random characters 
packed into a machine word is not quite the same as a random integer 
key, because some of the bits are used for encoding purposes, but we 
can make both (and any other type of key that is encoded so as to fit 
in a machine word) appear to be random indices into a small table. 

Figure 14.3 illustrates the primary reason that we choose the 
hash table size 1\1! to be prime for modular hashing. In this example, 
for character data with 7-bit encoding, we treat the key as a base
128 number-one digit for each character in the key. The word now 
corresponds to the number 1816567, which also can be written as 

110.1282 + III . 1281 + 119.1280 

since the ASCII encodings of n, 0, and ware 1568 llO, 1578 llI, 
and 1678 = 119, respectively. Now, the choice of table size 1\11 = 64 
is unfortunate for this type of key, because the value of x mod 64 is 
unaffected by the addition of multiples of 64 (or 128) to x-the hash 
function of any key is the value of that key's last 6 bits. Surely a good 
hash function should take into account all the bits of a key, particularly 
for keys made up of characters. Similar effects can arise whenever l ..1 
has a factor that is a power of 2. The simplest way to avoid such 
effects is to make 1\1 prime. 

Modular hashing is completely trivial to implement except for the 
requirement that we make the table size prime. For some applications, 
we can be content with a small known prime, or we can look up a 
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prime number close to the table size that we want in a list of known 
primes. For example, numbers of the form 2t - 1 are prime for t 2, 
3,5,7,13,17,19, and 31 (and no other t < 31): these are the famous 
Mersenne primes. To allocate a table of a certain size dynamically, we 
would need to compute a prime number close to a certain value. This 
calculation is not a trivial one (although there is a clever algorithm 
for the task, which we shall examine in Part 5), so, in practice, a 
common solution is to use a precomputed table (see Figure 14.4). Use 
of modular hashing is not the only reason to make a table size prime; 
we shall consider another reason in Section I4.4. 

Another alternative for integer keys is to combine the multi
plicative and modular methods: Multiply the key by a constant be
tween 0 and 1, then reduce it modulo lvI. That is, use the function 
h(k) lkaJ mod M. There is interplay among the values of 0, AI, 
and the effective radix of the key that could possibly result in anoma
lous behavior, but if we use an arbitrary value of a, we are not likely 
to encounter trouble in a practical application. A popular choice for 
a is ¢ = 0.618033 ... (the golden ratio). Many other variations on 
this theme have been studied, particularly hash functions that can be 
implemented with efficient machine instructions such as shifting and 
masking (see reference section). 

In many applications where symbol tables are used, the keys are 
not numbers and are not necessarily short, but rather are alphanumeric 
strings and possibly are long. How do we compute the hash function 
for a word such as 

averylongkey? 

In 7-bit ASCII, this word corresponds to the 84-bit number 

97.12811 + 118.12810 + 101 . 1289 + 114.1288 + 121· 1287 


+ 108.1286 + 111 . 1285 + 110.1284 + 103.1283 


+ 107 .1282 + 101· 1281 + 121.128°, 

which is too large to be represented for normal arithmetic functions in 
most computers. Moreover, we should be able to handle keys that are 
much longer. 

To compute a modular hash function for long keys, we transform 
the keys piece by piece. We can take advantage of arithmetic proper
ties of the mod function and use Horner's algorithm (see Section 4.9). 

n On 2" On 
.......__. 


8 5 251 

9 3 509 


10 3 1021 

11 9 2039 

12 3 4093 

13 1 8191 

14 3 16381 

15 19 32749 

16 15 65521 

17 1 131071 

18 5 262139 

19 1 524287 

20 3 1048573 

21 9 2097143 

22 3 4194301 

23 15 8388593 

24 3 16777213 

25 39 33554393 

26 5 67108859 

27 39 134217689 

28 57 268435399 

29 3 536870909 

30 35 1073741789 

31 1 2147483647 


Figure 14.4 
Prime numbers for hash tables 

This table of the largest prime less 

than 2" for 8 S n S 32 can be 

used to dynamically allocate a 

hash table, when it is required that 

the table size be prime. For any 

given positive value in the range 

covered, we can use Ihis table 10 


get a prime number within a factor 

of 2 of that value. 




Figure 14.5 
Hash functions for character 

strings 

These diagrams show the disper
sion for a set of English words 
(the first 1000 distinct words of 
Melville's Moby Dick; using Pro
gram 14,1 with 

M =96 and a = 128 (top) 

M = 97 and a 128 (center)and 

M= 96 and a 127 (bottom) 


Poor dispersion in the first instance 
results from the combination of un
even usage of the letters and the 
common factor 32 in the table size 
and multiplier, which preserves 
the unevenness, The other two in
stances appear random because 
the table size and the multiplier 
are relatively prime, 

§q.I CHAPTER FOURTEEN 

Program 14.1 Hash function for string keys 

This implementation of a hash function for string keys involves one 
multiplication and one addition per character in the key. If we were to 
replace the constant 127 by 128, the program would simply compute the 
remainder when the number corresponding to the 7-bit ASCII represen
tation of the key was divided by the table size, using Horner's method. 
The prime base 127 helps us to avoid anomalies if the table size is a 
power of 2 or a multiple of 2. 

int hash(char *v, int M) 

{ int h = 0, a = 127; 


for (; *v != '\0'; v++) 

h = (a*h + *v) %M; 


return h; 

} 


This method is based on yet another way of writing the number corre
sponding to keys. For our example, we write the following expression: 

((((((((((97·128 + 118)·128 + 101) . 128 + 114) . 128 + 121) ·128 

+ 108) ·128 + 111)·128 + 110) . 128 + 1(3) . 128 

+ 107) . 128 + 101) . 128 + 121. 

That is, we can compute the decimal number corresponding to the 
character encoding of a string by proceeding left to right, multiplying 
the accumulated value by 128, then adding the encoded value of the 
next character. This computation would eventually produce a number 
la rger than we can represent in our machine for a long string, but we 
are not interested in computing the number; we want just its remainder 
when divided by 111, which is smalL We can get our result without ever 
carrying a large accumulated value, because we can cast out multiples 
of 1\1 at any point during this computation-we need to keep only the 
remainder modulo lvI each time that we do a multiply and add-and 
we get the same result as we would if we had the capability to compute 
the long number, then to do the division (see Exercise 14.IO). This 
observation leads to a direct arithmetic way to compute modular hash 
functions for long strings; see Program 14.1. The program uses one 
final twist: It uses the prime 127 instead of the base 128. The reason 
for this change is discussed in the next paragraph. 
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Program 14.2 Universal hash function (for string keys) 

This program does the same computations as Program I4.1, but using 
pseudorandom coefficient values instead of a fixed radix, to approximate 
the ideal of having a collision between two given none qual keys occur 
with probability 1/M. We generate the coefficients rather than using an 
array of precomputed random values because this alternative presents a 
slightly simpler interface. 

int hashU(char *v, int M) 
{ int h, a = 31415, b = 27183; 

for (h = 0; *V != '\0'; v++, a = a*b % (M-1)) 
h = (a*h + *v) %M; 

return h; 
} 

There are many ways to compute hash functions at approxi
mately the same cost as doing modular hashing using Horner's method 
(one or two arithmetic operations for each character in the key). For 
random keys, the methods hardly differ, but real keys are hardly ran
dom. The opportunity to economically make real keys appear to be 
random leads us to consider randomized algorithms for hashing-we 
want hash functions that produce random table indices, no matter 
what the keys are. Randomization is not difficult to arrange, because 
there is no requirement that we stick to the letter of the definition of 
modular hashing-we merely want to involve all the bits of the key in 
a computation that produces an integer less than lvI. Program 14.I 

shows one way to do that: lJse a prime base, ins.tead of the power 
of 2 called for in the definition of the integer corresponding to the 
ASCII representation of the string. Figure I4.5 illustrates how this 
change avoids poor dispersion for typical string keys. The hash values 
produced by Program 14. I could theoretically be bad for table sizes 
that are a multiple of 127 (although these effects are likely to be min
imal in practice); we could choose the multiplier value at random to 
produce a randomized algorithm. An even more effective approach 
is to use random values for the coefficients in the computation, and a 
different random value for each digit in the key. This approach gives 
a randomized algorithm called universal hashing. 
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A theoretically ideal universal hash function is one for which the 
chance of a collision between two distinct keys in a table of size AI is 
precisely 1/M. It is possible to prove that using a sequence of different 
random values, instead of a fixed arbitrary value, for the coefficient a 
in Program 14.I turns modular hashing into a universal hash function. 
We can implement this idea by maintaining an array with a different 
random number for each key character position. Program I4.2 illus
trates an even simpler alternative that performs well in practice-we 
use a simple pseudorandom sequence for the coefficients. 

In summary, to use hashing for an abstract symbol-table imple
mentation, the first step is to extend the abstract type interface to 
include a hash operation that maps keys into nonnegative integers less 
than M, the table size. The direct implementation 

#define hash(v, M) «(v-s)/(t-s))* M) 

does the job for floating-point keys between the values 8 and t; for 
integer keys, we can use 

#define hash(v, M) (v %M). 

If AI is not prime, 

#define hash(v, M) «int) (.616161 * (float) v) %M) 

or a similar integer computation such as 

#define hash(v, M) (16161 * (unsigned) v) %M) 

will suffice to spread out the keys. All of these functions, including 
Program I4.I for string keys, are venerable ones that have served 
programmers well for years. The universal method of Program 14.2 

is a distinct improvement for string keys that provides random hash 
values at little extra cost, and we can craft similar randomized methods 
for integer keys (see Exercise 14.1). 

Universal hashing could prove to be much slower than simpler 
methods in a given application, because doing two arithmetic opera
tions for each character of the key could be overly time-consuming for 
long keys. To respond to this objection, we can process the key in big
ger pieces. Indeed, we may as well use the largest pieces that can fit into 
a machine word, as in elementary modular hashing. As we discussed 
in detail previously, an operation of this kind can be difficult or can 
require special loopholes in some strongly typed high-level languages, 
but it can be inexpensive or require absolutely no work in C if we use 
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casting among appropriate data-representation formats. These factors 
are important to consider in many situations because the computation 
of the hash function might be in the inner loop, so, by speeding up the 
hash function, we might speed up the whole computation. 

Despite the evidence in favor of these methods, care is required 
in implementing them, for two reasons. First, we have to be vigi
lant to avoid bugs when converting among types and using arithmetic 
functions on various different machine representations of keys. Such 
operations are notorious sources of error, particularly when a program 
is converted from an old machine to a new one with a different num
ber of bits per word or with other precision differences. Second, the 
hash-function computation is likely to fall in the inner loop in many 
applications, and its running time may well dominate the total run
ning time. In such cases, it is important to be sure that it reduces 
to efficient machine code. Such operations are notorious sources of 
inefficiency-for example, the difference in running time between the 
simple modular method and the version where we multiply by 0.61616 
first can be startling on a machine with slow hardware or software 
for floating-point operations. The fastest method of all, for many 
machines, is to make ]1.,1 a power of 2, and to use the hash function 

#define hash(v, M) (v & (M-i)). 

This function uses only the least-significant bits of the keys, but the 
bitwise and operation may be sufficiently faster than integer division 
to offset any ill effects from poor key dispersion. 

A bug that typically arises in hashing implementations is for the 
hash function always to return the same value, perhaps because an 
intended type conversion did not take place properly. Such a bug 
is called a performance bug because a program using such a hash 
function is likely to run correctly, but to be extremely slow (because 
it was designed to be efficient only when the hash values are well 
dispersed). The one-line implementations of these functions are so 
easy to test that we are well-advised to check how well they perform 
for the types of keys that are to be encountered for any particular 
symbol-table implementation. 

We can use a X2 statistic to test the hypothesis that a hash func
tion produces random values (see Exercise 14.5), but this requirement 
is perhaps too stringent. Indeed, we might be happy if the hash func
tion produces each value the same number of times, which corresponds 
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to a X2 statistic that is equal to 0, and is decidedly not random. Still, 
we should be suspicious of huge X2 statistics. In practice, it probably 
suffices to use a test that the values are sufficiently well-spread that 
no value dominates (see Exercise 14.15). In the same spirit, a well
engineered implementation of a symbol-table implementation based 
on universal hashing might occasionally check that hash values are 
not poorly dispersed. The client might be informed that either a low
probability event has happened or there is a bug in the hash function. 
This kind of check would be a wise addition to any practical random
ized algorithm. 

Exercises 

t> 14.1 Using the digit abstraction from Chapter 10 to treat a machine word 
as a sequence of bytes, implement a randomized hash function for keys repre
sented as bits in machine words. 

14.2 Check whether there is any execution-time overhead in converting from 
a 4-byte key to a 32-bit integer in your programming environment. 

o 14.3 Develop a hash function for string keys based on the idea of loading 4 
bytes at a time, then performing arithmetic operations on 32 bits at a time. 
Compare the time required for this function with the times for Program 14.1 
for 4-, 8-, 16-, and 32-byte keys. 

14.4 Write a program to find values of a and M, with Mas small as possible, 
such that the hash function a*x % Mproduces distinct values (no collisions) for 
the keys in Figure 14.2. The result is an example of a perfect hash function. 

o I4.5 Write a program to compute the X2 statistic for the hash values of N 
keys with table size lvi. This number is defined by the equation 

X2 1'1'1 L (i, _ ~)2, 
OSi<M 

where Ji is the number of keys with hash value ,t. If the hash values are 
random, this statistic, for N > c1\1, should be IV! ± ..JM with probability 
1

I4.6 Use your program from Exercise 14-5 to evaluate the hash function 
618033*x % 10000 for keys that are random positive integers less than 106 

• 

I4.7 Use your program from Exercise 14-5 to evaluate the hash function 
in Program 14. I for distinct string keys taken from some large file on your 
system, such as a dictionary . 

• 14.8 	 Suppose that keys are t-bit integers. For a modular hash function with 
prime AI, prove that each key bit has the property that there exist two keys 
differing only in that bit with different hash values. 
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14.9 Consider the idea of implementing modular hashing for integer keys 
with the code (a*x) % M, where a is an arbitrary fixed prime. Does this 
change mix up the bits sufficiently well that you can use nonprime M? 

14.10 Prove that ((ax) mod ,IvI) + b) mod M = (ax + b) mod AI, assuming 
that a, b, :r;, and A1 are all nonnegative integers. 

I> 14.11 If you use the words from a text file, such as a book, in Exercise I4.7, 
you are unlikely to get a good X2 statistic. Explain why this assertion is true. 

14.12 Use your program from Exercise I4.5 to evaluate the hash function 
97*x % M, for all table sizes between 100 and 200, using 103 random positive 
integers less than 106 as keys. 

14.13 Use your program from Exercise 14.5 to evaluate the hash function 
97*x %M, for all table sizes between 100 and 200, using the integers between 
102 and 103 as keys. 

14.14 Use your program from Exercise 14.5 to evaluate the hash function 
100*x %M, for all table sizes between 100 and 200, using 103 random positive 
integers less than 106 as keys. 

14.I5 Do Exercises 14. I 2 and 14.I4, but use the simpler criterion of rejecting 
hash functions that produce any value more than 3]11/11'1 times. 

I4.2 Separate Chaining 

The hash functions discussed in Section 14.1 convert keys into table 
addresses; the second component of a hashing algorithm is to decide 
how to handle the case when two keys hash to the same address. The 
most straightforward method is to build, for each table address, a 
linked list of the items whose keys hash to that address. This approach 
leads directly to the generalization of elementary list search (see Chap
ter 12) that is given in Program 14-3. Rather than maintaining a single 
list, we maintain M lists. 

This method is traditionally called separate chaining, because 
items that collide are chained together in separate linked lists. An 
example is depicted in Figure 14.6. As with elementary sequential 
search, we can choose to keep the lists in sorted order, or we can 
leave them unordered. The same basic tradeoffs as those discussed 
in Section 12.3 apply, but, for separate chaining, the time savings are 
less significant (because the lists are short) and the space usage is more 
significant (because there are so many lists). 

We might be using a header node to streamline the code for 
insertion into an ordered list, but we might not want to use AI header 
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A S ERe H N G X M P L 
o 2 0 4 4 4 2 1 2 4 3 3 

Figure 14.6 
Ha.shing with separate chain-

Ing 
This diagram shows the result of 
inserting the keys A S ERe H I N 
G X M P L into an initially empty 
hash table with separate chaining 
(unordered lists), using the hash 
values given at the top. The A goes 
into list 0, then the S goes into list 
2, then the E goes into list 0 (at 
the front, to keep the insertion time 
constant), then the R goes into list 
4, and so forth. 

Program 14.3 Hashing with separate chaining 

This symbol-table implementation is based on replacing the STinit, 
STsearch, STinsert, and STdelete functions in the linked-list-based 
symbol table of Program I 2. 5 with the functions given here, and re
placing the link head with an array of links heads. We use the same 
recursive list search and deletion procedures as in Program I2.5, but 
we maintain Mlists, with head links in heads, using a hash function to 
choose among the lists. The STinit function sets Msuch that we expect 
the lists to have about five items each; therefore the other operations 
require just a few probes. 

static link *heads, z; 
static int N, M; 
void STinit(int max) 

{ int i; 
N 0; M = max/5; 
heads = malloc(M*sizeof(link)); 
z = NEW (NULLitem, NULL); 
for (i = 0; i < M; i++) heads[i] z·, 

} 

Item STsearch(Key v) 
{ return searchR(heads[hash(v, M)]. v); } 

void STinsert(Item item) 
{ int i hash(key(item), M); 

heads[i] = NEW(item, heads[i]); N++; } 
void STdelete(Item item) 

int i = hash(key(item) , M); 
heads[i] deleteR(heads[i], item); } 

nodes for individual lists in separate chaining. Indeed, we could even 
eliminate the A1links to the lists by having the first nodes in the lists 
comprise the table (see Exercise q.20). 

For a search miss, we can assume that the hash function scrambles 
the key values sufficiently well that each of the A1lists is equally likely 
to be searched. Then the performance characteristics that we studied 
in Section 12.3 apply, for each list. 



HASHING 

Property 14.1 Separate chaining reduces the number ofcomparisons 
for sequential search by a factor of AI (on the average), using extra 
space for A! links. 

The average length of the lists is N/M. As described in Chap
ter 12, successful searches are expected to go about halfway down 
some list. Unsuccessful searches go to the end of a list if the lists are 
unordered, halfway down a list if the lists are kept in order .• 

Most often, we use unordered lists for separate chaining, because that 
approach is both easy to implement and efficient: insert takes constant 
time and search takes time proportional to N/A!. If huge numbers of 
search misses are expected, we can speed up the misses by a factor of 
2 by keeping the lists ordered, at the cost of a slower insert. 

As stated, Property 14.I is a trivial result, because the average 
length of the lists is N/lvI, no matter how the items are distributed 
among the lists. For example, suppose that all the items fall onto the 
first list. Then, the average length of the lists is (N+0+0+.. .+O)/M 
N/iVI. The real reason that hashing is useful in practice is that each 
list is extremely likely to have about N / M items. 

Property 14.2 In a separate-chaining hash table with M lists and N 
keys, the probability that the number of keys in each list is within a 
small constant factor of N/A! is extremely close to 1. 

We briefly consider this classical analysis, for readers who are familiar 
with basic probabilistic analysis. The probability that a given list will 
have k items on it is 

(N)(~)k(l_ 1 IV-I; 

k AI AI 

by an elementary argument. We choose k out of the N items: Those k 
items hash ro the given list with probability 1/M, and the other N - k 
items do not hash to the given list with probability 1- (l/iV!). In terms 
of a = N/NI, we can rewrite this expression as 

which, by the classical Poisson approximation, is less than 
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From this result, it follows that the probability that a list has more 
than to: items on it is less than 

This probability is extremely small for practical ranges of the parame
ters. For example, if the average length of the lists is 20, the probability 
that we will hash to some list with more than 40 items on it is less than 
(20e/2)2c 20 ~ 0.0000016.• 

The foregoing analysis is an example of a classical occupancy 
problem, where we consider N balls thrown randomly into one of 
A1 urns, and analyze how the balls are distributed among the urns. 
Classical mathematical analysis of these problems tells us many other 
interesting facts that are relevant to the study of hashing algorithms. 
For example, the Poisson approximation tells us that the number of 
empty lists is about e-a • A more interesting result tells us that the 
average number of items inserted before the first collision occurs is 
about Vld!f/2 ~ 1.25VM. This result is the solution to the classical 
birthday problem. For example, the same analysis tells us, for lv1 = 
365, that the average number of people we need to check before finding 
two with the same birthday is about 24. A second classical result tells 
us that the average number of items inserted before each list has at least 
one item is about AIH M. This result is the solution ro the classical 
coupon collector problem. For example, the same analysis tells us, 
for M = 1280, that we would expect to collect 9898 baseball cards 
(coupons) before getting one for each of 40 players on each of 32 
teams in a series. 

These research results are indicative of the properties of hashing 
that have been analyzed. In practice, they tell us that we can use 
separate chaining with great confidence, if the hash function produces 
values that approximate random ones (see reference section). 

In a separate-chaining implementation, we typically choose AI 
to be small enough that we are not wasting a huge area of contiguous 
memory with empty links, but large enough that sequential search is 
the most efficient method for the lists. Hybrid methods (such as using 
binary trees instead of linked lists) are probably not worth the trouble. 
As a rule of thumb, we might choose NI to be about one-fifth or one
tenth the number of keys expected be be in the table, so that the lists 
are expected to contain about five or 10 keys each. One of the virtues 
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of separate chaining is that this decision is not critical: if more keys 
arrive than expected, then searches will take a little longer than if we 
had chosen a bigger table size ahead of time; if fewer keys are in the 
table, then we have extra-fast search with perhaps a small amount of 
wasted space. When space is not a critical resource, Al can be chosen 
sufficiently large that search time is constant; when space is a critical 
resource, we still can get a factor of 1'.;1 improvement in performance 
by choosing M to be as large as we can afford. 

The comments in the previous paragraph apply to search time. 
In practice, unordered lists are normally used for separate chaining, for 
two primary reasons. First, as we have mentioned, insert is extremely 
fast: We compute the hash function, allocate memory for the node, 
and link in the node at the beginning of the appropriate list. In many 
applications, the memory-allocation step is not needed (because the 
items inserted into the symbol table may be existing records with 
available link fields), and we are left with perhaps three or four machine 
instructions for insert. The second important advantage of using the 
unordered-list implementation in Program 14.3 is that the lists all 
function as stacks, so we can easily remove the most recently inserted 
items, which are at the front of the lists (see Exercise 14.21). This 
operation is an important one when we are implementing a symbol 
table with nested scopes, for example in a compiler. 

As in several previous implementations, we implicitly give the 
client a choice for handling duplicate keys. A client like Program 12.10 

might search to check for duplicates before any insert, thus ensuring 
that the table does not contain any duplicate keys. Another client 
might avoid the cost of this search by leaving duplicates in the table, 
thus achieving fast insert operations. 

Generally, hashing is not appropriate for use in applications 
where implementations for the sort and select ADT operations are 
required. However, hashing is often used for the typical situation 
where we need to use a symbol table with potentially a large number 
of search, insert, and delete operations, then to print out the items in 
order of their keys once, at the end. One example of such an applica
tion is a symbol table in a compiler; another is a program to remove 
duplicates, such as Program 12.10. To handle this situation in an 
unordered-list implementation of separate chaining, we would have to 
use one of the sorting methods described in Chapters 6 through 10; in 
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an ordered-list implementation, we could accomplish the sort in time 
proportional to N 19 Al with list mergesort (see Exercise I4· 23). 

Exercises 

t> 14.16 How long could it take in the worst case to insert N keys into an 
initially empty table, using separate chaining with (i) unordered lists and (ii) 
ordered lists? 

t> 14.17 Give the contents of the hash table that results when you insert items 
with the keys E A S Y Q UTI 0 N in that order into an initially empty table 
of lH 5 lists, using separate chaining with unordered lists. Use the hash 
function 11k mod At to transform the kth letter of the alphabet into a table 
index. 

t> I4.18 Answer Exercise 14. I7, but use ordered lists. Does your answer depend 
on the order in which you insert the items? 

014.19 Write a program that inserts N random integers into a table of size 
N/100 using separate chaining, then finds the length of the shortest and longest 
lists, for N 103

, 10\ 105
, and 106

• 

14.20 Modify Program I4.3 to eliminate the head links by representing the 
symbol table as an array of STnodes (each table entry is the first node in its 
list). 

14.21 Modify Program 14.3 to include an integer field for each item that is 
set to the number of items in the table at the time the item is inserted. Then 
implement a function that deletes all items for which the field is greater than 
a given integer N. 

14.22 Modify the implementation of STsearch in Program 14.3 to visit all 
the items with keys equal to a given key, in the same manner as STsort. 

14.23 Implement a symbol table using separate chaining with ordered lists 
(with a fixed table of size 97) that supports the initialize, count, search, insert, 
delete, join, select, and sort operations for a first-class symbol-table ADT, with 
support for client handles (see Exercises 12.4 and I 2.5). 

14.3 Linear Probing 

If we can estimate in advance the number of elements to be put into the 
hash table and have enough contiguous memory available to hold all 
the keys with some room to spare, then it is probably not worthwhile 
to use any links at all in the hash table. Several methods have been 
devised that store N items in a table of size 1\;[ > N, relying on empty 
places in the table to help with collision resolution. Such methods are 
called open-addressing hashing methods. 
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The simplest open-addressing method is called linear probing: 
when there is a collision (when we hash to a place in the table that is 
already occupied with an item whose key is not the same as the search 
key), then we just check the next position in the table. It is customary 
to refer to such a check (determining whether or not a given table 
position holds an item with key equal to the search key) as a probe. 
Linear probing is characterized by identifying three possible outcomes 
of a probe: if the table position contains an item whose key matches 
the search key, then we have a search hit; if the table position is empty, 
then we have a search miss; otherwise (if the table position contains an 
item whose key does not match the search key) we just probe the table 
position with the next higher index, continuing (wrapping back to the 
beginning of the table if we reach the end) until either the search key 
or an empty table position is found. If an item containing the search 
key is to be inserted following an unsuccessful search, then we put it 
into the empty table space that terminated the search. Program 1+4 is 
an implementation of the symbol-table ADT using this method. The 
process of constructing a hash table for a sample set of keys using 
linear probing is shown in Figure 14.7. 

As with separate chaining, the performance of open-addressing 
methods is dependent on the ratio a N /lv1, but we interpret it 
differently. For separate chaining, a is the average number of items 
per list and is generally larger than 1. For open addressing, a is the 
fraction of those table positions that are occupied; it must be less than 
1. We sometimes refer to a as the load factor of the hash table. 

For a sparse table (small a), we expect most searches to find an 
empty position with just a few probes. For a nearly full table (a close 
to 1), a search could require a huge number of probes, and could even 
fall into an infinite loop when the table is completely full. Typically, we 
insist that the table not be allowed to become nearly full when using 
linear probing, to avoid long search times. That is, rather than using 
extra memory for links, we use it for extra space in the hash table that 
shortens probe sequences. The table size for linear probing is greater 
than for separate chaining, since we must have lv[ > N, but the total 
amount of memory space used may be less, since no links are used. 
We will discuss space-usage comparisons in detail in Section 14.5; for 
the moment, we consider the analysis of the running time of linear 
probing as a function of a. 
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Program 14.4 Linear probing 

This symbol-table implementation keeps items in a table twice the size 
of the maximum number of items expected, initialized to NULLitem. The 
table holds the items themselves; if the items are large, we can modify 
the item type to hold links to the items. 

10 insert a new item, we hash to a table position and scan to the 
right to find an unoccupied position, using the macro null to check 
whether a table position is unoccupied. To search for an item with a 
given key, we go to the key hash position and scan to look for a match, 
stopping when we hit an unoccupied position. 

The STinit function sets M such that we may expect the table 
to be less than half full, so the other operations will require just a few 
probes, if the hash function produces values that are sufficiently close to 
random ones. 

#include <stdlib.h> 
#include "Item.h" 
#define null(A) (key(st[A]) key(NULLitem» 
static int N, M; 
static Item *st; 
void STinit(int max) 

{ int i; 
N = 0; M 2*max; 
st = malloc(M*sizeof(Item); 
for (i = 0; i < M; i++) st[i] NULLitem; 

} 

int STcount() { return N; } 
void STinsert(Item item) 

{ Key v = key (item) ; 
int i hash(v, M); 
while (lnull(i» i (i+l) %M; 
st[i] = item; N++; 

} 

Item STsearch(Key v) 
{ int i hash(v, M); 

while (! null (i» 
if eq(v, key(st[i]») return st[i]; 
else i (i+l) %M; 

return NULLitem; 
} 
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The average cost of linear probing depends on the way in which 
the items cluster together into contiguous groups of occupied table 
cells, called clusters, when they are inserted. Consider the following 
two extremes in a linear probing table that is half full (M = 2N): In 
the best case, table positions with even indices could be empty, and 
table positions with odd indices could be occupied. In the worst case, 
the first half of the table positions could be empty, and the second 
half occupied. The average length of the clusters in both cases is 
N/(2N) = 1/2, but the average number of probes for an unsuccessful 
search is 1 (all searches take at least 1 probe) plus 

(0 + 1 + 0 + 1 + .. .)/(2N) = 1/2 

in the best case, and is 1 plus 

(N + (N -1) + (N - 2) + .. .)/(2N) ::::; N/4 

in the worst case. 
Generalizing this argument, we find that the average number of 

probes for an unsuccessful search is proportional to the squares of the 
lengths of the clusters. We compute the average by computing the cost 
of a search miss starting at each position in the table, then dividing 
the total by M. All search misses take at least 1 probe, so we count 
the number of probes after the first. If a cluster is of length t, then the 
expressIOn 

(t + (t - 1) + ... + 2 + l)/M = t(t + 1)/(2M) 

counts the contribution of that cluster to the grand total. The sum of 
the cluster lengths is N, so, adding this cost for all cells in the table, we 
find that the total average cost for a search miss is 1 + N / (2M) plus 
the sum of the squares of the lengths of the clusters, divided by 2M. 
Given a table, we can quickly compute the average cost of unsuccessful 
search in that table (see Exercise 14.28), but the clusters are formed 
by a complicated dynamic process (the linear-probing algorithm) that 
is difficult to characterize analytically. 

Property 14.3 When collisions are resolved with linear probing, the 
average number of probes required to search in a hash table of size M 
that contains N = aM keys is about 
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Figure 14.7 
Hashing with linear probing 

This diagram shows the process of 
inserting the keys A S ERe H I 
N G X M P into an initially empty 
hash table of size 13 with open 
addressing, using the hash values 
given at the top and resolving col
lisions with linear probing. First, 
the A goes into position 7, then the 
S goes into position 3, then the E 
goes into position 9, then the R 
goes into position 10 after a col
lision at position 9, and so forth. 
Probe sequences that run off the 
right end of the table continue on 
the left end: for example, the fi
nal key inserted, the P, hashes to 
position 8, then ends up in posi
tion 5 after collisions at positions 
8 through 12, then a throuh 5. 
All table positions not probed are 
shaded. 
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Figure 14.8 
Deletion in a linear-probing 

hash table 

This diagram shows the process 
of deleting the X from the table 
in Figure 74.7, The second line 
shows the result of just taking the 
X out of the table, and is an unac
ceptable final result because the 
M and the P are cut off from their 
hash positions by the empty ta
ble poSition left by the X, Thus, 
we reinsert tbe M, S, H, and P (the 
keys to the right of the X in the 
same cluster), in that order, using 
the hash values given at the top 
and resolving collisions with lin
ear probing, The M fills the hole 
left by the X, then the S and the H 
hash into the table without colli
sions, then the P winds up in posi
tion 2, 

for hits and misses, respectively. 

Despite the relatively simple form of the results, precise analysis of 
linear probing is a challenging task. Knuth's completion of it in 1962 
was a landmark in the analysis of algorithms (see reference section) .• 

These estimates lose accuracy as a approaches 1, but we do not 
need them for that case, because we should not be using linear probing 
in a nearly full table in any event. For smaller a, the equations are 
sufficiently accurate. The following table summarizes the expected 
number of probes for search hits and misses with linear probing: 

load factor (a) 1/2 2/3 3/4 9/10 

search hit 1.5 2.0 3.0 5.5 
search miss 2.5 5.0 8.5 55.5 

Search misses are always more expensive than hits, and both require 
only a few probes, on the average, in a table that is less than half full. 

As we did with separate chaining, we leave to the client the 
choice of whether or not to keep items with duplicate keys in the 
table. Such items do not necessarily appear in contiguous positions 
in a linear probing table-other items with the same hash value can 
appear among items with duplicate keys. 

By the very nature of the way the table is constructed, the keys 
in a table built with linear probing are in random order. The sort 
and select ADT operations require starting from scratch with one of 
the methods described in Chapters 6 through 10, so linear probing is 
not appropriate for applications where these operations are performed 
frequently. 

How do we delete a key from a table built with linear probing? 
We cannot just remove it, because items that were inserted later might 
have skipped over that item, so searches for those items would termi
nate prematurely at the hole left by the deleted item. One solution to 
this problem is to rehash all the items for which this problem could 
arise-those between the deleted one and the next unoccupied position 
to the right. Figure 14.8 shows an example illustrating this process; 
Program 14.5 is an implementation. In a sparse table, this repair pro
cess will require only a few rehash operations, at most. Another way 
to implement deletion is to replace the deleted key with a sentinel key 
that can serve as a placeholder for searches but can be identified and 
reused for insertions (see Exercise 14· 33). 
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Program 14.5 Deletion in a linear-probing hash table 

To delete an item with a given key, we search for such an item and 
replace it with NULLitem. Then, we need to correct for the possibility 
that some item that lies to the right of the now-unoccupied position 
originally hashed to that position or to its left, because the vacancy 
would terminate a search for such an item. Therefore, we reinsert all 
the items in the same cluster as the deleted item and to that item's 
right. Since the table is less than half full, the number of items that are 
reinserted will be small, on the average. 

void STdelete(Item item) 
{ int j, i = hash (key (item) , M); Item v; 

while (! null (i)) 

if eq(key(item) , key(st[i])) break; 
else i = (i+1) % M; 

if (null(i)) return; 
st[i] = NULLitem; N--; 
for (j i+1; !null(j); j = (j+1) %M, N--) 

{v st[j]; st[j] NULLitem; STinsert(v); } 
} 

Exercises 

[> 14.24 How long could it take, in the worst case, to insert ]II keys into an 
initially empty table, using linear probing? 

[> 14.25 Give the contents of the hash table that results when you insert items 
with the keys E A S Y Q UTI 0 N in that order into an initially empty table 
of size 1'li1 = 16 using linear probing. Use the hash function 11k mod M to 

transform the kth letter of the alphabet into a table index. 

14.26 Do Exercise 14.25 for M = 10. 

014.27 Write a program that inserts 105 random nonnegative integers less than 
106 into a table of size 105 using linear probing, and that plots the total number 
of probes used for each 103 consecutive insertions. 

14.28 Write a program that inserts ]II/2 random integers into a table of size 
]II using linear probing, then computes the average cost of a search miss in the 
resulting table from the cluster lengths, for ]II lO3, lO4, lO5, and 106. 

14.29 Write a program that inserts ]II/2 random integers into a table of size 
IV using linear probing, then computes the average cost of a search hit in the 
resulting table, for ]II 103

, 104
, 105

, and 106
• Do not search for all the keys 

at the end (keep track of the cost of constructing the table). 
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Figure 14.9 
Double hashing 

This diagram shows the process of 
inserting the keys A S ERe H 1 N 
G X M P L into an initially empty 
hash table with open addressing, 
using the hash values given at the 
top and resolving collisions with 
double hashing. The first iJnd sec
ond hash values for each key ap
pear in the t1¥o rows below that 
key. As in Figure 14.7, table posi
tions that are probed are unshaded. 
The A goes into position 7, then 
the S goes into position 3, then the 
E goes into position 9, as in Fig
ure 14.7, but the R goes into po
sition 1 after the collision at posi
tion 9, using its second hash value 
of 5 for the probe increment after 
collision. Similarly, P goes into po
sition 6 on the final insertion after 
collisions at positions 8, 12, 3, 7, 
11, and 2, using its second hash 
value 4 as the probe increment. 
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• 	I4.30 Run experiments to determine whether the average cost of search hits 
or search misses changes as a long sequence of alternating random insertions 
and deletions using Programs I4.4 and 14.5 is made in a hash table of size 2N 
with N keys, for N = 10, 100, and 1000, and for up to N 2 insertion-deletion 
pairs for each N. 

14.4 Double Hashing 

The operative principle of linear probing (and indeed of any hashing 
method) is a guarantee that, when we are searching for a particular 
key, we look at every key that hashes to the same table address (in 
particular, the key itself, if it is in the table), In an open addressing 
scheme, however, other keys are typically also examined, particularly 
when the table begins to fill up. In the example depicted in Figure 14.7, 
a search for N involves looking at C, E. R, and I, none of which had 
the same hash value. What is worse, insertion of a key with one hash 
value can drastically increase the search times for keys with other hash 
values: in Figure I4. 7, the insertion of Mcaused increased search times 
for positions 7-12 and 0-1. This phenomenon is called clustering 
because it has to do with the process of cluster formation. It can make 
linear probing run slowly for nearly full tables. 

Fortunately, there is an easy way to virtually eliminate the clus
tering problem: double hashing. The basic strategy is the same as for 
linear probing; the only difference is that, instead of examining each 
successive table position following a collision, we use a second hash 
function to get a fixed increment to use for the probe sequence. An 
implementation is given in Program 14.6. 

The second hash function must be chosen with some care, since 
otherwise the program may not work at all. First, we must exclude 
the case where the second hash function evaluates to 0, since that 
would lead to an infinite loop on the very first collision. Second, it 
is important that the value of the second hash function be relatively 
prime to the table size, since otherwise some of the probe sequences 
could be very short (for example, consider the case where the table size 
is twice the value of the second hash function). One way to enforce 
this policy is to make M prime and to choose a second hash function 
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Program q.6 Double hashing 

Double hashing is the same as linear probing except tbat we use a 
second hash function to determine the search increment to use after 
each collision. The search increment must be nonzero, and the table 
size and the search increment should be relatively prime. The STdelete 
function for linear probing Program 14.5) does not work with 
double hashing, because any key might be in many different probe 
sequences. 

void STinsert(Item item) 
{ 	Key v key(item); 


int i hash(v, M); 

int k hashtwo(v, M); 

while (Inull(i)) i ; (i+k) %M; 

st[i] ; item; N++; 


} 

Item STsearch(Key v) 
{ 	 int i = hash(v, M); 


int k = hashtwo(v, M); 

while (!nullO)) 


if eq(v, key(st[i])) return st[i]; 

else i (i+k) %M; 


return NULLitem; 

} 


that returns values that are less than M. In practice, a simple second 
hash function such as 

#define hashtwo(v) «v % 97)+1) 

will suffice for many hash functions, when the table size is not small. 
Also in practice, any loss in efficiency that is due to this simplification 
is not likely to be noticeable, much less to be significant. If the table is 
huge and sparse, the table size itself does not need to be prime because 
just a few probes will be used for every search (although we might 
want to test for and abort long searches to guard against an infinite 
loop, if we cut this corner (see Exercise I4-38)). 

Figure 14-9 shows the process of building a small table with dou
ble hashing; Figure 14. TO shows that double hashing results in many 
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Figure I4.IO fewer clusters (which are therefore much shorter) than the clusters leftClustering 

by linear probing.
These diagrams show the place
ment of records as we insert them Property 14.4 When collisions are resolved with double hashing, the 

into a hash table using linear prob
average number of probes required to search in a hash table of size 11,;!
ing (center) and double ha.shing 

that contains N = a11;I keys is(bottom), with the key value dis
tribution shown at the top. Each 1 1 1 
line shows the result of inserting a1n(l(;) and 

I-a
10 records. As the table fills, the 

records cluster together into sefor hits and misses, respectively. 

quences separated by empty table 

positions. Long clusters are undeThese formulas are the result of a deep mathematical analysis done 
sirable because the average cost of by Guibas and Szemeredi (see reference section). The proof is based 
searching for one of the keys in the on showing that double hashing is nearly equivalent to a more com
cluster is proportional to the clus

plicated random hashing algorithm where we use a key-dependentter length. With linear probin& the 
sequence of probe positions with each probe equally likely to hit eachlonger clusters are, the more likely 

they are to increase in length, 50 a table position. This algorithm is only an approximation to double 
few long clusters dominate as the hashing for many reasons: for example, we take pains in double hash
table fills up. With double hashing to ensure that we try every table position once, but random hashing
ing; this effect is much less pro

could examine the same table position more than once. Still, for sparsenounced, and the clusters remain 
relatively short. tables, the probabilities of collisions for the two methods are simi

lar. We are interested in both: Double hashing is easy to implement, 
whereas random hashing is easy to analyze. 



597 HASHING §I4.4 

The average cost of a search miss for random hashing is given by 
the equation 

1 1N (N)2 (N)31+ 2v[+ M + M + ... (Nj2vf) 1 0: 

The expression on the left is the sum of the probability that a search 
miss uses more than k probes, for k 0, 1,2, ... (and is equal to the 
average from elementary probability theory). A search always uses 
one probe, then needs a second probe with probability NjM, a third 
probe with probability (Njlvf)2, and so forth. We can also use this 
formula to compute the following approximation to the average cost 
of a search hit in a table with N keys: 

Each key in the table is equally likely to be hit; the cost of finding a 
key is the same as the cost of inserting it; and the cost of inserting the 
.7th key in the table is the cost of a search miss in a table of j 1 keys, 
so this formula is the average of those costs. Now, we can simplify 
and evaluate this sum by multiplying the top and bottom of all the 
fractions by Ai: 

~(l+
N 

and further simplify to get the result 

M 1 
N (H.M HM~N) >:::: ~ 

since HM >:::: In M .• 

The precise nature of the relationship between the performance of 
double hashing and the random-hashing ideal that was proven by 
Guibas and Szemeredi is an asymptotic result that need not be relevant 
for practical table sizes; moreover, the results rest on the assumption 
that the hash functions return random values. Still, the asymptotic 
formulas in Property I4.5 are accurate predictors of the performance 
of double hashing in practice, even when we use an easy-to-compute 
second hash function such as (v % 97) +1. As do the corresponding 
formulas for linear probing, these formulas approach infinity as 0: 

approaches 1, but they do so much more slowly. 



Figure 14.II 
Costs of open-addressing 

search 

These plots show the costs of 
building a hash table of size 1000 
by inserting keys into an initially 
empty table using linear probing 
(top) and double hashing (bottom). 
Each bar represents the cost of 20 
keys. The gray curves show the 
costs predicted by theoretical anal
ysis (see Properties 14.4 and 14.S). 
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The contrast between linear probing and double hashing is illus
trated clearly in Figure 14.11. Double hashing and linear probing have 
similar performance for sparse tables, but we can allow the table to 
become more nearly full with double hashing than we can with linear 
probing before performance degrades. The following table summa
rizes the expected number of probes for search hits and misses with 
double hashing: 

load factor (Q) 1/2 2/3 3/4 9/10 

search hit 1.4 1.6 1.8 2.6 
search miss 1.5 2.0 3.0 5.5 

Search misses are always more expensive than hits, and both require 
only a few probes, on the average, even in a table that is nine-tenths 
full. 

Looking at the same results in another way, double hashing al
lows us to use a smaller table than we would need with linear probing 
to get the same average search times. 

Property 14.5 We can ensure that the average cost ofall searches is 
less than t probes by keeping the load factor less than 1 1/0 for 
linear probing and less than 1 - 1ft for double hashing. 

Set the equations for search misses in Property 14.4 and Property 14.5 
equal to t, and solve for Q. • 

For example, to ensure that the average number of probes for a search 
is less than 10, we need to keep the table at least 32 percent empty for 
linear probing, but only 10 percent empty for double hashing. If we 
have 105 items to process, we need space for just another 104 items 
to be able to do unsuccessful searches with fewer than 10 probes. By 
contrast, separate chaining would require more than 105 links, and 
BSTs would require twice that many. 

The method of Program 14.5 for implementing the delete opera
tion (rehash the keys that might have a search path containing the item 
to be deleted) breaks down for double hashing, because the deleted key 
might be in many different probe sequences, involving keys through
out the table. Thus, we have to resort to the other method that we 
considered at the end of Section 12.3: We replace the deleted item with 
a sentinel that marks the table position as occupied but does not match 
any key (see Exercise 14.33). 
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Like linear probing, double hashing is not an appropriate basis 
for implementing a full-function symbol table ADT where we need to 
support the sort or select operations. 

Exercises 

[> I4.3 I Give the contents of the hash table that results when you insert items 
with the keys E A S Y Q UTI 0 N in that order into an initially empty table 
of size 1'v1 = 16 using double hashing. Use the hash function 11k mod k1 for 
the initial probe and the second hash function (k mod 3) + 1 for the search 
increment (when the is the kth letter of the alphabet). 

[>14.32 Answer Exercise I4.3I for M 10 

I4.33 Implement deletion for double hashing, using a sentinel item. 

14.34 Modify your solution to Exercise 14.27 to use double hashing. 

I4.35 Modify your solution to Exercise 14.28 to use double hashing. 

I4.36 Modify your solution to Exercise 14.29 to use double hashing. 

014.37 Implement an algorithm that approximates random hashing, by pro
viding the key as a seed to an in-line random number generator (as in Pro
gram 14.2). 

14.38 Suppose that a table of size is half full, with occupied positions 
chosen at random. Estimate the probability that all positions with indices 
divisible by 100 are occupied. 

[> 14.39 Suppose that you have a bug in your double-hashing code such that one 
or both of the hash functions always return the same value (not 0). Describe 
what happens in each of these situations: (i) when the first one is wrong (ii) 
when the second one is wrong, and (iii) when both are wrong. 

I4.5 Dynamic Hash Tables 

As the number of keys in a hash table increases, search performance de
grades. With separate chaining, the search time increases gradually
when the number of keys in the table doubles, the search time doubles. 
The same is true of open-addressing methods such as linear probing 
and double hashing for sparse tables, but the cost increases dramat
ically as the table fills up, and, worse, we reach a point where no 
more keys can be inserted at all. This situation is in contrast to search 
trees, which accommodate growth naturally. For example, in a red
black tree, the search cost increases only slightly (by one comparison) 
whenever the number of nodes in the tree doubles. 
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Program 14.7 Dynamic hash insertion (for linear probing) 

This implementation of STinsert for linear probing (see Program 14.4) 
handles an arbitrary number of keys by doubling the size of the table 
each time that the table becomes half full. Doubling requires that we 
allocate memory for the new table, rehash all the keys into the new table, 
then free the memory for the old table. The function init is an internal 
version of STinit; the ADT initialization STinit can be changed to 
start the table size M at 4 or any larger value. This same approach can 
be used for double hashing or separate chaining. 

void expand() ; 

void STinsert(Item item) 


{ 	Key v = key(item); 

int i = hash(v, M); 

while (!null(i)) i = (i+l) %M; 

st[i] item; 

if (N++ >= M/2) expand(); 


} 


void expand () 

{ 	 int i; Item *t st; 


init(M+M); 

for (i = 0; i < M/2; i++) 


if (key(t[i]) != key(NULLitem)) 

STinsert(t[i]); 


free(t); 

} 

One way to accomplish growth in a hash table is to double the 
table's size when it begins to fill up. Doubling the table is an expensive 
operation because everything in the table has to be reinserted, but 
it is an operation that is performed infrequently. Program 14.7 is 
an implementation of growth by doubling for linear probing. An 
example is depicted in Figure 14.12. The same solution also works 
for double hashing, and the basic idea applies to separate chaining 
as well (see Exercise 14.46). Each time that the table gets more than 
half full, we expand the table by doubling it in size. After the first 
expansion, the table is always between one-quarter and one-half full, so 
the search cost is less than three probes, on the average. Furthermore, 
although the operation of rebuilding the table is expensive, it happens 
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so infrequently that its cost represents only a constant fraction of the 
total cost of building the table. 

Another way to express this concept is to say that the average 
cost per insertion is less than four probes. This assertion is not the 
same as saying that each insertion requires less than four probes on 
the average; indeed, we know that those insertions that cause the table 
to double will require a number of probes. This argument is 
a simple example of amortized analysis: We cannot guarantee that 
each and every operation will be fast for this algorithm, but we can 
guarantee that the average cost per operation will be low. 

Although the total cost is low, the performance profile for inser
tions is erratic: Most operations are extremely fast, but certain rare 
operations require about as much time as the whole previous cost of 
building the table. As a table grows from 1 thousand to 1 million 
keys, this slowdown will happen about 10 times. This kind of behav
ior is acceptable in many applications, but it might not be appropriate 
when absolute performance guarantees are desirable or required. For 
example, while a bank or an airline might be willing to suffer the 
consequences of keeping a customer waiting for so long on 10 out of 
every 1 million transactions, long waits might be catastrophic in other 
applications, such as an online system implementing a large financial 
transaction-processing system or in an air-traffic control system. 

Figure 14.12 

Dy~amic hash-table expan
sion 

This diagram shows the process of 
inserting the keys AS ERe H I 
N G X M P L into a dynamic hash 
table that expands by doubling, 
using the hash values given at the 
top and resolving collisions with 
linear probing. The four rows be
neath the keys give the hash values 
when the table size is 4, 8, 16, and 
32. The table size starts at 4, dou
bles to 8 for the E, to 16 for the C 
and to 32 for the G. All keys are 
rehashed and reinserted when the 
table size doubles. All insertions 
are into sparse tables (less than 
one-quarter full for reinsertion, be
tween one-quarter and one-half full 
otherwise), so there are few colli
sions. 
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Figure 14.13 
Dynamic hashing 

This diagram shows the number 
of keys in the table (bottom) and 
the table size (top) when we insert 
keys into and delete them from a 
dynamic hash table using an algo
rithm that doubles the table when 
an insert makes it half full and 
halves the table when a deletion 
makes it one-eighth full. The table 
size is initialized at 4 and is always 
a power of 2 (dotted lines in the 
figure are at powers of 2). The ta
ble size changes when the curve 
tracing the number of keys in the 
table crosses a dotted line for the 
first time after having crossed a 
different dotted line. The table is 
always between one-eighth and 
one-half full. 

If we support the delete ADT operation, then it may be worth
while to contract the table by halving it as it shrinks (see Exer
cise 14.44), with one proviso: The thresholds for shrinking have to be 
separated from those for growing, because otherwise a small number 
of insert and delete operations could cause a sequence of doubling and 
halving operations even for huge tables. 

Property I4.6 A sequence oft search, insert, and delete symbol-table 
operations can be executed in time proportional to t and with memory 
usage always within a constant factor of the number of keys in the 
table. 

We use linear probing with growth by doubling whenever an insert 
causes the number of keys in the table to be half the table size, and 
we use shrinkage by halving whenever a delete causes the number of 
keys in the table to be one-eighth the table size. In both cases, after the 
table is rebuilt to size N, it has N /4 keys. Then, N/4 insert operations 
must be executed before the table doubles again (by reinsertion of 
N/2 keys into a table of size 2N), and N/8 delete operations must be 
executed before the table halves again (by reinsertion of N /8 keys into 
a table of size N/2). In both cases, the number of keys reinserted is 
within a factor of 2 of the number of operations that we performed 
to bring the table to the point of being rebuilt, so the total cost is 
linear. Furthermore, the table is always between one-eighth and one
fourth full (see Figure 14.13), so the average number of probes for 
each operation is less than 3, by Property I4-4- • 

This method is appropriate for use in a symbol-table implemen
tation for a general library where usage patterns are unpredictable, 
because it can handle tables of all sizes in a reasonable way. The 
primary drawback is the cost of rehashing and allocating memory 
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when the table expands and shrinks; in the typical case, when searches 
predominate, the guarantee that the table is sparse leads to excellent 
performance. In Chapter 16, we shall consider another approach that 
avoids rehashing and is suitable for huge external search tables. 

Exercises 

I> 14.40 Give the contents of the hash table that results when you insert items 
with the keys E A S Y Q UTI 0 N in that order into an initially empty table 
of initial size M = 4 that is expanded with doubling whenever half full, with 
collisions resolved using linear probing. Use the hash function 11k mod M to 
transform the kth letter of the alphabet into a table index. 

14.4 I Would it be more economical to expand a hash table by tripling (rather 
than doubling) the table in size when the table is half full? 

14.42 Would it be more economical to expand a hash table by tripling the 
table in size when the table is one-third full (rather than doubling the table in 
size when the table is half full)? 

14.43 Would it be more economical to expand a hash table by doubling the 
table in size when the table is three-quarters (rather than half) full? 

14.44 Add to Program 14.7 a delete function that deletes an item as in Pro
gram 14.4 but then contracts the table by halving it if the deletion leaves it 
seven-eighths empty. 

014.45 	Implement a version of Program 14.7 for separate chaining that in
creases the table size by a factor of 10 each time the average list length is equal 
to 10. 

14.46 Modify Program 14.7 and your implementation from Exercise 14.44 
to use double hashing with lazy deletion (see Exercise 14.33). Make sure 
that your program takes into account the number of dummy items, as well as 
the number of empty positions, in making the decisions whether to expand or 
contract the table. 

I4.6 Perspective 

The choice of the hashing method that is best suited for a particular 
application depends on many different factors, as we have discussed 
when examining the methods. All the methods can reduce the symbol
table search and insert functions to constant-time operations, and all 
are useful for a broad variety of applications. Roughly, we can char
acterize the three major methods (linear probing, double hashing, and 
separate chaining) as follows: Linear probing is the fastest of the three 
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(if sufficient memory is available to ensure that the table is sparse), dou
ble hashing makes the most efficient use of memory (but requires extra 
time, to compute the second hash function), and separate chaining is 
the easiest to implement and deploy (provided that a good storage al
locator is available). Table 14.1 gives empirical data and commentary 
on the performance of the algorithms. 

The choice between linear probing and double hashing depends 
primarily on the cost of computing the hash function and on the load 
factor of the table. For sparse tables (small a), both methods use only a 
few probes, but double hashing could take more time because it has to 
compute two hash functions for long keys. As a approaches 1, double 
hashing far outperforms linear probing, as we saw in Figure 14.1I. 

Comparing linear probing and double hashing against separate 
chaining is more complicated, because we have to account precisely 
for memory usage. Separate chaining uses extra memory for links; 
the open-addressing methods use extra memory implicitly within the 
table to terminate probe sequences. The following concrete example 
illustrates the situation: Suppose that we have a table of M lists built 
with separate chaining, that the average length of the lists is 4, and that 
items and links each occupy a single machine word. The assumption 
that items and links take the same amount of space is justified in many 
situations because we would replace huge items with links to the items. 
With these assumptions, the table uses 9J\,1 words of memory (4A1 for 
items and 51Y! for links), and delivers an average search time of 2 
probes. But linear probing for 4}\1 items in a table of size 9A1 requires 
just (1 + 1/(1 - 4/9))/2 1.4 probes for a search hit, a value that is 
30 percent faster than separate chaining for the same amount of space; 
and linear probing for 4}\;1 items in a table of size 6M requires 2 probes 
for a search hit (on the average), and thus uses 33 percent less space 
than separate chaining for the same amount of time. Furthermore, we 
can use a dynamic method such as Program 14.7 to ensure that the 
table can grow while staying sparsely populated. 

The argument in the previous paragraph indicates that it is not 
normally justifiable to choose separate chaining over open addressing 
on the basis of performance. However, separate chaining with a fixed 
lv1 is often chosen in practice for a host of other reasons: it is easy to 
implement (particularly delete); it requires little extra memory for items 
that have preallocated link fields for use by symbol-table and other 
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ADTs that may need them; and, although its performance degrades as 
the number of items in the table grows, the degradation is graceful, 
and takes place in a manner that is unlikely to harm the application 
because it still is a factor of M faster than sequential search. 

Many other hashing methods have been developed that have 
application in special situations. Although we cannot go into details, 
we consider three examples briefly to illustrate the nature of specially 
adapted hashing methods. 

One class of methods moves items around during insertion in 
double hashing to make successful search more efficient. In fact, Brent 
developed a method for which the average time for a successful search 
can be bounded by a constant, even in a full table (see reference sec
tion). Such a method might be useful in applications where search hits 
are the predominant operation. 

Another method, called ordered hashing, exploits ordering to 
reduce the cost for unsuccessful search in linear probing to be close 
to the cost for successful search. In standard linear probing, we stop 
the search when we find an empty table position or an item with a key 
equal to the search key; in ordered hashing, we stop the search when 
we find an item with a key greater than or equal to the search key (the 
table must be constructed cleverly if this procedure is to work) (see 
reference section). This improvement by introducing ordering in the 
table is on the same order as that we achieved by ordering the lists 
in separate chaining. This method is designed for applications where 
search misses predominate. 

A symbol table that has a fast search miss and somewhat slower 
search hit can be used to implement an exception dictionary. For 
example, a text-processing system might have an algorithm for hy
phenating words that works well for most words, but does not work 
for bizarre cases (such as "bizarre"). Only a few words in a huge 
document are likely to be in the exception dictionary, so nearly all the 
searches are likely to be misses. 

These examples are only a few of a large number of algorith
mic improvements that have been suggested for hashing. Many of 
these improvements are interesting and have important applications. 
Our usual cautions must be raised against premature use of advanced 
methods except when the requirements are serious and the perfor
mancelcomplexity tradeoffs are carefully considered, because separate 
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Table 14.1 Empirical study of hash-table implementations 

These relative timings for building and searching symbol tables from 
random sequences of 32-bit integers confirm that hashing is significantly 
faster than tree search for keys that are easily hashed. Among the hashing 
methods, double hashing is slower than separate chaining and linear 
probing for sparse tables (because of the cost of computing the second 
hash function) but is much faster than linear probing as the table fills, 
and is the only one of the methods that can provide fast search using 
only a small amount of extra memory. Dynamic hash tables built with 
linear probing and expansion by doubling are more costly to construct 
than are other hash tables because of memory allocation and rehashing, 
but certainly lead to the fastest search times, and represent the method of 
choice when search predominates and when the number of keys cannot 
be predicted accurately in advance. 

construction search misses 

N R H P D P* R H P 0 P* 
~-----.-.-----------~-----~--~~--

1250 0 5 3 0 0 0 

2500 3 3 4 2 0 0 0 

5000 6 1 4 4 3 2 0 1 0 

12500 14 6 5 5 5 6 2 2 

25000 34 9 7 8 11 16 5 3 4 3 

50000 74 18 11 12 22 36 15 8 8 8 

100000 182 35 21 23 47 84 45 23 21 15 

150000 54 40 36 138 99 89 52 21 

160000 58 43 44 147 115 133 66 23 

170000 68 55 45 136 121 226 85 25 

180000 65 61 50 152 133 449 125 27 

190000 79 106 59 155 144 2194 261 30 

200000 407 84 159 186 156 33 
-.--.-~.- ~.-- ~.---- ._- ._- ._------ ._- -- ._- -- ._- -- ._-- -- --

Key: 
R Red-black BST (Programs I2.7 and I3.6) 

H Separate chaining (Program 14.3 with table size 20000) 

P Linear probing (Program I4.4 with table size 200000) 

D Double hashing (Program I4.6 with table size 200000) 

P Linear probing with expansion by doubling (Program 14-7) 
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chaining, linear probing and double hashing are simple, efficient, and 
acceptable for most applications. 

The problem of implementing an exception dictionary is an ex
ample of an application where we can recast our algorithm slightly to 
optimize performance for the most frequently performed operation
in this case search miss. For example, suppose that we have a 1000
item exception dictionary, have 1 million items to look up in the dic
tionary, and expect virtually all the searches to end as misses. This 
situation might arise if the items were bizarre English-language words 
or random 32-bit integers. One way to proceed is to hash all the words 
to, say, IS-bit hash values (table size about 216 ). The 1000 exceptions 
occupy 1/64 of the table, and most of the 1 million searches end im
mediately with search misses, finding the empty table position on the 
first probe. But if the table contains 32-bit words, we can do much 
better by converting it into a bit-exception table and using 20-bit hash 
values. If we have a search miss (as we do most of the time), we finish 
the search with one bit test; a search hit requires a secondary test in 
a smaller table. The exceptions occupy 1/1000 of the table; search 
misses are by far the most likely operation; and we accomplish the 
task with 1 million directly indexed bit tests. This solution exploits 
the basic idea that a hash function produces a short certificate that 
represents a key-an essential concept that is useful in applications 
other than symbol-table implementations. 

Hashing is preferred to the binary-tree structures of Chapters 12 

and 13 as the symbol-table implementation for many applications, 
because it is somewhat simpler and can provide optimal (constant) 
search times, if the keys are of a standard type or are sufficiently 
simple that we can be confident of developing a good hash function 
for them. The advantages of binary-tree structures over hashing are 
that the trees are based on a simpler abstract interface (no hash function 
need be designed); the trees are dynamic (no advance information on 
the number of insertions is needed); the trees can provide guaranteed 
worst-case performance (everything could hash to the same place even 
in the best hashing method); and the trees support a wider range of 
operations (most important, sort and select). When these factors are 
not important, hashing is certainly the search method of choice, with 
one more important proviso: When keys are long strings, we can build 
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them into data structures that can provide for search methods even 
faster than hashing. Such structures are the subject of Chapter 15. 

Exercises 

I> 14.47 For 1 million integer keys, compute the hash-table size that makes each 
of the three hashing methods (separate chaining, linear probing, and double 
hashing) use the same number of key comparisons as BSTs for a search miss, 
on the average, counting the hash-function computation as a comparison. 

I> 14.48 For 1 million integer keys, compute the number of comparisons for 
each of the three hashing methods (separate chaining, linear probing, and 
double hashing) for a search miss, on the average, when they can use a total 
of 3 million words of memory (as BSTs would). 

14.49 Implement a symbol-table ADT with fast search miss as described in 
the text, using separate chaining for secondary testing. 
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Radix Search 


SEVERAL SEARCH METHODS proceed by examining the search 
keys one small piece at a time, rather than using full compar

isons between keys at each step. These methods, called radix-search 
methods, operate in a manner entirely analogous to the radix-sorting 
methods that we discussed in Chapter 10. They are useful when the 
pieces of the search keys are easily accessible, and they can provide 
efficient solutions to a variety of practical search tasks. 

We use the same abstract model that we used in Chapter 10: 

Depending on the context, a key may be a word (a fixed-length se
quence of bytes) or a string (a variable-length sequence of bytes). We 
treat keys that are words as numbers represented in a base-R number 
system, for various values of R (the radix), and work with individ
ual digits of the numbers. We can view C strings as variable-length 
numbers terminated by a special symbol so that, for both fixed- and 
variable-length keys, we can base all our algorithms on the abstract 
operation "extract the ith digit from a key," including a convention to 
handle the case that the key has fewer than i digits. 

The principal advantages of radix-search methods are that the 
methods provide reasonable worst-case performance without the com
plication of balanced trees; they provide an easy way to handle 
variable-length keys; some of them allow space savings by storing 
part of the key within the search structure; and they can provide fast 
access to data, competitive with both binary search trees and hashing. 
The disadvantages are that some of the methods can make inefficient 
use of space, and that, as with radix sorting, performance can suffer if 
efficient access to the bytes of the keys is not available. 
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A 00001 
S 10011 
E 00101 
R 10010 
C 00011 
H 01000 
101001 
N 01110 
G 00111 
X 11000 
M01101 
P 10000 
L 01100 

Figure 15.1 

Binary representation of 
single-character keys 

As we did in Chapter 10, we use 
the 5-bit binary representation of 
i to represent theith letter in the 
alphabet, as shown here for several 
sample keys, for the small exam
ples in the figures in this chapter. 
We consider the bits as numbered 
from 0 to 4, from left to right. 
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First, we examine several search methods that proceed by ex
amining the search keys 1 bit at a time, using them to travel through 
binary tree structures. We examine a series of methods, each one 
correcting a problem inherent in the previous one, culminating in an 
ingenious method that is useful for a variety of search applications. 

Next, we examine generalizations to R-way trees. Again, we 
examine a series of methods, culminating in a flexible and efficient 
method that can support a basic symbol-table implementation and 
numerous extensions. 

In radix search, we usually examine the most significant digits of 
the keys first. Many of the methods directly correspond to MSD radix
sorting methods, in the same way that BST-based search corresponds 
to quicksort. In particular, we shall see the analog to the linear-time 
sorts of Chapter 10-Constant-time search methods based on the same 
principle. 

At the end of the chapter, we consider the specific application 
of using radix-search structures to build indexes for large text strings. 
The methods that we consider provide natural solutions for this ap
plication, and help to set the stage for us to consider more advanced 
string-processing tasks in Part 5. 

15. I Digital Search Trees 

The simplest radix-search method is based on use of digital search trees 
(DSTs). The search and insert algorithms are identical to binary tree 
search except for one difference: We branch in the tree not according to 
the result of the comparison between the full keys, but rather according 
to selected bits of the key. At the first level, the leading bit is used; 
at the second level, the second leading bit is used; and so on, until an 
external node is encountered. Program 15. I is an implementation of 
search; the implementation of insert is similar. Rather than using less 
to compare keys, we assume that the digit function is available to 
access individual bits in keys. This code is virtually the same as the 
code for binary tree search (see Program 12.7), but has substantially 
different performance characteristics, as we shall see. 

We saw in Chapter 10 that we need to pay particular attention to 
equal keys in radix sorting; the same is true in radix search. Generally, 
we assume in this chapter that all the key values to appear in the 
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Program I5.1 Binary digital search tree 

To develop a symbol-table implementation using DSTs, we modify the 
implementations of search and insert in the standard BST implemen
tation (see Program 12.7) as shown in this implementation of search. 
Rather than doing a full key comparison, we decide whether to move 
left or right on the basis of testing a single bit (the leading bit) of the key. 
The recursive function calls have a third argument so that we can move 
the bit position to be tested to the right as we move down the tree. We 
use the digit operation to test bits, as discussed in Section IO.I. These 
same changes apply to implementation of insert; otherwise, we use all 
the code from Program 12.7. 

Item searchR(link h, Key v, int w) 
{ Key t = key(h->item); 

if (h == z) return NULLitem; 
if eq(v, t) return h->item; 
if (digit(v, w) == 0) 

return searchR(h->l, v, w+1); 
else return searchR(h->r, v, w+1); 

} 

Item STsearch(Key v) 

{ return searchR(head, v, 0); } 


symbol table are distinct. We can do so without loss of generality 
because we can use one of the methods discussed in Section 12.1 

to support applications that have records with duplicate keys. It is 
important to focus on distinct key values in radix search, because key 
values are intrinsic components of severa) of the data structures that 
we shall consider. 

Figure 15.1 gives binary representations for the one-letter keys 
used in other figures in the chapter. Figure 15.2 gives an example of 
insertion into a DST; Figure 15.3 shows the process of inserting keys 
into an initially empty tree. 

The bits of the keys control search and insertion, but note that 
DSTs do not have the ordering property that characterizes BSTs. That 
is, it is not necessarily the case that nodes to the left of a given node 
have smaller keys or that nodes to the right have larger keys, as would 
be the case in a BST with distinct keys. It is true that keys on the left 
of a given node are smaller than keys on the right-if the node is at 

Figure 15.2 
Digital search tree and inser

tion 

In an unsuccessful search for M = 

01101 in this sample digital search 
tree (top), we move left at the root 
(since the first bit in the binary rep
resentation of the key is 0) then 
right (since the second bit is 1), 
then right, then left, to finish at the 
null left link below N. To insert M 
(bottom), we replace the null link 
where the search ended with a link 
to the new node, just as we do 
with BST insertion. 
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Figure 15.3 
Digital search tree construc

tion 

This sequence depicts the result of 
inserting the keys A S ERe H I 
N G into an initially empty digital 
search tree. 
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level k, they all agree in the first k bits, but the next bit is 0 for the keys 
on the left and is 1 for the keys on the right-but the node's key could 
itself could be the smallest, largest, or any value in between of all the 
keys in that node's subtree. 

DSTs are characterized by the property that each key is some
where along the path specified by the bits of the key (in order from 
left to right). This property is sufficient for the search and insert 
implementations in Program 15. I to operate properly. 

Suppose that the keys are words of a fixed length, all consisting 
of 10 bits. Our requirement that keys are distinct implies that N :s: 
2"), and we normally assume that N is significantly smaller than 2"', 
since otherwise key-indexed search (see Section I2.2) would be the 
appropriate algorithm to use. Many practical problems fall within 
this range. For example, DSTs are appropriate for a symbol table 
containing up to 105 records with 32-bit keys (but perhaps not as 
many as lO6 records), or for any number of 64-bit keys. Digital tree 
search also works for variable-length keys; we defer considering that 
case in detail to Section I 5.2, where we consider a number of other 
alternatives as well. 

The worst case for trees built with digital search is much better 
than that for binary search trees, if the number of keys is large and 
the key lengths are small relative to the number of keys. The length of 
the longest path in a digital search tree is likely to be relatively small 
for many applications (for example, if the keys comprise random bits). 
In particular, the longest path is certainly limited by the length of the 
longest key; moreover, if the keys are of a fixed length, then the search 
time is limited by the length. Figure I 5.4 illustrates this fact. 

Property 15.1 A search or insertion in a digital search tree requires 
about 19 N comparisons on the average, and about 21g N comparisons 
in the worst case, in a tree built from N random keys. The number of 
comparisons is never more than the number of bits in the search key. 

We can establish the stated average-case and worst-case results for 
random keys with an argument similar to one given for a more natural 
problem in the next section, so we leave this proof for an exercise there 
(see Exercise 15.29). It is based on the simple intuitive notion that the 
unseen portion of a random key should be equally likely to begin with 
a 0 bit as a 1 bit, so half should fall on either side of any node. Each 
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time that we move down the tree, we use up a key bit, so no search 
in a digital search tree can require more comparisons than there are 
bits in the search key. For the typical condition where we have ill-bit 
words and the number of keys N is far smaller than the total possible 
number of keys 2w, the path lengths are close to 19 N, so the number 
of comparisons is far smaller than the number of bits in the keys for 
random keys. _ 

Figure 15.5 shows a large digital search tree made from random 
7 -bit keys. This tree is nearly perfectly balanced. DSTs are attractive 
in many practical applications because they provide near-optimal per
formance even for huge problems, with little implementation effort. 
For example, a digital search tree built from 32-bit keys (or four 8-bit 
characters) is guaranteed to require fewer than 32 comparisons, and 
a digital search tree built from 64-bit keys (or eight 8-bit characters) 
is guaranteed to require fewer than 64 comparisons, even if there are 
billions of keys. For large N, these guarantees are comparable to the 
guarantee provided by red-black trees, but are achieved with about the 
same implementation effort as is required for standard BSTs (which 
can promise only guaranteed performance proportional to N 2 ). This 
feature makes the use of digital search trees an attractive alternative 
to use of balanced trees in practice for implementing the search and 
insert symbol-table functions, provided that efficient access to key bits 
is available. 

Exercises 

I> IS. I Draw the DST that results when you insert items with the keys E AS Y 
Q UTI 0 N in that order into an initially empty tree, using the binary encoding 
given in Figure 15. I. 

15.2 Give an insertion sequence for the keys ABC D E F G that results in a 
perfectly balanced DST that is also a valid BST. 

I5.3 Give an insertion sequence for the keys ABC D E F G that results in 
a perfectly balanced DST with the property that every node has a key smaller 
than those of all the nodes in its subtree. 

I> 15.4 Draw the DST that results when you insert items with the keys 0101
0011 00000111 00100001 01010001 1110110000100001 10010101 01001010 
in that order into an initially empty tree. 

15.5 Can we keep records with duplicate keys in DSTs, in the same way that 
we can in BSTs? Explain your answer. 

H 'c«o~~ 1 

~ 
o ' tB1.~ , 

oR' 

Figure 15.4 
Digital search tree, worst case 

This sequence depicts the result of 
inserting the keys P = 10000, H = 

01000, D =00100, B = 00010, and 
A 00001 into an initially empty 
digital search tree. The sequence 
of trees appears degenerate, but 
the path length is limited by the 
length of the binary representation 
of the keys. Except for 00000, no 
other 5-bit key will increase the 
height of the tree any further. 
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Figure 15.5 
Digital search tree example 

This digital .search tree, built by in
sertion of about 200 random keys, 
is as well-balanced as its counter
parts in Chapter 15. 

15.6 Run empirical studies to compare the height and internal path length 
of a DST built by insertion of N random 32-bit keys into an initially empty 
tree with the same measures of a standard binary search tree and a red-black 
tree (Chapter 13) built from the same keys, for N = 10\ 10\ 105

, and 106
• 

015.7 	 Give a full characterization of the worst-case internal path length of a 
DST with N distinct w-bit keys . 

• 15.8 Implement the delete operation for a DST-based symbol table . 

• 15.9 Implement the select operation for a DST-based symbol table. 

015.10 Describe how you could compute the height of a DST made from a 
given set of keys, in linear time, without building the DST. 

15.2 Tries 

In this section, we consider a search tree that allows us to use the bits 
of the keys to guide the search, in the same way that DSTs do, but that 
keeps the keys in the tree in order, so that we can support recursive 
implementations of sort and other symbol-table functions, as we did 
for BSTs. The idea is to store keys only at the bottom of the tree, in leaf 
nodes. The resulting data structure has a number of useful properties 
and serves as the basis for several effective search algorithms. It was 
first discovered by de la Briandais in 1959, and, because it is useful for 
retrieval, it was given the name trie by Fredkin in 1960. Ironically, in 
conversation, we usually pronounce this word "try-ee" or just "try," so 
as to distinguish it from "tree." For consistency with the nomenclature 
that we have been using, we perhaps should use the name "binary 
search trie," but the term trie is universally used and understood. We 
consider the basic binary version in this section, an important variation 
in Section 15.3, and the basic multiway version and variations in 
Sections 15-4 and 15.5. 

We can use tries for keys that are either a fixed number of bits or 
are variable-length bitstrings. To simplify the discussion, we start by 
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assuming that no search key is the prefix of another. For example, this 
condition is satisfied when the keys are of fixed length and are distinct. 

In a trie, we keep the keys in the leaves of a binary tree. Recall 
from Section 5.4 that a leaf in a tree is a node with no children, as 
distinguished from an external node, which we interpret as a null child. 
In a binary tree, a leaf is an internal node whose left and right links are 
both null. Keeping keys in leaves instead of internal nodes allows us 
to use the bits of the keys to guide the search, as we did with DSTs in 
Section 15. I, while still maintaining the basic invariant at each node 
that all keys whose current bit is 0 fall in the left subtree and all keys 
whose current bit is 1 fall in the right subtree. 

Definition 15.1 A trie is a binary tree that has keys associated with 
each of its leaves, defined recursively as follows: The trie for an empty 
set of keys is a null link; the trie for a single key is a leaf containing 
that key; and the trie for a set ofkeys ofcardinality greater than one is 
an internal node with left link referring to the trie for the keys whose 
initial bit is 0 and right link referring to the trie for the keys whose 
initial bit is 1, with the leading bit considered to be removed for the 
purpose of constructing the subtrees. 

Each key in the trie is stored in a leaf, on the path described by the 
leading bit pattern of the key. Conversely, each leaf contains the only 
key in the trie that begins with the bits defined by the path from the 
root to that leaf. Null links in nodes that are not leaves correspond to 
leading-bit patterns that do not appear in any key in the trie. Therefore, 
to search for a key in a trie, we just branch according to its bits, as we 
did with DSTs, but we do not do comparisons at internal nodes. We 
start at the left of the key and the top of the trie, and take the left link 
if the current bit is 0 and the right link if the current bit is 1, moving 
one bit position to the right in the key. A search that ends on a null 
link is a miss; a search that ends on a leaf can be completed with one 
key comparison, since that node contains the only key in the trie that 
could be equal to the search key. Program 15.2 is an implementation 
of this process. 

To insert a key into a trie, we first perform a search, as usual. If 
the search ends on a null link, we replace that link with a link to a new 
leaf containing the key, as usual. But if the search ends on a leaf, we 
need to continue down the trie, adding an internal node for every bit 

Figure 15.6 
Trie search and insertion 
Keys in a trie are stored in leaves 
(nodes with both links null); null 
links in nodes that are not leaves 
correspond to bit patterns not 
found in any keys in the trie. 

In a successful search for the 
key H = 01000 in this sample trie 
(top), we move left at the root 
(since the first bit in the binary rep
resentation of the key is 0), then 
right (since the second bit is 1), 
where we find H, which is the only 
key in the tree that begins with 01. 
None of the keys in the trie begin 
with 101 or 11; these bit patterns 
lead to the two null /inks in the trie 
that are in non-leaf nodes. 

To insert I (bottom), we need to 
add thr(c'C non-leaf nodes: one cor
responding to 01, with a null link 
corresponding to 011; one corre
sponding to 010, with a null link 
corresponding to 0101; and one 
corresponding to 0100 with H = 

01000 in a leaf on its left and I 
01001 in a leaf on its right. 
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Program 15.2 Trie search 

This function uses the bits of the key to control the branching on the 
way down the trie, in the same way as in Program I 5. I for DSTs. There 
are three possible outcomes: if the search reaches a leaf (with both 
links null), then that is the unique node in the trie that could contain 
the record with key v, so we test whether that node indeed contains v 
(search hit) or some key whose leading bits match v (search miss). If the 
search reaches a null link, then the parent's other link must not be null, 
so there is some other key in the trie that differs from the search key in 
the corresponding bit, and we have a search miss. This code assumes 
that the keys are distinct, and (if the keys may be of different lengths) 
that no key is a prefix of another. The item field is not used in non-leaf 
nodes. 

Item searchR(link h, Key v, int w) 
{ 

if (h == z) return NULLitem; 
if «h->l == z) && (h->r == z)) 

return eq(v,key(h->item)) ? h->item NULLitem 
if (digit(v, w) == 0) 

return searchR(h->l, v, w+l); 
else return searchR(h->r, v, w+l); 

} 

Item STsearch(Key v) 
{ return searchR(head, v, 0); } 

where the search key and the key that was found agree, ending with 
both keys in leaves as children of the internal node corresponding to 
the first bit position where they differ. Figure I 5.6 gives an example of 
trie search and insertion; Figure I 5.7 shows the process of constructing 
a trie by inserting keys into an initially empty trie. Program 15.3 is a 
full implementation of the insertion algorithm. 

We do not access null links in leaves, and we do not store items 
in non-leaf nodes, so we could save space in a C implementation 
by using union to define nodes as being one of these two types (see 
Exercise I 5.20). For the moment, we will take the simpler route of 
using the single node type that we have been using for BSTs, DSTs, and 
other binary tree structures, with internal nodes characterized by null 
keys and leaves characterized by null links, knowing that we could 
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Program I5-3 Trie insertion 

To insert a new node into a trie, we search as usual, then distinguish 
the two cases that can occur for a search miss. If the miss was not on 
a leaf, then we replace the null link that caused us to detect the miss 
with a link to a new node, as usual. If the miss was on a leaf, then 
we use a function split to make one new internal node for each bit 
position where the search key and the key found agree, finishing with 
one internal node for the leftmost bit position where the keys differ. The 
switch statement in split converts the 2 bits that it is testing into a 
number to handle the four possible cases. If the bits are the same (case 
002 = 0 or Ih 3), then we continue splitting; if the bits are different 
(case Oh = 1 or 102 2), then we stop splitting. 

void STinito 
{head (z NEW (NULLitem, 0, 0, 0)); } 

link split (link p, link q, int 101) 
{ link t = NEW (NULLitem, z, z, 2); 

switch(digit(p->item, 101)*2 + digit(q->item, 101)) 
{ 

case 0: t->l split(p, q, 101+1); break; 
case 1 : t->l p; t->r = q; breakj 
case 2: t->r p; t->l = q; break; 
case 3: t->r split(p, q, 101+1); break; 

} 

return tj 
} 

link insertR(link h, Item item, int 101) 
{ 	Key v = key(item)j 


if (h z) return NEW(item, z, z, 1); 

if «h->l z) && (h->r == z)) 


{ return split(NEW(item, z, z, 1), h, 101); } 
if (digit(v, 101) == 0) 

h->l insertR(h->l, item, 101+1); 

else h->r = insertR(h->r, item, 101+1); 

return h; 


} 

void STinsert(Item item) 
{head insertR(head, item, 0); } 
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Figure IS.7 
Trie construction 

This sequence depicts the result of 
inserting the keys A S ERe H I N 
into an initially empty trie. 
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reclaim the space wasted because of this simplification, if desired. In 
Section 15.3, we will see an algorithmic improvement that avoids the 
need for multiple node types, and in Chapter 16, we will examine an 
implementation that uses union. 

We now shall consider a number of basic of properties of tries, 
which are evident from the definition and these examples. 

Property I5.2 The structure of a trie is independent of the key in
sertion order: There is a unique trie for any given set of distinct keys. 

This fundamental fact, which we can prove by induction on the sub
trees, is a distinctive feature of tries: for all the other search tree 
structures that we have considered, the tree that we construct depends 
both on the set of keys and on the order in which we insert those keys . 

• 
The left subtree of a trie has all the keys that have 0 for the leading 

bit; the right subtree has all the keys that have 1 for the leading bit. 
This property of tries leads to an immediate correspondence with radix 
sorting: binary trie search partitions the file in exactly the same way 
as does binary quicksort (see Section 10.2). This correspondence is 
evident when we compare the trie in Figure 15.6 with Figure 10.4, the 
partitioning diagram for binary quicksort (after noting that the keys 
are slightly different); it is analogous to the correspondence between 
binary tree search and quicksort that we noted in Chapter 12. 

In particular, unlike DSTs, tries do have the property that keys ap
pear in order, so we can implement the sort and select symbol-table op
erations in a straightforward manner (see Exercises 15.17 and 15.I8). 
Moreover, tries are as well-balanced as DSTs. 

Property I5.3 Insertion or search for a random key in a trie built 
from N random (distinct) bitstrings requires about 19 N bit compar
isons on the average. The worst-case number of bit comparisons is 
bounded only by the number of bits in the search key. 

We need to exercise care in analyzing tries because of our insistence 
that the keys be distinct, or, more generally, that no key be a prefix 
of another. One simple model that accommodates this assumption 
requires .the keys to be a random (infinite) sequence of bits-we take 
the bits that we need to build the trie. 
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The average-case result then comes from the following proba
bilistic argument. The probability that each of the N keys in a random 
trie differ from a random search key in at least one of the leading t bits 
is 

(1 

Subtracting this quantity from 1 gives the probability that one of the 
keys in the trie matches the search key in all of the leading t bits. In 
other words, 

1 rv 
1 - (1 - 2t )' 

is the probability that the search requires more than t bit comparisons. 
From elementary probabilistic analysis, the sum for t 2: 0 of the prob
abilities that a random variable is > t is the average value of that 
random variable, so the average search cost is given by 

1 N)
2t ) . 

Using the elementary approximation (1 - l/x)X c\ we find the r-.J 

search cost to be approximately 

N 2I:(1 - e- / '). 

t2:0 

The summand is extremely close to 1 for approximately 19 N terms 
with 2t substantially smaller than N; it is extremely close to 0 for all 
the terms with 2t substantially greater than N; and it is somewhere 
between 0 and 1 for the few terms with 2t ~ N. So the grand total 
is about 19 N. Computing a more precise estimate of this quantity 
requires using extremely sophisticated mathematics (see reference sec
tion). This analysis assumes that w is sufficiently large that we never 
run out of bits during a search, but taking into account the true value 
of w will only reduce the cost. 

In the worst case, we could get two keys that have a huge number 
of equal bits, but this event happens with vanishingly small probability. 
The probability that the worst-case result quoted in Property 15.3 will 
not hold is exponentially small (see Exercise 15.28).• 

Another approach to analyzing tries is to generalize the approach 
that we used to analyze BSTs (see Property 12.6). The probability that 
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Figure 15.8 
Binary trie worst case 

This sequence depicts the result of 
inserting the keys H 01000 and I 
= 01001 into an initially empty bi
nary trie. As it is in DST.s (see Fig
ure 15.4), the path length is limited 
by the length of the binary repre
sentation of the keys; as illustrated 
by this example, however; paths 
could be that long even with only 
two keys in the trie. 
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k keys start with a 0 bit and N k keys start with a 1 bit is (~) /2N, 
so the external path length is described by the recurrence 

1 I:((~) (Ck + CN-k)). 
k 

This recurrence is similar to the quicksort recurrence that we solved 
in Section 7.2, but it is much more difficult to solve. Remarkably, the 
solution is precisely N times the expression for the average search cost 
that we derived for Property 15.3 (see Exercise I5.25). Studying the 
recurrence itself gives insight into why tries have better balance than 
do BSTs: The probability is much higher that the split will be near the 
middle than that it will be anywhere else, so the recurrence is more 
like the mergesort recurrence (approximate solution N Ig N) than like 
the quicksort recurrence (approximate solution 2N In N). 

An annoying feature of tries, and another one that distinguishes 
them from the other types of search trees that we have seen, is the one
way branching required when keys have bits in common. For example, 
keys that differ in only the final bit always require a path whose length 
is equal to the key length, no matter how many keys there are in the 
tree, as illustrated in Figure I 5 .8. The number of internal nodes can 
be somewhat larger than the number of keys. 

Property 15.4 A trie built from N random w-bit keys has about 
N / In 2 :=::::: 1.44N nodes on the average. 

By modifying the argument for Property 15.3, we can write the ex
pression 

1 N-l)
2t 

for the average number of nodes in an N-key trie (see Exercise 15.26). 
The mathematical analysis that yields the stated approximate value for 
this sum is much more difficult than the argument that we gave for 
Property 15.3, because many terms contribute values that are not 0 or 
1 to the value of the sum (see reference section) .• 

We can verify these results empirically. For example, Figure I 5.9 
shows a big trie, which has 44 percent more nodes than does the BST 
or the DST built with the same set of keys but nevertheless is well 
balanced, with a near-optimal search cost. Our first thought might be 
that the extra nodes would raise the average search cost substantially, 
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but this suspicion is not valid-for example, we would increase the 
average search cost by only 1 even if we were to double the number of 
nodes in a balanced trie. 

For convenience in the implementations in Programs 15.2 
and 15.3, we assumed that the keys are of fixed length and are distinct, 
so that we could be certain that the keys would eventually distinguish 
themselves and that the programs could process 1 bit at a time and 
never run out of key bits. For convenience in the analyses in Prop
erties 15.2 and 15.3, we implicitly assumed that the keys have an ar
bitrary number of bits, so that they eventually distinguish themselves 
except with tiny (exponentially decaying) probability. A direct off
shoot of these assumptions is that both the programs and the analyses 
apply when the keys are variable-length bitstrings, with a few caveats. 

To use the programs as they stand for variable-length keys, we 
need to extend our restriction that the keys be distinct to say that 
no key be a prefix of another. This restriction is met automatically 
in some applications, as we shall see in Section 15.5. Alternatively, 
we could handle such keys by keeping information in internal nodes, 
because each prefix that might need to be handled corresponds to some 
internal node in the trie (see Exercise 15.30). 

For sufficiently long keys comprising random bits, the average
case results of Properties 15.2 and 15.3 still hold. In the worst case, 
the height of a trie is still limited by the number of bits in the longest 
keys. This cost could be excessive if the keys are huge and perhaps 
have some uniformity, as might arise in encoded character data. In 
the next two sections, we consider methods of reducing trie costs for 
long keys. One way to shorten paths in tries is to collapse one-way 
branches into single links-we discuss an elegant and efficient way to 
accomplish this task in Section 15+ Another way to shorten paths in 

Figure 15.9 
Trie example 

This trie, built by inserting about 
200 random keys, is well-balanced, 
but has 44 percent more nodes 
than might otherwise be neces
sary, because of one-way branch
ing. (Null links on leaves are not 
shown.) 



622 CHAPTER FIFTEEN 

tries is to allow more than two links per node-this approach is the 
subject of Section 1504

Exercises 

r> 15.II Draw the trie that results when you insert items with the keys E AS Y 
Q UTI 0 N in that order into an initially empty trie. 

15.12 What happens when you use Program 15.3 to insert a record whose 
key is equal to some key already in the trie? 

15.13 Draw the trie that results when you insert items with the keys 0101
0011 00000111 00100001 0101000111101100 00100001 1001010101001010 
into an initially empty trie. 

15.14 Run empirical studies to compare the height, number of nodes, and 
internal path length of a trie built by insertion of N random 32-bit keys into 
an initially empty trie with the same measures of a standard binary search tree 
and a red-black tree (Chapter 13) built from the same keys, for N 103

, 104
, 

105 , and 106(see Exercise I') .6). 

15.15 Give a full characterization of the worst-case internal path length of a 
trie with N distinct w-bit keys . 

• 15.16 Implement the delete operation for a trie-based symbol table. 

015.17 Implement the select operation for a trie-based symbol table. 

15.18 Implement the sort operation for a trie-based symbol table. 

r> 15.19 Write a program that prints out all keys in a trie that have the same 
initial t bits as a given search key. 

015.20 Use the C union construct to develop implementations of search and 
insert using tries with non-leaf nodes that contain links but no items and with 
leaves that contain items but no links. 

15.21 :M"odify Programs 15.3 and 15.2 to keep the search key in a machine 
register and to shift one bit position to access the next bit when moving down 
a level in the trie. 

15.22 Modify Programs 15.3 and 15.2 to maintain a table of 2r tries, for a 
fixed constant r, and to use the first r bits of the key to index into the table and 
the standard algorithms with the remainder of the key on the trie accessed. 
This change saves about r steps unless the table has a significant number of 
null entries. 

I5.23 What value should we choose for r in Exercise I5.22, if we have 
N random keys (which are sufficiently long that we can assume them to be 
distinct)? 

I5.24 Write a program to compute the number of nodes in the trie corre
sponding to a given set of distinct fixed-length keys, by sorting them and 
comparing adjacent keys in the sorted list. 
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.15.25 Prove by induction that NL 
t 
>o(l (1 2-t)N) is the solution to 

the quicksort-like recurrence that is given after Property 15.3 for the external 
path length in a random trie . 

• 	15.26 Derive the expression given in Property 15.4 for the average number 
of nodes in a random trie . 

• 15.27 Write a program to compute the average number of nodes in a random 
trie of N nodes and print the exact value, accurate to 10-3

, for N = 103
, 104

, 

105
, and 106 

• 

•• 15.28 Prove that the height of a trie built from N random bitstrings is about 
21g N. Hint: Consider the birthday problem (see Property 14.2). 

• 	15.29 Prove that the average cost of a search in a DST built from random 
keys is asymptotically 19 N (see Properties 15. I and 15.2). 

15.30 Modify Programs 15.2 and 15.3 to handle variable-length bitstrings 
under the sole restriction that records with duplicate keys are not kept in the 
data structure. Assume that bit(v, 101) yields the value NULLdigit if 101 is 
greater than the length of v. 

15.31 Use a trie to build a data structure that can support an existence table 
ADT for w-bit integers. Your program should support the initialize, insert, 
and search operations, where search and insert take integer arguments, and 
search returns NULLkey for search miss and the argument it was given for 
search hit. 

15.3 Patricia Tries 

Trie-based search as described in Section 15.2 has two inconvenient 
flaws. First, the one-way branching leads to the creation of extra 
nodes in the trie, which seem unnecessary. Second, there are two 
different types of nodes in the trie, and that complicates the code 
somewhat. In 1968, Morrison discovered a way to avoid both of these 
problems, in a method that he named patricia ("practical algorithm 
to retrieve information coded in alphanumeric"). Morrison developed 
his algorithm in the context of string-indexing applications of the type 
that we shall consider in Section 15.5, but it is equally effective as a 
symbol-table implementation. Like DSTs, patricia tries allow search 
for N keys in a tree with just N nodes; like tries, they require only 
about 19 N bit comparisons and one full key comparison per search, 
and they support other ADT operations. Moreover, these performance 
characteristics are independent of key length, and the data structure is 
suitable for variable-length keys. 



Figure 15.10 
Patricia search 
In a successful search for R = 
10010 in this sample patricia trie 
(top), we move right (since bit 0 is 
n then left (since bit 4 is 0), which 
brings us to R (the only key in the 
tree that begins with 1***0). On the 
way down the tree, we check only 
the key bits indicated in the num
bers over the nodes (and ignore the 
keys in the nodes). When we first 
reach a link that points up the tree, 
we compare the search key against 
the key in the node pointed to by 
the up link, since that is the only 
key in the tree that could be equal 
to the search key. 

In an unsuccessful search for I 
= 01001, we move left at the root 
(since bit 0 of the key is 0), then 
take the right (Up) link (since bit 1 
is 1) and find that H (the only key 
in the trie that begins with 01) is 
not equal to I. 
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Starting with the standard trie data structure, we avoid one-way 
branching via a simple device: we put into each node the index of 
the bit to be tested to decide which path to take out of that node. 
Thus, we jump directly to the bit where a significant decision is to 
be made, bypassing the bit comparisons at nodes where all the keys 
in the subtree have the same bit value. Moreover, we avoid external 
nodes via another simple device: we store data in internal nodes and 
replace links to external nodes with links that point back upwards to 
the correct internal node in the trie. These two changes allow us to 

represent tries with binary trees comprising nodes with a key and two 
links (and an additional field for the index), which we call patricia 
tries. With patricia tries, we store keys in nodes as with DSTs, and 
we traverse the tree according to the bits of the search key, but we do 
not use the keys in the nodes on the way down the tree to control the 
search; we merely store them there for possible later reference, when 
the bottom of the tree is reached. 

As hinted in the previous paragraph, it is easier to follow the 
mechanics of the algorithm if we first take note that we can regard 
standard tries and patricia tries as different representations of the same 
abstract trie structure. For example, the tries in Figure 15.10 and 
at the top in Figure 15. II, which illustrate search and insertion for 
patricia tries, represent the same abstract structure as do the tries in 
Figure 15.6. The search and insertion algorithms for patricia tries use, 
build, and maintain a concrete representation of the abstract trie data 
structure different from the search and insertion algorithms discussed 
in Section 15.2, but the underlying trie abstraction is the same. 

Program 15.4 is an implementation of the patricia-trie search 
algorithm. The method differs from trie search in three ways: there 
are no explicit null links, we test the indicated bit in the key instead 
of the next bit, and we end with a search key comparison at the point 
where we follow a link up the tree. It is easy to test whether a link 
points up, because the bit indices in the nodes (by definition) increase 
as we travel down the tree. To search, we start at the root and proceed 
down the tree, using the bit index in each node to tell us which bit 
to examine in the search key-we go right if that bit is 1, left if it is 
O. The keys in the nodes are not examined at all on the way down 
the tree. Eventually, an upward link is encountered: each upward link 
points to the unique key in the tree that has the bits that would cause 
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Program 15.4 Patricia-trie search 

The recursive function searchR returns the unique node that could con
tain the record with key v. It travels down the trie, using the bits of the 
tree to control the search, but tests only 1 bit per node encountered-the 
one indicated in the bit field. It terminates the search when it encoun
ters an external link, one which points up the tree. The search function 
STsearch calls searchR, then tests the key in that node to determine 
whether the search is a hit or a miss. 

Item searchR(link h, Key v, int w) 
{ 

if (h->bit <= w) return h->item; 

if (digit(v, h->bit) == 0) 


return searchR(h->l, v, h->bit); 

else return searchR(h->r, v, h->bit); 


} 


Item STsearch(Key v) 

{ Item t = searchR(head->l, v, -1); 


return eq(v, key(t» ? t : 


} 


a search to take that link. Thus, if the key at the node pointed to by 
the first upward link encountered is equal to the search key, then the 
search is successful; otherwise, it is unsuccessful. 

Figure 15.10 illustrates search in a patricia trie. For a miss due 
to the search taking a null link in a trie, the corresponding patricia trie 
search will take a course somewhat different from that of standard trie 
search, because the bits that correspond to one-way branching are not 
tested at all on the way down the trie. For a search ending at a leaf 
in a trie, the patricia-trie search ends up comparing against the same 
key as the trie search, but without examining the bits corresponding 
to one-way branching in the trie. 

The implementation of insertion for patricia tries mirrors the two 
cases that arise in insertion for tries, as illustrated in Figure 15.11. As 
usual, we gain information on where a new key belongs from a search 
miss. For tries, the miss can occur either because of a null link or 
because of a key mismatch at a leaf. For patricia tries, we need to 
do more work to decide which type of insertion is needed, because 

Figure 15.TI 
Patricia-trie insertion 
To insert I into the sample patri
cia trie in Figure 15. 10, we add 
a new node to check bit 4, since 
H =01000 and I =01001 differ in 
only that bit (top). On a subse
quent search in the trie that comes 
to the new node, we want to check 
H (left link) if bit 4 of the search 
key is 0; if the bit is 1 (right link), 
the key to check is I. 

To insert N =01110 (bottom), 
we add a new node in between H 
and I to check bit 2, since that bit 
distinguishes N from H and I. 
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Figure 15.12 

Patricia-trie construction 

This sequence depicts the result 
of inserting the keys A S ERe H 
into an initially empty patricia trie. 
Figure 15. 11 depicts the result of 
inserting I and then N into the tree 
at the bottom. 
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we skipped the bits corresponding to one-way branching during the 
search. A patricia-trie search always ends with a key comparison, and 
this key carries the information that we need. We find the leftmost bit 
position where the search key and the key that terminated the search 
differ, then search through the tree again, comparing that bit position 
against the bit positions in the nodes on the search path. If we come 
to a node that specifies a bit position higher than the bit position that 
distinguishes the key sought and the key found, then we know that 
we skipped a bit in the patricia-trie search that would have led to 
a null link in the corresponding trie search, so we add a new node 
for testing that bit. If we never come to a node that specifies a bit 
position higher than the one that distinguishes the key sought and the 
key found, then the patricia-trie search corresponds to a trie search 
ending in a leaf, and we add a new node that distinguishes the search 
key from the key that terminated the search. We always add just one 
node, which references the leftmost bit that distinguishes the keys, 
where standard trie insertion might add multiple nodes with one-way 
branching before reaching that bit. That new node, besides providing 
the bit-discrimination that we need, will also be the node that we use 
to store the new item. Figure 15. I 2 shows the initial stages of the 
construction of a sample trie. 

Program 15.5 is an implementation of the patricia -trie-insertion 
algorithm. The code follows directly from the description in the previ
ous paragraph, with the additional observation that we view links to 
nodes with bit indices that are not larger than the current bit index as 
links to external nodes. The insertion code merely tests this property 
of the links, but does not have to move keys or links around at all. The 
upward links in patricia tries seem mysterious at first, but the decisions 
about which links to use when each node is inserted are surprisingly 
straightforward. The end result is that using one node type rather than 
two simplifies the code substantially. 

By construction, all external nodes below a node with bit index 
k begin with the same k bits (otherwise, we would have created a node 
with bit index less than k to distinguish two of them). Therefore, we 
can convert a patricia trie to a standard trie by creating the appropriate 
internal nodes between nodes where bits are skipped and by replacing 
links that point up the tree with links to external nodes (see Exer
cise 15.47). However, Property 15.2 does not quite hold for patricia 
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Program 15.5 Patricia -trie insertion 

To insert a key into a patricia trie, we begin with a search. The function 
searchR from Program 15.4 gets us to a unique key in the tree that 
must be distinguished from the key to be inserted. We determine the 
leftmost bit position at which this key and the search key differ, then 
use the recursive function insertR to travel down the tree and to insert 
a new node containing v at that point. 

In insertR, there are two cases, corresponding to the two cases 
illustrated in Figure 15. I I. The new node could replace an internal link 
(if the search key differs from the key found in a bit position that was 
skipped), or an external link (if the bit that distinguishes the search key 
from the found key was not needed to distinguish the found key from 
all the other keys in the trie). 

void STinit () 
{ head = NEW(NULLitem, 0, 0, -1); 

head->l = head; head->r = head; } 
link insertR(link h, Item item, int w, link p) 

{ link x; Key v = key(item); 
if ((h->bit >= w) I I (h->bit <= p->bit)) 

{ 

x = NEW (item, 0, 0, w) ; 
x->l = digit(v, x->bit) ? h x; 
x->r = digit(v, x->bit) ? x h·, 
return x; 

} 

if (digit(v, h->bit) == 0) 
h->l insertR(h->l, item, w, h); 

else h->r = insertR(h->r, item, w, h); 
return h; 

} 

void STinsert(Item item) 
{ int i; 

Key v = key(item); 
Key t = key(searchR(head->l, v, -1)); 
if (v == t) return; 
for (i = 0; digit(v, i) == digit(t, i); i++) 
head->l = insertR(head->l, item, i, head); 

} 
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Program 15.6 Patricia-trie sort 

This recursive procedure visits the records in a patricia trie in order of 
their keys. We imagine the items to be in (virtual) external nodes, which 
we can identify by testing when the bit index on the current node is not 
larger than the bit index on its parent. Otherwise, this program is a 
standard inorder traversal. 

void sortR(link h, void (*visit) (Item) , int w) 

{ 

if (h->bit <= w) { visit(h->item); return; } 

sortRCh->l, visit, h->bit); 

sortR(h->r, visit, h->bit); 


} 

void STsort(void (*visit) (Item)) 

{ sortR(head->l, visit, -1); } 


tries, because the assignment of keys to internal nodes does depend on 
the order in which the keys are inserted. The structure of the internal 
nodes is independent of the key-insertion order, but external links and 
the placement of the key values are not. 

An important consequence of the fact that a patricia trie repre
sents an underlying standard trie structure is that we can use a recursive 
inorder traversal to visit the nodes in order, as demonstrated in the im
plementation given in Program 15.6. We visit just the external nodes, 
which we identify by testing for nonincreasing bit indices. 

Patricia is the quintessential radix search method: it manages to 

identify the bits that distinguish the search keys and to build them into 
a data structure (with no surplus nodes) that quickly leads from any 
search key to the only key in the data structure that could be equal to 
the search key. Figure 15. I 3 shows the patricia trie for the same keys 
used to build the trie of Figure 15 .9-the patricia trie not only has 44 
percent fewer nodes than the standard trie, but also is nearly perfectly 
balanced. 

Property 15.5 Insertion or search for a random key in a patricia trie 
built from N random bitstrings requires about 19 N bit comparisons 
on the average, and about 21g N bit comparisons in the worst case. 
The number of bit comparisons is never more than the length of the 
key. 
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This fact is an immediate consequence of Property 15.3, since paths in 
patricia tries are no longer than paths in the corresponding trie. The 
precise average-case analysis of patricia is difficult; it turns out that 
patricia involves one fewer comparison, on the average, than does a 
standard trie (see reference section). • 

Table 15.1 gives empirical data supporting the conclusion that 
DSTs, standard binary tries, and patricia tries have comparable perfor
mance (and that they provide search times comparable to or shorter 
than the balanced-tree methods of Chapter 13) when keys are integers, 
and certainly should be considered for symbol-table implementations 
even with keys that can be represented as short bitstrings, taking into 
account the various straightforward tradeoffs that we have noted. 

Note that the search cost given in Property 15.5 does not grow 
with the key length. By contrast, the search cost in a standard trie 
typically does depend on the length of the keys-the first bit position 
that differs in two given keys could be arbitrarily far into the key. All 
the comparison-based search methods that we have considered also 
depend on the key length-if two keys differ in only their rightmost 
bit, then comparing them requires time proportional to their length. 
Furthermore, hashing methods always require time proportional to 
the key length for a search, to compute the hash function. But patricia 
immediately takes us to the bits that matter, and typically involves 
testing less than 19 N of them. This effect makes patricia (or trie 
search with one-way branching removed) the search method of choice 
when the search keys are long. 

For example, suppose that we have a computer that can efficiently 
access 8-bit bytes of data, and we have to search among millions of 
1000-bit keys. Then patricia would require accessing only about 20 
bytes of the search key for the search, plus one 125-byte equality com
parison, whereas hashing would require accessing all 125 bytes of the 
search key to compute the hash function, plus a few equality com-

Figure 15.13 
Patricia-trie example 

This patricia trie, built by inser
tion of about 200 random keys, is 
equivalent to the trie of Figure 15.9 
with one-way branching removed. 
The resulting tree is nearly per
fectly balanced. 
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Table 15.1 Empirical study of trie implementations 

These relative timings for construction and search in symbol tables with 
random sequences of 32-bit integers confirm that digital methods are 
competitive with balanced-tree methods, even for keys that are ran
dom bits. Performance differences are more remarkable when keys are 
long and are not necessarily random (see Table 15.2), or when careful 
attention is paid to making the key-bit-access code efficient (see Exer
cise 15.21). 

construction search hits 

IV B 0 T P B 0 T P 

1250 0 0 

2500 2 2 4 3 1 1 2 

5000 4 5 7 7 3 2 3 2 

12500 18 15 20 18 8 7 9 7 

25000 40 36 44 41 20 17 20 17 

50000 81 80 99 90 43 41 47 36 

100000 176 167 269 242 103 85 101 92 

200000 411 360 544 448 228 179 211 182 

Key: 
B Red-black BST (Programs 12.7 and 13.6) 
0 DST (Program 15. I) 
T Trie (Programs 15.2 and 15.3) 
p Patricia trie (Programs 15.4 and 15.5) 

~--~------~--- ~----------.---------~---..-

parisons, and comparison-based methods would require 20 to 30 full 
key comparisons. It is true that key comparisons, particularly in the 
early stages of a search, require only a few byte comparisons, but later 
stages typically involve many more bytes. We shall consider compar
ative performance of various methods for searching with lengthy keys 
again in Section 15.5. 

Indeed, there needs to be no limit at all on the length of search 
keys for patricia. Patricia is particularly effective in applications with 
variable-length keys that are potentially huge, as we shall see in Sec
tion 15.5. With patricia, we generally can expect that the number of 



RADIX SEARCH 	 §15·3 

bit inspections required for a search among N records, even with huge 
keys, will be roughly proportional to 19 N. 

Exercises 
15.32 What happens when you use Program 15.5 to insert a record whose 
key is equal to some key already in the trie? 

I> I5.33 Draw the patricia trie that results when you insert the keys E A S Y Q U 
T ION in that order into an initially empty trie. 

I> 15.34 Draw the patricia trie that results when you insert the keys 01010011 
00000111 00100001 01010001 11101100 00100001 10010101 01001010 in 
that order into an initially empty trie. 

015.35 	Draw the patricia trie that results when you insert the keys 01001010 
10010101 00100001 11101100 01010001 00100001 00000111 01010011 in 
that order into an initially empty trie. 

15.36 Run empirical studies to compare the height and internal path length 
of a patricia trie built by insertion of N random 32-bit keys into an initially 
empty trie with the same measures of a standard binary search tree and a 
red-black tree (Chapter 13) built from the same keys, for N = 103

, 104
, 105

, 

and 106 (see Exercises I5.6 and 15.14). 

15.37 Give a full characterization of the worst-case internal path length of a 
patricia trie with N distinct w-bit keys. 

I> 15.38 Implement the select operation for a patricia-based symbol table . 

• I5.39 Implement the delete operation for a patricia-based symbol table . 

• 15-40 Implement the join operation for patricia-based symbol tables. 

015.41 Write a program that prints out all keys in a patricia trie that have the 
same initial t bits as a given search key. 

15.42 Modify standard trie search and insertion (Programs 15.2 and 15.3) 
to eliminate one-way branching in the same manner as for patricia tries. If 
you have done Exercise 15.20, start with that program instead. 

15.43 Modify patricia search and insertion (Programs I 5.4 and 15.5) to 
maintain a table of 2T tries, as described in Exercise 15.22. 

15.44 Show that each key in a patricia trie is on its own search path, and is 
therefore encountered on the way down the tree during a search operation as 
well as at the end. 

15.45 Modify patricia search (Program 15.4) to compare keys on the way 
down the tree to improve search-hit performance. Run empirical studies to 
evaluate the effectiveness of this change Exercise 15.44). 

IS .46 Use a patricia trie to build a data structure that can support an existence 
table ADT forw-bit integers (see Exercise 15.3 I) . 

• 15.47 Write programs that convert a patricia trie to a standard trie on the 
same keys, and vice versa. 
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I5.4 Multiway Tries and TSTs 

For radix sorting, we found that we could get a significant improve
ment in speed by considering more than 1 bit at a time. The same is 
true for radix search: By examining T bits at a time, we can speed up 
the search by a factor of T. However, there is a catch that makes it 
necessary for us to be more careful in applying this idea than we had 
to be for radix sorting. The problem is that considering T bits at a time 

2rcorresponds to using tree nodes with R links, and that can lead 
to a considera ble amount of wasted space for unused links. 

In the (binary) tries of Section 15.2, the nodes corresponding to 
key bits have two links: one for the case when the key bit is 0, and the 
other for the case when the key bit is 1. The appropriate generalization 
is to R-ary tries, where we have nodes with R links corresponding to 
key digits, one for each possible digit value. Keys are stored in leaves 
(nodes with all links null). To search in an R-way trie, we start at 
the root and at the leftmost key digit, and use the key digits to guide 
us down the tree. We go down the ith link (and move to the next 
digit) if the digit value is i. If we reach a leaf, it contains the only 
key in the trie with leading digits corresponding to the path that we 
have traversed, so we can compare that key with the search key to 
determine whether we have a search hit or a search miss. If we reach 
a null link, we know that we have a search miss, because that link 
corresponds to a leading-digit pattern not found in any keys in the 
trie. Figure 15.14 shows a 10-way trie that represents a sample set of 
decimal numbers. As we discussed in Chapter 10, numbers typically 
seen in practice are distinguished with relatively few trie nodes. This 
same effect for more general types of keys is the basis for a number of 
efficient search algorithms. 

Before doing a full symbol-table implementation with multiple 
node types and so forth, we begin our study of multiway tries by 
concentrating on the existence-table problem, where we have only keys 
(no records or associated information) and want to develop algorithms 
to insert a key into a data structure and to search the data structure 
to tell us whether or not a given key has been inserted. To use the 
same interface that we have been using for more general symbol-table 
implementations, we assume that Key is the same as Item and adopt 
the convention that the search function returns NULLi tern for a search 
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miss and the search key for a search hit. This convention simplifies 
the code and clearly exposes the structure of the multiway tries that 
we shall be considering. In Section 15.5, we shall discuss more general 
symbol-table implementations, including string indexing. 

Definition 15.2 The existence trie corresponding to a set of keys is 
defined recursively as follows: The trie for an empty set of keys is a 
null link; and the trie for a nonempty set of keys is an internal node 
with links referring to the trie for each lJOssible key digit, with the 
leading digit considered to be removed for the purpose of constructing 
the subtrees. 

For simplicity, we assume in this definition that no key is the 
prefix of another. Typically, we enforce this restriction by ensuring that 
the keys are distinct and either are of fixed length or have a termination 
character. The point of this definition is that we can use existence 
tries to implement existence tables, without storing any information 
within the trie; the information is all implicitly defined within the trie 
structure. Each node has R + 1 links (one for each possible character 
value plus one for the terminal character NULLdigit), and no other 
information. To search, we use the digits in the key to guide us down 
the trie. If we reach the link to NULLdigit at the same time that we 
run out of key digits, we have a search hit; otherwise we have a search 
miss. To insert a new key, we search until we reach a null link, then 
add nodes for each of the remaining characters in the key. Figure 15. I 5 
is an example of a 27-way trie; Program 15.7 is an implementation of 
the basic (multiway) existence-trie search and insert procedures. 

If the keys are of fixed length and are distinct, we can dispense 
with the link to the terminal character and can terminate searches 
when we reach the key length (see Exercise 15.54). We have already 
seen an example of this type of trie when we used tries to describe 
MSD sorting for fixed-length keys (Figure 10.10). 

In one sense, this pure abstract representation of the trie struc
ture is optimal, because it can support the search operation in time 

Figure 15.14 
R-way trie for base-10 num

bers 

This figure depicts the trie that dis
tinguishes the set of numbers 

.396465048 

.353336658 

.318693642 

.015583409 

.159369371 

.691004885 

.899854354 

.159072306 

.604144269 

.269971047 

.538069659 

(see Figure 12.1). Each node has 
70 links (one for each possible 
digit). At the root, link 0 points 
to the trie for keys with first digit 
o (there is only one); link 1 points 
to the trie for keys with first digit 1 
(there are two)! and 50 forth. None 
of these numbers has first digit 4, 
7, 8! or 9, so those links are nul/. 
There is only one number for each 
of the first digits 0, 2, and 5, so 
there is a leaf containing the ap
propriate number for each of those 
digits. The rest of the structure is 
built recurSively, moving one digit 
to the right. 
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Program 15.7 Existence-trie search and insertion 

This implementation of search and insert for multi way tries assumes 
that Key is identical to Item (and that digi t is defined, as discussed in 
Section 10. I). It stores the keys implicitly within the structure of the 
trie. Each node contains R pointers to the next level down the trie. We 
follow the i.th link at level t when the tth digit of the key is i. The search 
function returns the key given as the argument if it is in the table, and 
returns NULLitem otherwise. 

typedef struct STnode *link; 

struct STnode { link next[R]; }; 

static link head; 

void STinit() { head = NULL; } 

link NEWO 


{ 	 int i; 
link x = malloc(sizeof *x); 
for (i = 0; i < R; i++) x->next[i] NULL; 
return x; 

} 

Item searchR(link h, Key v, int w) 
{ 	 int i digit (v, w); 


if (h == NULL) return NULLitem; 

if (i == NULLdigit) return v; 

return searchR(h->next[i], v, w+1); 


} 


Item STsearch(Key v) 

{ return searchR(head, v, 0); } 


link insertR(link h, Item item, int w) 

{ 	Key v = key(item); 

int i = digit(v, w); 
if (h == NULL) h = NEW(); 
if (i == NULLdigit) return h; 
h->next[i] = insertR(h->next[i], v, w+1); 
return h; 

} 

void STinsert(Item item) 

{head insertR(head, item, 0); } 
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proportional to the length of a key and in space proportional to the 
total number of characters in the key in the worst case. But the to
tal amount of space used could be as high as nearly R links for each 
character, so we seek improved implementations. As we saw with 
binary tries, it is worthwhile to consider the pure trie structure as a 
particular representation of an underlying abstract structure that is a 
well-defined representation of our set of keys, and then to consider 
other representations of the same abstract structure that might lead to 
better performance. 

Definition 15.3 A multiway trie is a multiway tree that has keys 
associated with each of its leaves, defined recursively as follows: The 
trie for an empty set of keys is a null link; the trie for a single key is 
a leaf containing that key; and the trie for a set of keys of cardinality 
greater than one is an internal node with links referring to tries for 
keys with each possible digit value, with the leading digit considered 
to be removed for the purpose of constructing the subtrees. 

We assume that keys in the data structure are distinct and that no 
key is the prefix of another. To search in a standard multi way trie, we 
use the digits of the key to guide the search down the trie, with three 
possible outcomes. If we reach a null link, we have a search miss; if 
we reach a leaf containing the search key, we have a search hit; and 
if we reach a leaf containing a different key, we a search miss. 
All leaves have R null links, so different representations for leaf nodes 
and non-leaf nodes are appropriate, as mentioned in Section 15.2. We 
consider such an implementation in Chapter 16, and we shall consider 
another approach to an implementation in this chapter. In either case, 
the analytic results from Section 15.3 generalize to tell us about the 
performance characteristics of standard multiway tries. 

Property 15.6 Search or insertion in a standard R-ary trie built from 
N random bytestrings requires about lagR N byte comparisons, on the 
average. The number of links in a such a trie is about In R. The 
number of byte comparisons for search or insertion in such a trie is no 
more than the number of bytes in the search key. 

These results generalize those in Properties 15.3 and 15.4. We can 
establish them by substituting R for 2 in the proofs of those properties. 
As we mentioned, however, extremely sophisticated mathematics is 
involved in the precise analysis of these quantities. _ 

Figure 15.15 
R-way existence trie search 

and insertion 
The 26-way trie for tile words no,;, 
is, and the (top) has nine nodes: 
the root plus one for each letter. 
The nodes are labeled in these di
agrams. but we do not use explicit 
node labels in the data structure, 
because each node label can be 
inferred from the position of the 
link to it in its parents' link array. 

To insert the key time, we 
branch off the existing node for t 
and add new nodes tor i, m, and e 

(center); to insert the key for, we 
branch off the root and add new 
nodes for f, 0, and r. 
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The performance characteristics listed in Property I 5.6 represent an 
extreme example of a time-space tradeoff. On the one hand, there are 
a large number of unused null links--only a few nodes near the top 
use more than a few of their links. On the other hand, the height of 
a tree is small. For example, suppose that we take the typical value 
R = 256 and that we have N random 64-bit keys. Property I 5.6 
tells us that a search will take (lg N)/8 character comparisons (8 at 
most) and that we will use fewer than 47N links. If plenty of space is 
available, this method provides an extremely efficient alternative. We 
could cut the search cost to 4 character comparisons for this example 
by taking R = 65536, but that would require over 5900 links. 

We shall return to standard multiway tries in Section I 5.5; in the 
remainder of this section, we shall consider an alternative representa
tion of the tries built by Program I5.7: the ternary search trie (TST), 
which is illustrated in its full form in Figure 15. I 6. In a TST, each node 
has a character and three links, corresponding to keys whose current 
digits are less than, equal to, or greater than the node's character. Us
ing this arrangement is equivalent to implementing trie nodes as binary 
search trees that use as keys the characters corresponding to non-null 
links. In the standard existence tries of Program I 5.7, trie nodes are 
represented by R + 1 links, and we infer the character represented by 
each non-null link by its index. In the corresponding existence TST, 
all the characters corresponding to non-null links appear explicitly in 
nodes-we find characters corresponding to keys only when we are 
traversing the middle links. 

The search algorithm for existence TSTs is so straightforward as 
nearly to write itself; the insertion algorithm is slightly more compli
cated, but mirrors directly insertion in existence tries. To search, we 
compare the first character in the key with the character at the root. 
If it is less, we take the left link; if it is greater, we take the right link; 
and if it is equal, we take the middle link and move to the next key 
character. In each case, we apply the algorithm recursively. We termi
nate with a search miss if we encounter a null link or if we encounter 
the end of the search key before encountering NULLdigit in the tree, 
and we terminate with a search hit if we traverse the middle link in a 
node whose character is NULLdigit. To insert a new key, we search, 
then add new nodes for the characters in the tail of the key, just as we 
did for tries. Program I 5.8 gives the details of the implementation of 
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Figure 15.16 
Existence-trie structures 
These figures show three different 
representations of the existence trie 
for the 16 words call me ishmael 
some years ago never mind hoW' 
long precisely having little 
or no money: The 26-way exis
tence trie (top); the abstract trie 
with null links removed (center); 
and the TST representation (bot
tom). The 26-way trie has too 
many links, but the TST is an effi
cient representation of the abstract 
(rie. 

The top two tries assume that 
no key is the prefix of another. 
For example, adding the key not 
would result in the key no being 
lost. We can add a null character 
to the end of each key to correct 
this problem, as illustrated in the 
TST at the bottom. 



Figure 15.17 
Existence TSTs 

An existence TST has one node for 
each letter, but only 3 children per 
node, rather than 26. The top three 
trees in this figure are the RSTs cor
responding to the insertion exam
ple in Figure 15.15, with the ad
ditional change that an end-of-key 
character is appended to each key. 
We can then remove the restric
tion that no key may be a prefix of 
another; 50, for example, we can 
insert the key theory (bottom). 
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these algorithms, and Figure 15.17 has TSTs that correspond to the 
tries in Figure 15. I 5. 

Continuing the correspondence that we have been following be
tween search trees and sorting algorithms, we see that TSTs correspond 
to three-way radix sorting in the same way that BSTs correspond to 
quicksort, tries correspond to binary quicksort, and AI-way tries cor
respond to !vI-way radix sorting. Figure IO.13, which describes the 
recursive call structure for three-way radix sort, is a TST for that set of 
keys. The null-links problem for tries corresponds to the empty-bins 
problem for radix sorting; three-way branching provides an effective 
solution to both problems. 

We can make TSTs more efficient in their use of space by putting 
keys in leaves at the point where they are distinguished and byeliminat
ing one-way branching between internal nodes as we did for patricia. 
At the end of this section, we examine an implementation based on the 
former change. 

Property 15.7 A search or insertion in a full TST requires time pro
portional to the key length. The number of links in a TST is at most 
three times the number of characters in all the keys. 

In the worst case, each key character corresponds to a full R-ary node 
that is unbalanced, stretched out like a singly linked list. This worst 
case is extremely unlikely to occur in a random tree. More typically, 
we might expect to do In R or fewer byte comparisons at the first 
level (since the root node behaves like a BST on the R different byte 
values) and perhaps at a few other levels (if there are keys with a 
common prefix and up to R different byte values on the character 
following the prefix), and to do only a few byte comparisons for most 
characters (since most trie nodes are sparsely populated with non-null 
links). Search misses are likely to involve only a few byte comparisons, 
ending at a null link high in the trie, and search hits involve only about 
one byte comparison per search key character, since most of them are 
in nodes with one-way branching at the bottom of the trie. 

Actual space usage is generally less than the upper bound of three 
links per character, because keys share nodes at high levels in the tree. 
We refrain from a precise average-case analysis because TSTs are most 
useful in practical situations where keys neither are random nor are 
derived from bizarre worst-case constructions. • 
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Program 15.8 Existence-TST search and insertion 

This code implements the same abstract trie algorithms as Program 15.7, 
but each node contains one digit and three links: one each for keys whose 
next digit is less than, equal to, or greater than the corresponding digit 
in the search key, respectively. 

typedef struct STnode* link; 

struct STnode { int d; link 1, m, r; }; 

static link head; 

void STinit() { head = NULL; } 

link NEW(int d) 


{ 	link x = malloc(sizeof *x); 
x->d d; x->l = NULL; x->m NULL; x->r NULL; 
return x; 

} 


Item searchR(link h, Key v, int w) 

{ 	 int i digit(v, w); 

if (h NULL) return NULLitem; 
if (i NULLdigit) return v; 
if (i < h->d) return searchR(h->l, v, w); 
if (i == h->d) return searchR(h->m, v, w+1); 
if (i > h->d) return searchR(h->r, v, w); 

} 


Item STsearch( Key v) 

{ return searchR(head, v, 0); } 


link insertR(link h, Item item, int w) 

{ 	Key v = key(item); 

int i = digit(v, w); 
if (h == NULL) h = NEW(i); 
if (i == NULLdigit) return h; 
if (i < h->d) h->l = insertR(h->l, v, w); 
if (i == h->d) h->m = insertR(h->m, v, w+1); 
if (i > h->d) h->r = insertR(h->r, v, w) ; 
return h; 

} 


void STinsert(Key key) 

{ head = insertR(head, key, 0); } 
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Figure 15.18 
Sample string keys (library 

call numbers) 

These keys from an online library 
database illustrate the variability of 
the structure found in string keys in 
applications. Some of the charac
ters may appropriately be modeled 
as random letters, some may be 
modeled as random digits, and stiJJ 
others have fixed value or struc
ture. 
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The prime virtue of using TSTs is that they adapt gracefully 
to irregularities in search keys that are likely to appear in practical 
applications. There are two main effects. First, keys in practical 
applications come from large character sets, and usage of particular 
characters in the character sets is far from uniform-for example, a 
particular set of strings is likely to use only a small fraction of the 
possible characters. With TSTs, we can use a 128- or 256-character 
encoding without having to worry about the excessive costs of nodes 
with 128- or 256-way branching, and without having to determine 
which sets of characters are relevant. Character sets for non-Roman 
alphabets can have thousands of characters-TSTs are especially ap
propriate for string keys that consist of such characters. Second, keys 
in practical applications often have a structured format, differing from 
application to application, perhaps using only letters in one part of the 
key, only digits in another part of the key, and special characters as 
delimiters (see Exercise I5.7I). For example, Figure 15.18 gives a list 
of library call numbers from an online library database. For such keys, 
some of the trie nodes might be represented as unary nodes in the TST 
(for places where all keys have delimiters); some might be represented 
as 10-node BSTs (for places where all keys have digits); and still others 
might be represented as 26-node BSTs (for places where all keys have 
letters). This structure develops automatically, without any need for 
special analysis of the keys. 

A second practical advantage of TST-based search over many 
other algorithms is that search misses are likely to be extremely effi
cient, even when the keys are long. Often, the algorithm uses just a 
few byte comparisons (and chases a few pointers) to complete a search 
miss. As we discussed in Section 15.3, a search miss in a hash ta ble 
with N keys requires time proportional to the key length (to compute 
the hash function), and at least 19 N key comparisons in a search tree. 
Even patricia requires 19 N bit comparisons for a random search miss. 

Table 15.2 gives empirical data in support of the observations in 
the previous two paragraphs. 

A third reason that TSTs are attractive is that they support op
erations more general than the symbol-table operations that we have 
been considering. For example, Program 15.9 gives a program that 
allows particular characters in the search key to be unspecified, and 
prints all keys in the data structure that match the specified digits of 
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Table I5.2 Empirical study of search with string keys 

These relative timings for construction and search in symbol tables with 
string keys such as the library call numbers in Figure IS. I 8 confirm that 
TSTs, although slightly more expensive to construct, provide the fastest 
search for search misses with string keys, primarily because the search 
does not require examination of all the characters in the key. 

construction search misses 

lV B H T T' B H T T' 
--_. -----~~ 

1250 4 4 5 5 2 2 2 

2500 8 7 10 9 5 5 3 2 

5000 19 16 21 20 10 8 6 4 

12500 48 48 54 97 29 27 15 14 

25000 118 99 188 156 67 59 36 30 

50000 230 191 333 255 137 113 70 65 

Key: 
B Standard BST (Program I2.7) 

H Hashing with separate chaining (1\1 Nj5) (Program I4.3) 

T TST (Program I 5.8) 

T' TST with R2-way branch at root (Programs I5.IO and I5.II) 


the search key. An example is depicted in Figure I5.19. Obviously, 
with a slight modification, we can adapt this program to visit all the 
matching keys in the way that we do for sort, rather than just to print 
them (see Exercise 15.57). 

Several other similar tasks are easy to handle with TSTs. For 
example, we can visit all keys in the data structure that differ from the 
search key in at most one digit position (see Exercise I5.58). Opera
tions of this type are expensive or impossible with other symbol-table 
implementations. We shall consider in detail these and many other 
problems where we do not insist on exact matches in a string search, 
in Part 5. 

Patricia offers several of the same advantages; the main practical 
advantage of TSTs over patricia tries is that the former access key 
bytes rather than key bits. One reason that this difference represents 
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Figure 15.19 
TST-based partial-match 

search 

To find all keys in a TST matching 
the pattern i* (top), we search for 
i in the BST for the first character. 
In this example, we find is (the 
only word that matches the pat
tern) after two one-way branches. 
For a less restrictive pattern such as 
*0* (bottom), we visit a/l nodes in 
the BST for the first character; but 
only those corresponding to 0 for 
the second character; eventually 
finding for and now. 

Program 15.9 Partial-match searching in TSTs 

With judicious use of multiple recursive calls, we can find close matches 
in a TST structure, as shown in this program for printing all strings 
in the data structure that match a search string with some characters 
unspecified (indicated by asterisks). We are not implementing a search 
ADT function or using abstract items here, so we use explicit C string
processing primitives. 

char word [maxW] ; 
void matchR(link h, char *v, int i) 

{ 

if (h == z) return; 
if «*v == '\0') && (h->d == '\0')) 

{word[i] h->d; printf("%s ", word); } 
if «*v == '*') I I (*v == h->d)) 

{ word[i] = h->d; matchR(h->m, v+l, i+l); } 
if «*v == '*') I I (*v < h->d)) 

matchR(h->l, v, i); 
if «*v == '*') I I (*v > h->d)) 

matchRCh->r, v, i); 
} 

void STmatch(char *v) 
{ matchR(head, v, 0); } 

an advantage is that machine operations for this purpose are found 
in many machines, and C provides direct access to bytes in character 
strings. Another reason is that, in some applications, working with 
bytes in the data structure naturally reflects the byte orientation of 
the data itself in some applications-for example, in the partial-match 
search problem discussed in the previous paragraph (although, as we 
shall see in Chapter 18, we can speed up partial-match search with 
judicious use of bit access). 

To eliminate one-way branching in TSTs, we note that most 
of the one-way branching occurs at the tail ends of keys, and does 
not occur if we evolve to a standard multiway trie implementation, 
where we keep records in leaves that are placed in the highest level 
of the trie that distinguishes the keys. We also can maintain a byte 
index in the same manner as in patricia tries (see Exercise 15.64), but 
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will omit this change, for simplicity. The combination of multiway 
branching and the TST representation by themselves is quite effective 
in many applications, but patricia-style collapse of one-way branching 
will further enhance performance when the keys are such that they are 
likely to match for long stretches (see Exercise 15.71). 

Another easy improvement to TST-based search is to use a large 
explicit multiway node at the root. The simplest way to proceed is to 
keep a table of R TSTs: one for each possible value of the first letter 
in the keys. If R is not large, we might use the first two letters of 
the keys (and a table of size R2). For this method to be effective, the 
leading digits of the keys must be well-distributed. The resulting hybrid 
search algorithm corresponds to the way that a human might search for 
names in a telephone book. The first step is a multiway decision ("Let's 
see, it starts with 'A' "), followed perhaps by some two-way decisions 
("It's before 'Andrews,' but after 'Aitken"') followed by sequential 
character matching (" 'Algonquin,' ... No, 'Algorithms' isn't listed, 
because nothing starts with 'Algor'!"). 

Programs 15.10 and 15.II are TST-based implementations of 
the symbol-table search and insert operations that use R-way branch
ing at the root and that keep keys in leaves (so there is no one-way 
branching once the keys are distinguished). These programs are likely 
to be among the fastest available for searching with string keys. The 
underlying TST structure can also support a host of other operations. 

In a symbol table that grows to be huge, we may want to adapt 
the branching factor to the table size. In Chapter 16, we shall see a 
systematic way to grow a multiway trie so that we can take advantage 
of multiway radix search for arbitrary file sizes. 

Property 15.8 A search or insertion in a TST with items in leaves 
(no one-way branching at the bottom) and Rt-way branching at the 
root requires roughly In N - tIn R byte accesses for N keys that are 
random bytestrings. The number of links required is Rt (for the root 
node) plus a small constant times N. 

These rough estimates follow immediately from Property 15.6. For the 
time cost, we assume that all but a constant number of the nodes on 
the search path (a few at the top) act as random BSTs on R character 
values, so we simply multiply the time cost by In R. For the space 
cost, we assume that the nodes on the first few levels are filled with R 
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Program 15.10 TST insertion for symbol-table ADT 

This implementation of insert using TSTs keeps records in leaves, gen
eralizing Program 15.3. If a search ends in a leaf, we create the internal 
nodes needed to distinguish the key found from the search key. We also 
improve on Program 15.8 by including R-way branching at the root 
node: Rather than using a single pointer head, we use an array heads 
of R links, indexed by the first digits of the keys. To initialize (code not 
shown) we set all R head links to NULL. 

#define internal(A) «A->d) != NULLdigit) 

link NEWx(link h, int d) 


{ 	link x = malloc(sizeof *x); 

x->item = NULLitem; x->d d; 

x->l = NULL; x->m = h; x->r = NULL; 

return x; 


} 

link split(link P. link q, int w) 

{ int pd digit(p->item, w), 


qd digit(q->item, w); 
link t NEW(NULLitem. qd); 
if (pd < qd) { t->m = q; t->l NEWx(p. pd); } 

if (pd qd) { t->m split(p. q. w+l); } 

if (pd > qd) { t->m = q; t->r NEWx(p. pd); } 

return t; 
} 

link insertR(link h, Item item, int w) 

{ 	Key v key(item); 

int i = digit(v. w); 


if (h == NULL) 

return NEWx(NEW(item, NULLdigit), i); 

if (!internal(h)) 
return split(NEW(item, NULLdigit), h, w); 

if (i < h->d) h->l = insertR(h->l, v, w); 
if (i h->d) h->m = insertR(h->m, v, w+l); 
if (i > h->d) h->r insertR(h->r, v, w); 
return h; 

} 

void STinsert(Key key) 

{ int i digit(key, 0); 


, 1); 
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Program I5.II TST search for symbol-table ADT 

This implementation of search for TSTs (built with Program 15.10) is 
like straight multiway-trie search, but we use only three, rather than R, 
links per node. We use the digits of the key to travel down the tree, 
ending either at a null link (search miss) or at a leaf that has a key that 
either is (search hit) or is not (search miss) equal to the search key. 

Item searchR(link h, Key v, int w) 
{ 	 int i = digit(v, w); 


if (h == NULL) return NULLitem; 

if (internal(h» 


{ 

if (i < h->d) return searchR(h->l, v, w); 
if (i == h->d) return searchR(h->m, v, w+1); 
if (i > h->d) return searchR(h->r, v, w); 

} 

if eq(v, key(h->item» return h->item; 
return NULLitem; 

} 


Item STsearch(Key v) 

{ return searchR(heads[digit(v, 0)], v, 1); } 


character values, and that the nodes on the bottom levels have only a 
constant number of character values. _ 

For example, if we have 1 billion random byte string keys with 
R = 256, and we use a table of size R2 655~36 at the top, then a 
typical search will require about In 109 21n 256;:::: 20.7 - ILl = 9.6 
byte comparisons. Using the table at the top cuts the search cost by 
a factor of 2. If we have truly random keys, we can achieve this 
performance with more direct algorithms that use the leading bytes in 
the key and an existence table, in the manner discussed in Section 14.6. 
With TSTs, we can get the same kind of performance when keys have 
a less random structure. 

It is instructive to compare TSTs without multiway branching 
at the root with standard BSTs, for random keys. Property 15.8 says 
that TST search will require about In N byte comparisons, whereas 
standard BSTs require about In N key comparisons. At the top of 
the BST, the key comparisons can be accomplished with just one byte 
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comparison, but at the bottom of the tree multiple byte comparisons 
may be needed to accomplish a key comparison. This performance 
difference is not dramatic. The reasons that TSTs are preferable to 
standard BSTs for string keys are that they provide a fast search miss; 
they adapt directly to multiway branching at the root; and (most im
portant) they adapt well to bytestring keys that are not random, so no 
search takes longer than the length of a key in a TST. 

Some applications may not benefit from the fl.-way branching at 
the root-for example, the keys in the library-call-number example of 
Figure 15.18 all begin with either L or W. Other applications may call 
for a higher branching factor at the root-for example, as just noted, 
if the keys were random integers, we would use as large a table as 
we could afford. We can use application-specific dependencies of this 
sort to tune the algorithm to peak performance, but we should not 
lose sight of the fact that one of the most attractive features of TSTs is 
that TSTs free us from having to worry about such application-specific 
dependencies, providing good performance without any tuning. 

Perhaps the most important property of tries or TSTs with 
records in leaves is that their performance characteristics are inde
pendent of the key length. Thus, we can use them for arbitrarily long 
keys. In Section 15.5, we examine a particularly effective application 
of this kind. 

Exercises 

I> 15.48 Draw the existence trie that results when you insert the words now is 
the time for all good people to come the aid of their party into 
an initially empty trie. Use 27-way branching. 

I> 15.49 Draw the existence TST that results when you insert the words now is 
the time for all good people to come the aid of their party into 
an initially empty TST. 

I> 15.50 Draw the 4-way trie that results when you insert items with the keys 
01010011 00000111 00100001 0101000111101100 0010000110010101 0100
1010 into an initially empty trie, using 2-bit bytes. 

> 15.51 Draw the TST that results when you insert items with the keys 0101
0011000001110010000101010001 1110110000100001 1001010101001010 
into an initially empty TST, using 2-bit bytes. 

I> 15.52 Draw the TST that results when you insert items with the keys 0101
0011 00000111 00100001 010100011110110000100001 1001010101001010 
into an initially empty TST, using 4-bit bytes. 
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015.53 	Draw the TST that results when you insert items with the Iibrary-call
number keys in Figure 15. I 8 into an initially empty TST. 

015.54 Modify our multiway-trie search and insertion implementation (Pro
gram 15.7) to work under the assumption that keys are (fixed-length) w-byte 
words (so no end-of-key indication is necessary). 

015.55 	Modify our TST search and insertion implementation (Program 15.8) 
to work under the assumption that keys are (fixed-length) w-byte words (so 
no end-of-key indication is necessary). 

15.56 Run empirical studies to compare the time and space requirements of 
an 8-way trie built with random integers using 3-bit bytes, a 4-way trie built 
with random integers usin? 2-bit bytes, and a binary trie built from the same 
keys, for 1'1 = 103

, 104, 10 , and 106 (see Exercise 15.14). 

15.57 Modify Program 15.9 such that it visits, in the same manner as sort, 
all the nodes that match the search key. 

015.58 Write a function that prints all the keys in a TST that differ from the 
search key in at most k positions, for a given integer k . 

• 	15.59 Give a full characterization of the worst-case internal path length of an 
R-way trie with 1'1 distinct w-bit keys . 

• 	15.60 Implement the sort, delete, select, and join operations for a multiway
trie-based symbol table . 

• 	15.61 Implement the sort, delete, select, and join operations for a TST-based 
symbol table. 

I> 15.62 Write a program that prints out all keys in an R-way trie that have the 
same initial t bytes as a given search key . 

• 15.63 Modify 	our multiway-trie search and insertion implementation (Pro
gram 15.7) to eliminate one-way branching in the way that we did for patricia 
tries . 

• 	15.64 Modify our TST search and insertion implementation (Program 15.8) 
to eliminate one-way branching in the way that we did for patricia tries. 

15.65 Write a program to balance the BSTs that represent the internal nodes 
of a TST (rearrange them such that all their external nodes are on one of two 
levels). 

15.66 Write a version of insert for TSTs that maintains a balanced-tree repre
sentation of all the internal nodes (see Exercise 15.65) . 

• 	I5.67 Give a full characterization of the worst-case internal path length of a 
TST with 1'1 distinct w-bit keys. 

r 5.68 Write a program that generates random 80-byte string keys (see Exer
cise 10.19). Use this key generator to build a 256-way trie with 1'1 random 
keys, for 1'1 103

, 104
, 105

, and 106
, using search, then insert on search miss. 
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Instrument your program to print out the total number of nodes in each trie 
and the total amount of time taken to build each trie. 

15.69 Answer Exercise I5.68 for TSTs. Compare your performance results 
with those for tries. 

15.70 Write a key generator that generates keys by shuffling a random 80-byte 
sequence (see Exercise IO.21). Use this key generator to build a 256-way trie 
with N random keys, for N = 103 

, 104 
, 10.1, and 106 

, using search, then insert 
on search miss. Compare your performance results with those for the random 
case (see Exercise 15.68). 

015.71 	Write a key generator that generates 30-byte random strings made up 
of three fields: a 4-byte field with one of a set of 10 given strings; a lO-byte 
field with one of a set of 50 given strings; a 1-byte field with one of two given 
values; and a 15-byte field with random left-justified strings of letters equally 
likely to be four through 15 characters long (see Exercise 10.23). Use this key 
generator to build a 256-way trie with N random keys, for N = 103 , 104

, 105 , 

and 106
, using search, then insert on search miss. Instrument your program to 

print out the total number of nodes in each trie and the total amount of time 
taken to build each trie. Compare your performance results with those for the 
random case (see Exercise 15.68). 

15.72 Answer Exercise 15.71 for TSTs. Compare your performance results 
with those for tries. 

15.73 Develop an implementation of search and insert for bytestring keys 
using multiway digital search trees. 

e> 	15.74 Draw the 27-way DST (see Exercise I 5.73) that results when you insert 
items with the keys now is the time for all good people to come the 
aid of their party into an initially empty DST. 

.15.75 Develop an implementation of multiway-trie search and insertion using 
linked lists to represent the trie nodes (as opposed to the BST representation 
that we use for TSTs). Run empirical studies to determine whether it is more 
efficient to use ordered or unordered lists, and to compare your implementation 
with a TST-based implementation. 

15.5 Text-String-Index Algorithms 

In Section 12.7, we considered the process of building a string index, 
and we used a binary search tree with string pointers to provide the 
capability to determine whether or not a given key string appears in 
a huge text. In this section, we look at more sophisticated algorithms 
using multi way tries, but starting from the same point of departure. 
We consider each position in the text to be the beginning of a string 
key that runs all the way to the end of the text and build a symbol table 
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with these keys, using string pointers. The keys are all different (for 
example, they are of different lengths), and most of them are extremely 
long. The purpose of a search is to determine whether or not a given 
search key is a prefix of one of the keys in the index, which is equivalent 
to discovering whether the search key appears somewhere in the text 
string. 

A search tree that is built from keys defined by string pointers 
into a text string is called a suffix tree. We could use any algorithm that 
can admit variable-length keys. Trie-based methods are particularly 
suitable, because (except for the trie methods that do one-way branch
ing at the tails of keys) their running time does not depend on the key 
length, but rather depends on only the number of digits required to 
distinguish among the keys. This characteristic lies in direct contrast 
to, for example, hashing algorithms, which do not apply immediately 
to this problem because their running time is proportional to the key 
length. 

Figure 15.20 gives examples of string indexes built with BSTs, 
patricia, and TSTs (with leaves). These indexes use just the keys 
starting at word boundaries; an index starting at character boundaries 
would provide a more complete index, but would use significantly 
more space. 

Strictly speaking, even a random string text does not give rise to a 
random set of keys in the corresponding index (because the keys are not 
independent). However, we rarely work with random texts in practical 
indexing applications, and this analytic discrepancy will not stop us 
from taking advantage of the fast indexing implementations that are 
possible with radix methods. We refrain from discussing the detailed 
performance characteristics when we use each of the algorithms to 
build a string index, because many of the same tradeoffs that we have 
discussed for general symbol tables with string keys also hold for the 
string-index problem. 

For a typical text, standard BSTs would be the first implemen
tation that we might choose, because they are simple to implement 
(see Program 12. TO). For typical applications, this solution is likely 
to provide good performance. One byproduct of the interdependence 
of the keys-particularly when we are building a string index for each 
character position-is that the worst case for BSTs is not a particular 
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Figure 15.20 
Text-string index examples 

These diagrams show text-string 
indexes built from the text call 
me ishmael some years ago 
never mind how long precisely 
. .. using a BST (top), a patricia 
trie (center), and a TST (bottom). 
Nodes with string pointers are de
picted with the first four charac
ters at the point referenced by the 
pOinter. 

concern for huge texts, since unbalanced BSTs occur with only bizarre 
constructions. 

Patricia was originally designed for the string-index application. 
To use Programs 15.5 and 15.4, we need only to provide an imple
mentation of bit that, given a string pointer and an integeri, returns 
the ith bit of the string (see Exercise 15.81). In practice, the height of 
a patricia trie that implements a text string index will be logarithmic. 
Moreover, a patricia trie will provide fast search implementations for 
misses because we do not need to examine all the bytes of the key. 

TSTs afford several of the performance advantages of patricia, 
are simple to implement, and take advantage of built-in byte-access 
operations that are typically found on modern machines. They also 
are amenable to simple implementations, such as Program 15.9, that 
can solve search problems more complicated than fully matching a 
search key. To use TSTs to build a string index, we need to remove 
the code that handles ends of keys in the data structure, since we are 
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guaranteed that no string is a prefix of another, and thus we never 
will be comparing strings to their ends. This modification includes 
changing the definition of eq in the item-type interface to regard two 
strings as equal if one is a prefix of the other, as we did in Section 12.7, 

since we will be comparing a (short) search key against a (long) text 
string, starting at some position in the text string. A third change 
that is convenient is to keep string pointers in each node, rather than 
characters, so that every node in the tree refers to a position in the text 
string (the position in the text string following the first occurrence of 
the character string defined by the characters on equal branches from 
the root to that node). Implementing these changes is an interesting 
and informative exercise that leads to a flexible and efficient text
string-index implementation (see Exercise 15.80). 

Despite all the advantages that we have been discussing, there 
is an important fact that we are overlooking when considering the 
use of BSTs, patricia tries, or TSTs for typical text indexing applica
tions: the text itself is usually fixed, so we do not need to support the 
dynamic insert operations that we have become accustomed to sup
porting. That is, we typically build the index once, then use it for a 
huge number of searches, without ever changing it. Therefore, we may 
not need dynamic data structures like BSTs, patricia tries or TSTs at 
all. The basic algorithm that is appropriate for handling this situation 
is binary search, with string pointers (see Section 12.4). The index 
is a set of string pointers; index construction is a string pointer sort. 
The primary advantage of using binary search over a dynamic data 
structure is the space savings. To index a text string at N positions 
using binary search, we need just N string pointers; in contrast, to 
index a string at N positions using a tree-based method, we need at 
least 3N pointers (one string pointer, to the text, and two links). Text 
indexes are typically huge, so binary search might be preferred because 
it provides guaranteed logarithmic search time but uses one-third the 
amount of memory used by tree-based methods. If sufficient memory 
space is available, however, TSTs will lead to a faster search for many 
applications because it moves through the key without retracing its 
steps, and binary search does not do so. 

lf we have a huge text but plan to perform only a small number of 
searches, then building a full index is not likely to be justified. In Part 5, 
we consider the string-search problem, where we want to determine 



652 CHAPTER FIFTEEN 

quickly whether a given text contains a given search key, without 
any preprocessing. We shall also consider a number of string-search 
problems that are between the two extremes of doing no preprocessing 
and building a full index for a huge text. 

Exercises 

I> 15.76 Draw the 26-way DST that results when you build a text-string in
dex from the words now is the time for all good people to come the 
aid of their party. 

I> 15.77 Draw the 26-way trie that results when you build a text-string in
dex from the words now is the time for all good people to come the 
aid of their party. 

I> 15.78 Draw the TST that results when you build a text-string index from 
the words now is the time for all good people to come the aid of 
their party, in the style of Figure 15.20. 

I> 15.79 Draw the TST that results when you build a text-string index from 
the words now is the time for all good people to come the aid of 
their party, using the implementation described in the text, where the TST 
contains string pointers at every node. 

o IS .80 Modify the TST search and insertion implementations in Programs 15.10 
and 15.1 I to provide a TST-based string index. 

015.81 	Implement an interface that allows patricia to process C string keys 
(that is, arrays of characters) as though they were bitstrings. 

015.82 Draw the patricia trie that results when you build a text string in
dex from the words now is the time for all good people to come the 
aid of their party, using a 5-bit binary coding with the ith letter in the 
alphabet represented by the binary representation of i. 

15.83 Explain why the idea of improving binary search using the same basic 
principle on which TSTs are based (comparing characters rather than strings) 
is not effective. 

IS .84 Find a large (at least 106 bytes) text file on your system, and compare 
the height and internal path length of a standard BST, patricia trie, and TST, 
when you use these methods to build an index from that file. 

15.85 Run empirical studies to compare the height and internal path length 
of a standard BS1: patricia trie, and TST, when you use these methods to 
build an index from a text string consisting of N random characters from a 
32-character alphabet, for N = 10\ 10\ 105 

, and 106 
• 

015.86 Write an efficient program to determine the longest repeated sequence 
in a huge text string. 

015.87 Write an efficient program to determine the IO-character sequence that 
occurs most frequently in a huge text string. 
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• 	15.88 Build a string index that supports an operation that returns the number 
of occurrences of its argument in the indexed text, and supports, in the same 
manner as sort, a search operation that visits all the text positions that match 
the search key. 

015.89 Describe a text string of N characters for which a TST-based string 
index will perform particularly badly. Estimate the cost of building an index 
for the same string with a BST. 

15.90 Suppose that we want to build an index for a random N-bit string, for 
bit positions that are a multiple of 16. Run empirical studies to determine 
which of the bytesizes 1, 2, 4, 8, or 16 leads to the lowest running times to 
construct a TST-based index, for N 103

, 104 , 105, and 106 • 
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External Searching 


SEARCH ALGORITHMS THAT are appropriate for accessing 
items from huge files are of immense practical importance. Search

ing is the fundamental operation on huge data sets, and it certainly 
consumes a significant fraction of the resources used in many comput
ing environments. With the advent of world wide networking, we have 
the ability to gather almost all the information that is possibly relevant 
to a task-our challenge is to be able to search through it efficiently. In 
this chapter, we discuss basic underlying mechanisms that can support 
efficient search in symbol tables that are as large as we can imagine. 

Like those in Chapter II, the algorithms that we consider in 
this chapter are relevant to numerous different types of hardware and 
software environments. Accordingly, we tend to think about the al
gorithms at a level more abstract than that of the C programs that 
we have been considering. However, the algorithms that we shall 
consider also directly generalize familiar searching methods, and are 
conveniently expressed as C programs that are useful in many situa
tions. We will proceed in a manner different from that in Chapter I I: 

We develop specific implementations in detail, consider their essential 
performance characteristics, and then discuss ways in which the under
lying algorithms might prove useful under situations that might arise 
in practice. Taken literally, the title of this chapter is a misnomer, since 
we will present the algorithms as C programs that we could substitute 
interchangeably for the other symbol-table implementations that we 
have considered in Chapters 12 through IS. As such, they are not 
"external" methods at all. However, they are built in accordance with 

655 



CHAPTER SIXTEEN 

a simple abstract model, which makes them precise specifications of 
how to build searching methods for specific external devices. 

Detailed abstract models are less useful than they were for sorting 
because the costs involved are so low for many important applications. 
We shall be concerned mainly with methods for searching in huge files 
stored on any external device where we have fast access to arbitrary 
blocks of data, such as a disk. For tapelike devices, where only sequen
tial access is allowed (the model that we considered in Chapter II), 
searching degenerates to the trivial (and slow) method of starting at 
the beginning and reading until completion of the search. For disklike 
devices, we can do much better: Remarkably, the methods that we 
shall study can support search and insert operations on symbol tables 
containing billions or trillions of items using only three or four ref
erences to blocks of data on disk. System parameters such as block 
size and the ratio of the cost of accessing a new block to the cost of 
accessing the items within a block affect performance, but the methods 
are relatively insensitive to the values of these parameters (within the 
ranges of values that we are likely to encounter in practice). Moreover, 
the most important steps that we must take to adapt the methods to 
particular practical situations are straightforward. 

Searching is a fundamental operation for disk devices. Files are 
typically organized to take advantage of particular device characteris
tics to make access to information as efficient as possible. In short, it 
is safe to assume that the devices that we use to store huge amounts of 
information are built to support efficient and straightforward imple
mentations of search. In this chapter, we consider algorithms built at 
a level of abstraction slightly higher than that of the basic operations 
provided by disk hardware, which can support insert and other dy
namic symbol-table operations. These methods afford the same kinds 
of advantages over the straightforward methods that BSTs and hash 
tables offer over binary search and sequential search. 

In many computing environments, we can address a huge virtual 
memory directly, and can rely on the system to find efficient ways to 
handle any program's requests for data. The algorithms that we con
sider also can be effective solutions to the symbol-table implementation 
problem in such environments. 

A collection of information to be processed with a computer is 
called a database. A great deal of study has gone into methods of 
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building, maintaining and using databases. Much of this work has 
been in the development of abstract models and implementations to 
support search operations with criteria more complex than the simple 
"match a single key" criterion that we have been considering. In 
a database, searches might be based on criteria for partial matches 
perhaps including multiple keys, and might be expected to return a 
large number of items. We touch on methods of this type in Parts 5 
and 6. General search requests are sufficiently complicated that it is 
not atypical for us to do a sequential search over the entire database, 
testing each item to see if it meets the criteria. Still, fast search for 
tiny bits of data matching specific criteria in a huge file is an essential 
capability in any database system, and many modern databases are 
built on the mechanisms that we describe in this chapter. 

16.1 Rules of the Game 

As we did in Chapter II, we make the basic assumption that sequen
tial access to data is far less expensive than nonsequential access. Our 
model will be to consider whatever memory facility that we use to im
plement the symbol table as divided up into pages: Contiguous blocks 
of information that can be accessed efficiently by the disk hardware. 
Each page will hold many items; our task is to organize the items 
within the pages such that we can access any item by reading only 
a few pages. We assume that the 110 time required to read a page 
completely dominates the processing time required to access specific 
items or to do any other computing involving that page. This model 
is oversimplified in many ways, but it retains enough of the character
istics of external storage devices to allow us to consider fundamental 
methods. 

Definition I6.I A page is a contiguous block of data. A probe is the 
first access to a page. 

We are interested in symbol-table implementations that use a small 
number of probes. We avoid making specific assumptions about the 
page size and about the ratio of the time required for a probe to the 
time required, subsequently, to access items within the block. We 
expect these values to be on the order of 100 or 1000; we do not need 



CHAPTER SIXTEEN 

to be more precise because the algorithms are not highly sensitive to 

these values. 
This model is directly relevant, for example, in a file system in 

which files comprise blocks with unique identifiers and in which the 
purpose is to support efficient access, insertion, and deletion based on 
that identifier. A certain number of items fit on a block, and the cost 
of processing items within a block is insignificant compared to the cost 
of reading the block. 

This model is also directly relevant in a virtual-memory system, 
where we simply refer directly to a huge amount of memory, and rely 
on the system to keep the information that we use most often in fast 
storage (such as internal memory) and the information that we use 
infrequently in slow storage (such as a disk). Many computer sys
tems have sophisticated paging mechanisms, which implement virtual 
memory by keeping recently used pages in a cache that can be accessed 
quickly. Paging systems are based on the same abstraction that we are 
considering: They divide the disk into blocks, and assume that the cost 
of accessing a block for the first time far exceeds the cost of accessing 
data within the block. 

Our abstract notion of a page typically will correspond precisely 
to a block in a file system or to a page in a virtual-memory system. For 
simplicity, we generally assume this correspondence when considering 
the algorithms. For specific applications, we might have multiple 
pages per block or multiple blocks per page for system- or application
dependent reasons; such details do not diminish the effectiveness of the 
algorithms, and thus underscore the utility of working at an abstract 
level. 

We manipulate pages, references to pages, and items with keys. 
For a huge database, the most important problem to consider now 
is to maintain an index to the data. That is, as discussed briefly 
in Section I 2.7, we assume that the items constituting our symbol 
table are stored in some static form somewhere, and that our task 
is to build a data structure with keys and references to items that 
allows us to produce quickly a reference to a given item. For example, 
a telephone-company might have customer information stored in a 
huge static database, with several indexes on the database, perhaps 
using different keys, for monthly billing, daily transaction processing, 
periodic solicitation, and so forth. For huge data sets, indexes are of 



EXTERNAL SEARCHING 

critical importance: We generally do not make copies of the basic data, 
not only because we may not be able to afford the extra space, but also 
because we want to avoid the problems associated with maintaining 
the integrity of the data when we have multiple copies. 

Accordingly, we generally assume that each item is a reference to 

the actual data, which may be a page address or some more complex 
interface to a database. For simplicity, we do not keep copies of items 
in our data structures, but we do keep copies of keys-an approach that 
is often practical. Also, for simplicity in describing the algorithms, we 
do not use an abstract interface for item and page references-instead, 
we just use pointers. Thus, we can use our implementations directly 
in a virtual-memory environment, but have to convert the pointers 
and pointer access into more complex mechanisms to make them true 
external sorting methods. 

We shall consider algorithms that, for a broad range of values of 
the two main parameters (block size and relative access time), imple
ment search, insert, and other operations in a fully dynamic symbol 
table using only a few probes per operation. In the typical case where 
we perform huge numbers of operations, careful tuning might be ef
fective. For example, if we can reduce the typical search cost from 
three probes to two probes, we might improve system performance 
by 50 percent! However, we will not consider such tuning here; its 
effectiveness is strongly system- and application-dependent. 

On ancient machines, external storage devices were complex con
traptions that not only were big and slow, but also did not hold much 
information. Accordingly, it was important to work to overcome their 
limitations, and early programming lore is filled with tales of external 
file access programs that were timed perfectly to grab data off a rotat
ing disk or drum and otherwise to minimize the amount of physical 
movement required to access data. Early lore is also filled with tales 
of spectacular failures of such attempts, where slight miscalculations 
made the process much slower than a naive implementation would 
have been. By contrast, modern storage devices not only are tiny and 
extremely fast, but also hold huge amounts of information; so we 
generally do not need to address such problems. Indeed, in modern 
programming environments, we tend to shy away from dependen
cies on the properties of specific physical devices-it is generally more 
important that our programs be effective on a variety of machines 
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706 111000110 
176 001111110 
601 110000001 
153 001101011 
513 101001011 
773 111111011 
742 111100010 
373 011111011 
524 101010100 
766 111110110 
275 010111101 
737 111011111 
574 101111100 
434 100011100 
641 110100001 
207 010000111 
001 000000001 
277 010111111 
061 000110001 
736 111011110 
526 101010110 
562 101110010 
017 000001111 
107 001000111 
147 001100111 

Figure 16.1 

Binary representation of octal 
keys 

The keys {left) that we use in the 
examples in this chapter are 3
digit octal numbers, which we 
also interpret as 9-bit binary val
ues (right). 
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(including those to be developed in the future) than that they achieve 
peak performance for a particular device. 

For long-lived databases, there are numerous important imple
mentation issues surrounding the general goals of maintaining the in
tegrity of the data and providing flexible and reliable access. We do 
not address such issues here. For such applications, we may view the 
methods that we consider as the underlying algorithms that will ulti
mately ensure good performance, and as a starting point in the system 
design. 

I6.2 Indexed Sequential Access 

A straightforward approach to building an index is to keep an array 
with keys and item references, in order of the keys, then to use bi
nary search (see Section I2.4) to implement search. For N items, this 
method would require 19 N probes-even for a huge file. Our basic 
model leads us immediately to consider two modifications to this sim
ple method. First, the index itself is huge and will not fit on a single 
page, in general. Since we can access pages only through page refer· 
ences, we can build, instead, an explicit fully balanced binary tree with 
keys and page pointers in internal nodes, and with keys and item point
ers in external nodes. Second, the cost of accessing AJ table entries is 
the same as the the cost of accessing 2, so we can use an 1\;[-ary tree 
for about the same cost per node as a binary tree. This improvement 
reduces the number of probes to be proportional to about log2Vf N. As 
we saw in Chapters 10 and 15, we can regard this quantity to be con
stant for practical purposes. For example, if 1~1 is 1000, then log,vI N 
is less than 5 if N is less than 1 trillion. 

Figure 16.1 gives a sample set of keys, and Figure r6.2 depicts 
an example of such a tree structure for those keys. We need to use 
relatively small values of l\lf and N to keep our examples manageable; 
nevertheless, they illustrate that the trees for large M will be flat. 

The tree depicted in Figure 16.2 is an abstract device-independent 
representation of an index that is similar to many other data structures 
that we have considered. Note that, in addition, it is not far removed 
from device-dependent indexes that might be found in low-level disk 
access software. For example, some early systems used a two-level 
scheme, where the bottom level corresponded to the items on the 
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pages for a particular disk device, and the second level corresponded 
to a master index to the individual devices. In such systems, the master 
index was kept in main memory, so accessing an item with such an 
index required two disk accesses: one to get the index, and one to get 
the page containing the item. As disk capacity increases, so increases 
the size of the index, and several pages might be required to store 
the index, eventually leading to a hierarchical scheme like the one 
depicted in Figure I6.2. We shall continue working with an abstract 
representation, secure in the knowledge that it can be implemented 
directly with typical low-level system hardware and software. 

Many modern systems use a similar tree structure to organize 
huge files as a sequence of disk pages. Such trees contain no keys, but 
they can efficiently support the commonly used operations of accessing 
the file in sequential order, and, if each node contains a count of its 
tree size, of finding the page containing the kth item in the file. 

Historically, because it combines a sequential key organization 
with indexed access, the indexing method depicted in Figure I6.2 is 
called indexed sequential access. It is the method of choice for appli
cations in which changes to the database are rare. We sometimes refer 
to the index itself as a directory. The disadvantage of using indexed 
sequential access is that modifying the directory is an expensive opera
tion. For example, adding a single key can require rebuilding virtually 
the whole database, with new positions for many of the keys and new 
values for the indexes. To combat this defect and to provide for mod
est growth, early systems provided for overflow pages on disks and 
overflow space in pages, but such techniques ultimately were not very 
effective in dynamic situations (see Exercise I6.3). The methods that 
we consider in Sections I6.3 and I6.4 provide systematic and efficient 
alternatives to such ad hoc schemes. 

Property I6.I A search in an indexed sequential file requires only 
a constant number of probes, but an insertion can involve rebuilding 
the entire index. 

We use the term constant loosely here (and throughout this chapter) 
to refer to a quantity that is proportional to 10gM N for large M. 
As we have discussed, this usage is justified for practical file sizes. 
Figure I6.3 gives more examples. Even if we were to have a 128-bit 
search key, capable of specifying the impossibly large number of 2128 
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Figure I6.2 

Indexed sequential file struc
ture 

In a sequential index, we keep 
the keys in sequential order in full 
pages (right), with an index direct
ing us to the smallest key in each 
page (left). To add a key, we need 
to rebuild the data structure. 
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105 words in dictionary 
10(, words in Moby Dick 
109 Social Security numbers 

1012 phone numbers 

in the world 

1015 people who ever lived 

1020 grains of sand on beach 

at Coney Island 

1025 bits of memory 

ever manufactured 

1079 electrons in universe 

Figure 16.3 
Examples of data set sizes 

These generous upper bounds in
dicate that we can assume safely, 
for practical purposes, that we 
will never have a symbol table 
with more than 10:\0 items. Even 
in such an unrealistically huge 
database, we could find an item 
with a given key with less than 
10 probes, if we did 1ODD-way 
branching. Even if we somehow 
found a way to store information 
on each electron in the universe, 
lOOO-way branching would give us 
access to any particular item with 
less than 27 probes. 
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different items, we could find an item with a given key in 13 probes, 
with 1000-way branching. _ 

We will not consider implementations that search and construct 
indexes of this type, because they are special cases of the more general 
mechanisms that we consider in Section 16.3 (see Exercise 16.17 and 
Program 16.2). 

Exercises 

I> 16.1 Tabulate the values of N, for AI = 10, 100, and 1000 and N = 

10\ 10\ 105
, and 106 

• 

I> 16.2 Draw an indexed sequential file structure for the keys 516, 177, 143, 
632,572,161,774,470,411,706,461,612, 761,474, 774,635,343,461,351, 
430,664,127,345,171, and 357 , for M 5 and M = 6. 

016.3 	 Suppose that we build an indexed sequential file structure for N items 
in pages of capacity A1, but leave k empty spaces in each page for expansion. 
Give a formula for the number of probes needed for a search, as a function of 
N, M, and k. Use the formula to determine the number of probes needed for 
a search when k = At!/10, for 1'1;[ = 10, 100, and 1000 and N = 103 

, 104, 105 
, 

and 106 
• 

o r6.4 Suppose that the cost of a probe is about 0: time units, and that the 
average cost of finding an item in a page is about {3lvl time units. Find the 
value of AI that minimizes the cost for a search in an indexed sequential file 
structure, for 0:/,8 = 10, 100, and 1000 and N = 103

, 10\ lOS, and 106 
• 

16.3 B Trees 

To build search structures that can be effective in a dynamic situation, 
we build multiway trees, but we relax the restriction that every node 
must have exactly !v! entries. Instead, we insist that every node must 
have at most 1\;! entries, so that they will fit on a page, but we allow 
nodes to have fewer entries. To be sure that nodes have a sufficient 
number of entries to provide the branching that we need to keep search 
paths short, we also insist that all nodes have at least (say) Iv!/2 entries, 
except possibly the root, which must have a least one entry (two links). 
The reason for the exception at the root will become clear when we 
consider the construction algorithm in detail. Such trees were named B 
trees by Bayer and McCreight, who, in 1970, were the first researchers 
to consider the use of multi way balanced trees for external searching. 
Many people reserve the term B tree to describe the exact data structure 
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built by the algorithm suggested by Bayer and McCreight; we use it as 
a generic term to refer to a family of related algorithms. 

We have already seen a B-tree implementation: In Defini
tions 13.1 and 13.2, we see that B trees of order 4, where each node 
has at most four links and at least two links, are none other than the 
balanced 2-3-4 trees of Chapter I3. Indeed, the underlying abstrac
tion generalizes in a straightforward manner, and we can implement 
B trees by generalizing the top-down 2-3-4 tree implementations in 
Section 13.4. However, the various differences between external and 
internal searching that we discussed in Section 16.I lead us to a num
ber of different implementation decisions. In this section, we consider 
an implementation that 

• 	 Generalizes 2-3-4 trees to trees with between 1v[/2 and }.1 nodes 
• 	 Represents multiway nodes with an array of items and links 
• 	 Implements an index instead of a search structure containing the 

items 
• 	 Splits from the bottom up 
• Separates the index from the items 

The final two properties in this list are not essential, but are convenient 
in many situations and are normally found in B tree implementations. 

Figure 16.4 illustrates an abstract 4-5-6-7-8 tree, which gener
alizes the 2-3-4 tree that we considered in Section I3.3. The gener
alization is straightforward: 4-nodes have three keys and four links, 
5-nodes have four keys and five links, and so forth, with one link for 
each possible interval between keys. To search, we start at the root 
and move from one node to the next by finding the proper interval 
for the search key in the current node and then exiting through the 
corresponding link to get to the next node. We terminate the search 
with a search hit if we find the search key in any node that we touch; 
we terminate with a search miss if we reach the bottom of the tree 
without a hit. As we can in top-down 2-3-4 trees, we can insert a 
new key at the bottom of the tree after a search if, on the way down 
the tree, we split nodes that are full: If the root is an 8-node, we split 

Figure 16.4 
A 4-5-6-7-8 tree 
This figure depicts a general
ization of 2-3-4 trees built from 
nodes with 4 through 8 links (and 
3 through 7 keys, respectively). 
As with 2-3-4 trees, we keep the 
height constant by splitting 8-nodes 
when encountering them, with ei
ther a top-down or a bottom-up 
insertion algorithm. For example, 
to insert another J into this tree, 
we would first split the 8-node 
into two 4-nodes, then insert the 
M into the root, converting it into 
a 6-node. When the root splits, 
we have no choice but to create 
a new root that is a 2-node, so 
the root node is excused from the 
constraint that nodes must have at 
least four links. 
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Figure 16.5 
B tree construction, part I 

This example shows six insertions 
into an initially empty B tree built 
with pages that can hold five keys 
and links, using keys that are 3
digit octal numbers (9-bit binary 
numbers). We keep the keys in 
order in the pages. The sixth inser
tion causes a split into two external 
nodes with three keys each and an 
internal node that serves as an in
dex: Its first pointer points to the 
page containing all keys greater 
than or equal to 000 but less than 
601, and its second pointer points 
to the page containing a/l keys 
greater than or equal to 601. 

it into a 2-node connected to two 4-nodes; then, any time we see a 
k-node attached to an 8-node, we replace it by a (k +1 )-node attached 
to two 4-nodes. This policy guarantees that we have room to insert 
the new node when we reach the bottom. 

Alternatively, as discussed for 2-3-4 trees in Section 13.3, we can 
split from the bottom up: We insert by searching and putting the new 
key in the bottom node, unless that node is a 8-node, in which case we 
split it into two 4-nodes and insert the middle key and the links to the 
two new nodes into its parent, working up the tree until encountering 
an ancestor that is not a 8-node. 

Replacing 4 by 1'v!/2 and 8 by M in descriptions in the previous 
two paragraphs converts them into descriptions of search and insert 
for 1'v!/2-...-N! trees, for any positive even integer 1'\;/, even 2 (see 
Exercise 16.9). 

Definition 16.2 A B tree of order M is a tree that either is empty or 
comprises k-nodes, with k 1 keys and k links to trees representing 
each of the k intervals delimited by the keys, and has the following 
structural properties: k must be between 2 and N! at the root and 
between M /2 and 1'v! at every other node; and all links to empty trees 
must be at the same distance from the root. 

B tree algorithms are built upon this basic set of abstractions. As 
in Chapter 13, we have a great deal of freedom in choosing concrete 
representations for such trees. For example, we can use an extended 
red-black representation (see Exercise 13.69). For external searching, 
we use the even more straightforward ordered-array representation, 
taking M to be sufficiently large that M -nodes fill a page. The branch
ing factor is at least 1l1/2, so the number of probes for any search or 
insert is effectively constant, as discussed following Property 16.1. 
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Instead of implementing the method just described, we consider 
a variant that generalizes the standard index that we considered in 
Section I6.I. We keep keys with item references in external pages 
at the bottom of the tree, and copies of keys with page references in 
internal pages. We insert new items at the bottom, and then use the 
basic lvt/2-.. .-At tree abstraction. When a page has At entries, we 
split it into two pages with lvt/2 pages each, and insert a reference to 
the new page into its parent. When the root splits, we make a new 
root with two children, thus increasing the height of the tree by 1. 

Figures 16.5 through 16.7 show the B tree that we build by 
inserting the keys in Figure 16.1 (in the order given) into an initially 
empty tree, with At = 5. Doing insertions involves simply adding an 
item to a page, but we can look at the final tree structure to determine 
the significant events that occurred during its construction. It has seven 
external pages, so there must have been six external node splits, and 
it is of height 3, so the root of the tree must have split twice. These 
events are described in the commentary that accompanies the figures. 

Program 16.1 gives the type definitions for nodes and the ini
tialization code for our B-tree implementation. It is similar to several 
other tree-search implementations that we have examined, in Chap
ters 13 and IS. The chief added wrinkle is that we use the C union 
construct to allow us to define slightly different external and internal 

Figure 16.6 
B tree construction, part 2 

After we insert the four keys 742, 
373, 524, and 766 into the right
most 8 tree in Figure 16.5, both 
of the external pages are full (left). 
Then, when we insert 275, the first 
page splits, sending a link to the 
new page (along with its smallest 
key 373) up to the index (center); 
when we then insert 737, the page 
at the bottom splits, again sending 
a link to the new page up to the 
index (right). 
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Figure 16.7 
B tree construction, part 3 

Continuing our example, we insert 
the 13 keys 574; 434, 641, 207, 
001, 277, 061, 736, 526, 562, 
017, 107, and 147 into the right
most B tree in Figure 16.6. Node 
splits occur when we insert 277 
(lei!), 526 (center), and 107 (right). 
The node split caused by inserting 
526 also causes the index page to 
split, and increases the height of 
the tree by one. 

nodes with the same structure (and the same type of link): Each node 
consists of an array of keys with associated links (in internal nodes) 
or items (in external nodes), and a count giving the number of active 
entries. 

With these definitions and the example trees that we just con
sidered, the code for search that is given in Program 16.2 is straight
forward. For external nodes, we scan through the array of nodes to 
look for a key matching the search key, returning the associated item 
if we succeed and a null item if we do not. For internal nodes, we scan 
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Program I6.I B-tree definitions and initialization 

Each node in a B tree contains an array and a count of the number of 
active entries in the array. In internal nodes, each array entry is a key 
and a link to a node; in external nodes, each array entry is a key and 
an item. The C union construct allows us to specify these options in a 
single declaration. 

We initialize new nodes to be empty (count field set to 0), with 
a sentinel key in array entry O. An empty B tree is a link to an empty 
node. Also, we maintain variables to track the number of items in the 
tree and the height of the tree, both initialized to O. 

typedef struct STnode* link; 
typedef struct 

{ Key key; union { link next; Item item; } ref; } 
entry; 
struct STnode { entry b[M]; int m; }; 
static link head; 
static int H, N; 
link NEWO 

{ link x = malloc(sizeof *x); 
x->m 0; 
return x; 

} 

void STinit(int maxN) 
{ head = NEW(); H = 0; N O;} 

through the array of nodes to find the link to the unique subtree that 
could contain the search key. 

Program 16.3 is an implementation of insert for B trees; it too 
uses the recursive approach that we have taken for numerous other 
search-tree implementations in Chapters I3 and 15. It is a bottom-up 
implementation because we check for node splitting after the recursive 
call, so the first node split is an external node. The split requires that 
we pass up a new link to the parent of the split node, which in turn 
might need to split and pass up a link to its parent, and so forth, 
perhaps all the way up to the root of the tree (when the root splits, 
we create a new root, with two children). By contrast, the 2-3-4-tree 
implementation of Program 13.6 checks for splits before the recursive 
call, so we do splitting on the way down the tree. We could also use a 
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Program 16.2 B-tree search 

This implementation of search for B trees is based on a recursive func
tion, as usual. For internal nodes (positive height), we scan to find the 
first key larger than the search key, and do a recursive call on the subtree 
referenced by the previous link. For external nodes (height 0), we scan 
to see whether or not there is an item with key equal to the search key. 

Item searchR(link h, Key v, int H) 

{ int j; 


if (H == 0) 


for (j = 0; j < h->m; j++) 

if (eq(v, h->b[j] .key)) 


return h->b[j] .ref.item; 

if (H != 0) 

for (j 0; j < h->m; j++) 
if «j+1 == h->m) I I less(v, h->b[j+1] .key)) 

return searchR(h->b[j] .ref.next, v, H-1); 
return NULLitem; 

} 

Item STsearch(Key v) 

{ return searchR(head, v, H); } 


top-down approach for B trees (see Exercise I6.IO). This distinction 
between top-down versus bottom-up approaches is unimportant in 
many B tree applications, because the trees are so flat. 

The node-splitting code is given in Program I6.4. In the code, we 
use an even value for the variable !vI, and we allow only M 1 items 
per node in the tree. This policy allows us to insert the 1t.fth item into 
a node before splitting that node, and simplifies the code considerably 
without having much effect on the cost (see Exercises I6.20 and 16.2I). 
For simplicity, we use the upper bound of A1 items per node in the 
analytic results later in this section; the actual differences are minute. 
In a top-down implementation, we would not have to resort to this 
technique, because the convenience of being sure that there is always 
room to insert a new key in each node comes automatically. 

Property 16.2 A search or an insertion in a B tree of order M with 
1'1 items requires between 10gA1 1'1 and logM/2 1'1 probes-a constant 
number, for practical purposes. 
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Program r6.3 B-tree insertion 

We insert new items by moving larger items to the right by one position, 
as in insertion sOrt. If the insertion overfills the node, we call split to 
divide the node into two halves, and return the link to the new node. 
One level up in the recursion, this extra link causes a similar insertion 
in the parent internal node, which could also split, possibly propagating 
the insertion all the way up to the root. 

link insertR(link h, Item item, int H) 
{ 	 int i, j; Key v = key(item); entry x; link t, u; 

x.key ~ v; x.ref.item = item; 
if (H == 0) 

for (j = 0; j < h->m; j++) 
if (less(v, h->b[j] .key)) break; 

if (H != 0) 

for (j = 0; j < h->m; j++) 
if «j+l == h->m) I I less(v, h->b[j+l] .key)) 

{ 

t = h->b[j++] .ref.next; 

u = insertR(t, item, H-l); 

if (u == NULL) return NULL; 

x.key = u->b[O] .key; x.ref.next u; 

break; 


} 


for (i =(h->m)++; i > j; i--) 

h->b[i] h->b[i-l]; 

h->b[j] x; 
if (h->m < M) return NULL; else return split(h); 

} 

void STinsert(Item item) 
{ 	link t, u = insertR(head, item, H); 


if (u == NULL) return; 

t = NEW(); t->m 2; 

t->b[O] .key = head->b[O] .key; 

t->b[O] .ref.next = head; 

t->b[l] .key = u->b[O] .key; 

t->b[l] .ref.next = u; 

head = t; H++; 


} 
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Program I6.4 B-tree node split 

To split a node in a B tree, we create a new node, move the larger half of 
the keys to the new node, and then adjust counts and set sentinel 
in the middle of both nodes. This code assumes that M is even, and uses 
an extra position in each node for the item that causes the split. That is, 
the maximum number of keys in a node is M-i, and when a node gets M 
keys, we split it into two nodes with M/2 keys each. 

link split(link h) 

{ int j; link t = NEW(); 


for (j = 0; j < M/2; j++) 

t->b[j] = h->b[M/2+jJ ; 


h->m = M/2; t->m = M/2; 

return t; 


} 

This property follows from the observation that all the nodes in the 
interior of the B tree (nodes that are not the root and are not external) 
have between M /2 and M links, since they are formed from a split of 
a full node with M keys, and can only grow in size (when a lower node 
is split). In the best case, these nodes form a complete tree of degree 
M, which leads immediately to the stated bound (see Property I6.I). 
In the worst case, we have a complete tree of degree AI/2. • 

When M is 1000, the height of the tree is less than three for N 
less than 125 million. In typical situations, we can reduce the cost to 
two probes by keeping the root node in internal memory. For a disk
searching implementation, we might take this step explicitly before 
embarking on any application involving a huge number of searches; 
in a virtual memory with caching, the root node will be the one most 
likely to be in fast memory, because it is the most frequently accessed 
node. 

We can hardly expect to have a search implementation that can 
guarantee a cost of fewer than two probes for search and insert in huge 
files, and B trees are widely used because they allow us to achieve this 
ideal. The price of this speed and flexibility is the empty space within 
the nodes, which could be a liability for huge files. 

Property I6.3 A B tree of order M constructed from N random 
items is expected to have about 1.44N/ 1\;[ pages. 
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Yao proved this fact in 1979, using mathematical analysis that is be
yond the scope of this book (see reference section). It is based on 
analyzing a simple probabilistic model that describes tree growth. Af
ter the first Itt/2 nodes have been inserted, there are, at any given 
time, ti external pages with i items, for M /2 ::; iSM, with 
tM/2 T ... tAct = N. Since each interval between nodes is equally 
likely to receive a random key, the probability that a node with i items 
is hit is tilN. Specifically, for i < M, this quantity is the probability 
that the number of external pages with i items decreases by 1 and the 
number of external pages with (i + 1) items increases by 1; and for 
i = 2lvf, this quantity is the probability that the number of external 
pages with 2lv1 items decreases by 1 and the number of external pages 
with ]'v! items increases by 2. Such a probabilistic process is called a 
Markov chain. Yao's result is based on an analysis of the asymptotic 
properties of this chain. _ 

We can also validate Property r6.3 by writing a program to sim
ulate the probabilistic process (see Exercise I6.II and Figures I6.8 

and I6.9). Of course, we also could just build random B trees and 
measure their structural properties. The probabilistic simulation is 
simpler to do than either the mathematical analysis or the full im
plementation, and is an important tool for us to use in studying and 
comparing variants of the algorithm (see, for example, Exercise I 6. I 6). 

The implementations of other symbol-table operations are sim
ilar to those for several other tree-based representations that we 
have seen before, and are left as exercises (see Exercises I6.22 

through I 6.2 5). In particular, select and sort implementations are 
straightforward, but as usual, implementing a proper delete can be 
a challenging task. Like insert, most delete operations are a simple 
matter of removing an item from an external page and decrementing 
its counter, but what do we do when we have to remove an item from 
a node that has only M /2 items? The natural approach is to find items 
from sibling nodes to fill the space (perhaps reducing the number of 
nodes by one), but the implementation becomes complicated because 
we have to track down the keys associated with any items that we move 
among nodes. In practical situations, we can typically adopt the much 
simpler approach of letting external nodes become underfulI, without 
suffering much performance degradation (see Exercise I6.25). 
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-
Figure I6.8 ---
Growth of a large B tree ---
In this simulation, we insert items --
with random keys into an initially --
empty B tree with pages that can ---
hold nine keys and links. Each line ---
displays the external nodes, with ----
each external node depicted as -----
a line segment of length propor -----
tional to the number of items in -----
that node. Most insertions land in ------
an external node that is not full, -------
increasing that node's size by 1. -------
When an insertion lands in a full -------
external node, the node splits into -------
two nodes of half the size. --------
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Many variations on the basic B-tree abstraction suggest them
selves immediately. One class of variations saves time by packing as 
many page references as possible in internal nodes, thereby increasing 
the branching factor and flattening the tree. As we have discussed, 
the benefits of such changes are marginal in modern systems, since 
standard values of the parameters allow us to implement search and 
insert with two probes-an efficiency that we could hardly improve. 
Another class of variations improves storage efficiency by combining 
nodes with siblings before splitting. Exercises 16.13 through r6.16 
are concerned with such a method, which reduces the excess storage 
used from 44 to 23 per cent, for random keys. As usual, the proper 
choice among different variations depends on properties of applica
tions. Given the broad variety of different situations where B trees 
are applicable, we will not consider such issues in detail. We also will 
not be able to consider details of implementations, because there are 
so many device- and system-dependent matters to take into account. 
As usual, delving deeply into such implementations is a risky business, 
and we shy away from such fragile and nonportable code in modern 
systems, particularly when the basic algorithm performs so well. 

Exercises 

l> r6.5 Give the contents of the 3-4-5-6 tree that results when you insert the 
keys E A S Y QUE S T ION WIT H P LEN T Y 0 F KEY S in that order into 
an initially empty tree. 

016.6 	 Draw figures corresponding to Figures 16.5 through to illustrate 
the process of inserting the keys 516, 177, 143, 632, 572, 161, 774, 470, 411, 
706,461,612,761,474, 774,635,343,461,351,430,664,127,345, 171, and 
357 in that order into an initially empty tree, with M 5. 

016.7 	 Give the height of the B trees that result when you insert the keys in 
Exercise 16.28 in that order into an initially empty tree, for each value of 
lvI > 2. 

16.8 Draw the B tree that results when you insert 16 equal keys into an 
initially empty tree, with AI = 4 . 

• 16.9 	 Draw the 1-2 tree that results when you insert the keys E A S Y QUE S 
T ION into an initially empty tree. Explain why 1-2 trees are not of practical 
interest as balanced trees . 

• 16.10 Modify the B-tree-insertion implementation in Program r6.3 to do 
splitting on the way down the tree, in a manner similar to our implementation 
of 2-3-4-tree insertion (Program 13.6). 
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Figure 16.9 
Growth of a large B tree, page 

occupancy exposed 

This version of Figure 16.8 shows 
how pages fill during the B tree 
growth process. Again, most inser
tions land in a page that is not full 
and just increase its occupancy by 
1. When an insertion does land in 
a full page, the page splits into two 
half-empty pages. 
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• 	16.1 I Write a program to compute the average number of external pages for 
a B tree of order !VI built from N random insertions into an initially empty 
tree, using the probabilistic process described after Property 16. I. Run your 
program for !VI = 10, 100, and 1000 and N = 103

, 104 
, lOS, and lO6. 

016.12 	Suppose that, in a three-level tree, we can afford to keep a links in 
internal memory, between band 2b links in pages representing internal nodes, 
and between c and 2c items in pages representing external nodes. What is the 
maximum number of items that we can hold in such a tree, as a function of a, 
b, and c? 

016.13 	Consider the sibling split (or B* tree) heuristic for B trees: When it 
comes time to split a node because it contains !VI entries, we combine the node 
with its sibling. If the sibling has k entries with k < AI - 1, we reallocate 
the items giving the sibling and the full node each about (1'1'1 -7 k)/2 entries. 
Otherwise, we create a new node and give each of the three nodes about 2AI/3 
entries. Also, we allow the root to grow to hold about 4A!/3 items, splitting 
it and creating a new root node with two entries when it reaches that bound. 
State bounds on the number of probes used for a search or an insertion in a B * 
tree of order 1\1 with N items. Compare your bounds with the corresponding 
bounds for B trees (see Property 16.2), for 1'v! = 10, 100, and 1000 and 
N = 103 , 104, lO5, and 106 • 

•• 16.14 Develop a B" tree insert implementation (based on the sibling-split 
heuristic). 

• 16.15 Create a figure like Figure 16.8 for the sibling-split heuristic. 

• 	16.16 Run a probabilistic simulation (see Exercise 16.11) to determine the 
average number of pages used when we use the sibling-split heuristic, building 
a B* tree of order 1'\11 by inserting random nodes into an initially empty tree, 
for 1'1'1 = 10, 100, and woo and N 103

, 104
, 105

, and 106 
• 

• 	16.17 Write a program to construct a B tree index from the bottom up, starting 
with an array of pointers to pages containing between iVI and 2Al items, in 
sorted order. 

• 	16.18 Could an index with all pages full, such as Figure 16.2, be constructed 
by the B-tree-insertion algorithm considered in the text (Program I6.3)? Ex
plain your answer. 

16.19 Suppose that many different computers have access to the same index, 
so several programs may be trying to insert a new node in the same B tree at 
about the same time. Explain why you might prefer to use top-down B trees 
instead of bottom-up B trees in such a situation. Assume that each program 
can (and does) delay the others from modifying any given node that it has read 
and might later modify . 

• 	 16.20 Modify the B-tree implementation in Programs 16.1 through 16.3 to 
allow Iv! items per node to exist in the tree. 

l> 16.2T Tabulate the difference between 10g999 Nand 10glOOO N, for N = 103 
, 

104 
, lOS, and 106 

• 
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t> 16.22 Implement the sort operation for a B-tree-based symbol table. 

016.23 Implement the select operation for a B-tree-based symbol table . 

•• 16.24 Implement the delete operation for a B-tree-based symbol table. 

016.25 	Implement the delete operation for a B-tree-based symbol table, using 
a simple method where you delete the indicated item from its external page 
(perhaps allowing the number of items in the page to fall below 1'1'1/2), but do 
not propagate the change up through the tree, except possibly to adjust the 
key values if the deleted item was the smallest in its page . 

• 	16.26 Modify Programs I6.2 and I6.3 to use binary search (see Pro
gram I2.6) within nodes. Determine the value of AI that minimizes the 
time that your program takes to build a symbol table by inserting N items 
with random keys into an initially empty table, for N 10\ 10\ lOS, and 
106 

, and compare the times that you get with the corresponding times for 
red-black trees (Program I3 .6). 

I6.4 Extendible Hashing 

An alternative to B trees that extends digital searching algorithms to a p
ply to external searching was developed in 1978 by Fagin, Nievergelt, 
Pippenger, and Strong. Their method, called extendible hashing, leads 
to a search implementation that requires just one or two probes for 
typical applications. The corresponding insert implementation also 
(almost always) requires just one or two probes. 

Extendible hashing combines features of hashing, multiway-trie 
algorithms, and sequential-access methods. Like the hashing methods 
of Chapter 14, extendible hashing is a randomized algorithm-the first 
step is to define a hash function that transforms keys into integers (see 
Section 14. I). For simplicity, in this section, we simply consider keys to 
be random fixed-length bitstrings. Like the multiway-trie algorithms 
of Chapter I 5, extendible hashing begins a search by using the leading 
bits of the keys to index into a table whose size is a power of 2. 
Like B-tree algorithms, extendible hashing stores items on pages that 
are split into two pieces when they fill up. Like indexed sequential
access methods, extendible hashing maintains a directory that tells 
us where we can find the page containing the items that match the 
search key. The blending of these familiar features in one algorithm 
makes extendible hashing a fitting conclusion to our study of search 
algorithms. 
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Suppose that the number of disk pages that we have available 
is a power of 2-say 2d. Then, we can maintain a directory of the 
2d different page references, use d bits of the keys to index into the 
directory, and can keep, on the same page, all keys that match in their 
first k bits, as illustrated in Figure 16.10. As we do with B trees, we 
keep the items in order on the pages, and do sequential search once we 
reach the page corresponding to an item with a given search key. 

Figure 16.10 illustrates the two basic concepts behind extendible 
hashing. First, we do not necessarily need to maintain 2d pages. That 
is, we can arrange to have multiple directory entries refer to the same 
page, without changing our ability to search the structure quickly, by 

Figure 16.10 

Directory page indices 
With a directory of eight entries, 
we can store up to 40 keys by stor
ing all records whose first 3 bits 
match on the same page, which 
we can access via a pointer stored 
in the directory (left). Directory en~ 
try 0 contains a pointer to the page 
that contains all keys that begin 
with 000; table entry 1 contains a 
pointer to the page that contains 
all keys that begin with 001; ta
ble entry 2 contains a pointer to 
the page that contains all keys that 
begin with 010, and so forth. If 
some pages are not fully popu
lated, we can reduce the number 
of pages required by having mul
tiple directory pointers to a page. 
In this example (left), 373 is on the 
same page as the keys that start 
with 2; that page is defined to be 
the page that contains items with 
keys whose first 2 bits are 01. 

If we double the size of the di
rectory and clone each pointer, we 
get a structure that we can index 
with the first 4 bits of the search 
key (right). For example, the fi
nal page is still defined to be the 
page that contains items with keys 
whose first three bits are 111, and 
it will be accessed through the 
directory if the first 4 bits of the 
search key are 1110 or 1111. This 
larger directory can accommodate 
growth in the table. 
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Program 16.5 Extendible hashing definitions and initialization 

An extendible hash table is a directory of references to pages (like the 
external nodes in B trees) that contain up to 21\1 items. Each page also 
contains a count (m) of the number of items on the page, and an integer 
(k) that specifies the number of leading bits for which we know the keys 
of the items to be identical. As usual, N specifies the number of items 
in the table. The variable d specifies the number of bits that we use to 
index into the directory, and D is the number of directory entries, so 
D 2d. The table is initially set to a directory of size 1, which points 
to an empty page. 

typedef struct STnode* link; 

struct STnode { Item b[M]; int m; int k; }; 

static link *dir; 

static int d, D, N; 

link NEWO 


{ 	 link x = malloc(sizeof *x); 

x->m 0; x->k = 0; 

return x; 


} 

void STinit(int maxN) 
{ 


d = 0; N = 0; D = 1; 

dir = malloc(D*(sizeof *dir)); 

didO] = NEWO; 


} 

combining keys with differing values for their leading d bits together 
on the same page, while still maintaining our ability to find the page 
containing a given key by using the leading bits of the key to index 
into the directory. Second, we can double the size of the directory to 
increase the capacity of the table. 

Specifically, the data structure that we use for extendible hashing 
is much simpler than the one that we used for B trees. It consists of 
pages that contain up to llf items, and a directory of 2d pointers to 
pages (see Program I6.5). The pointer in directory location x refers 
to the page that contains all items whose leading d bits are equal to x. 
The table is constructed with d sufficiently large that we are guaranteed 
that there are less than 1\11 items on each page. The implementation 
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Program 16.6 Extendible hashing search 

Searching in an extendible hashing table is simply a matter of using the 
leading bits of the key to index into the directory, then doing a sequential 
search on the specified page for an item with a key equal to the search 
key. The only requirement is that each directory entry refer to a page 
that is guaranteed to contain all items in the symbol table that begin 
with the specified bits. 

Item search(link h, Key v) 

{ int j; 


for (j 0; j < h->m; j++) 


if (eq(v, key(h->b[j]))) 

return h->b [j] ; 


return NULLitem; 

} 


Item STsearch(Key v) 

{return search(dir[bits(v, 0, d)], v); } 


of search is simple: We use the leading d bits of the key to index into 
the directory, which gives us access to the page that contains any items 
with matching keys, then do sequential search for such an item on that 
page (see Program 16.6). 

The data structure needs to become slightly more complicated 
to support insert, but one of its essential features is that this search 
algorithm works properly without any modification. To support insert, 
we need to address the following questions: 

• 	 What do we do when the number of items that belong on a page 
exceeds that page's capacity? 

• What directory size should we use? 

For example, we could not use d = 2 in the example in Figure 16.10 

because some pages would overflow, and we would not use d 5 
because too many pages would be empty. As usual, we are most 
interested in supporting the insert operation for the symbol-table ADT, 
so that, for example, the structure can grow gradually as we do a series 
of intermixed search and insert operations. Taking this point of view 
corresponds to refining our first question: 

• 	 What do we do when we need to insert an item into a full page? 
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For example, we could not insert an item whose key starts with a 5 or 
a 7 in the example in Figure r6.IO because the corresponding pages 
are full. 

Definition 16.3 An extendible hash table of order d is a directory 
of 2d references to pages that contain up to Ai items with keys. The 
items on each page are identical in their first k bits, and the directory 
contains 2d - k pointers to the page, starting at the location specified by 
the leading k bits in the keys on the page. 

Some d-bit patterns may not appear in any keys. We leave the cor
responding directory entries unspecified in Definition r6.3, although 
there is a natural way to organize pointers to null pages; we will ex
amine it shortly. 

To maintain these characteristics as the table grows, we use two 
basic operations: a page split, where we distribute some of the keys 
from a full page onto another page; and a directory split, where we 
double the size of the directory and increase d by 1. Specifically, when 
a page fills, we split it into two pages, using the leftmost bit position for 
which the keys differ to decide which items go to the new page. When 
a page splits, we adjust the directory pointers appropriately, doubling 
the size of the directory if necessary. 

As usual, the best way to understand the algorithm is to trace 
through its operation as we insert a set of keys into an initially empty 
table. Each of the situations that the algorithm must address occurs 
early in the process, in a simple form, and we soon come to a realization 
of the algorithm's underlying principles. Figures r6.II through r6.r3 
show the construction of an extendible hash table for the sample set of 
25 octal keys that we have been considering in this chapter. As occurs 
in B trees, most of the insertions are uneventful: They simply add a key 
to a page. Since we start with one page and end up with eight pages, 
we can infer that seven of the insertions caused a page split; since we 
start with a directory of size 1 and end up with a directory of size 16, 
we can infer that four of the insertions caused a directory split. 

Property 16.4 The extendible hash table built from a set of keys 
depends on only the values of those keys, and does not depend on the 
order in which the keys are inserted. 

Consider the trte corresponding to the keys (see Property I5.2), with 
each internal node labeled with the number of items in its subtree. An 
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internal node corresponds to a page in the extendible hash table if and 
only if its label is less than !V[ and its parent's label is not less than 
M. All the items below the node go on that page. If a node is at 
level k, it corresponds to a k-bit pattern derived from the trie path in 
the normal way, and all entries in the extendible hash table's directory 
with indices that begin with that k-bit pattern contain pointers to 
the corresponding page. The size of the directory is determined by the 
deepest level among all the internal nodes in the trie that correspond to 

pages. Thus, we can convert a trie to an extendible hash table without 
regard to the order in which items are inserted, and this property holds 
as a consequence of Property I 5.2. • 

Program 16.7 is an implementation of the insert operation for an 
extendible hash table. First, we access the page that could contain the 
search key, with a single reference to the directory, as we did for search. 
Then, we insert the new item there, as we did for external nodes in B 
trees (see Program 16.2). If this insertion leaves Ai items in the node, 
then we invoke a split function, again as we did for B trees, but the 
split function is more complicated in this case. Each page contains the 
number k of leading bits that we know to be the same in the keys of 
all the items on the page, and, because we number bits from the left 
starting at 0, k also specifies the index of the bit that we want to test 
to determine how to split the items. 

Therefore, to split a page, we make a new page, then put all 
the items for which that bit is 0 on the old page and all the items for 
which that bit is 1 on the new page, then set the bit count to k + 1 for 

Figure 16.II 

Extendible hash table con
struction, part I 

As in B trees, the first five inser
tions into an extendible hash table 
go into a single page (left). Then, 
when we insert 773, we split into 
two pages (one with all the keys 
beginning with a 0 bit and one 
with all the keys beginning with a 
1 bit) and double the size of the 
directory to hold one pointer to 
each of the pages (center). We in
sert 742 into the bottom page (be
cause it begins with a 1 bit) and 
373 into the top page (because it 
begins with a 0 bit), but we then 
need to split the bottom page to 
accommodate 524. For this split, 
we put all the items with keys that 
begin with 10 on one page and 
all the items with keys that begin 
with 11 on the other; and we again 
double the size of the directory to 
accommodate pointers to both of 
these pages (right). The directory 
contains two pointers to the page 
containing items with keys starting 
with a 0 bit: one for keys that be
gin with 00 and the other for keys 
that begin with 01. 
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/T."...".----I<15~i<r
176;
2<isrJ..... 
- ,. uJ 

_373'_ 

773' 

Figure 16.12 
Extendible hash table con

struction, part 2 

We insert the keys 766 and 275 
into the rightmost B tree in Fig
ure 16.11 without any node splits 
(left). Then, when we insert 737, 
tl1e bottom page splits, and that, 
because there is only one link to 
the bottom page, causes a direc
tory split (center). Then, we insert 
574, 434, 641! and 207 before 001 
causes the top page to split (right). 

/7-----1 O_OlJr 
153 
176'J..... 

,..;---......;207·
i7S';L.. 
373~J..... 

E£J 
<'7""--1 4._~4.Lr 

513 .....-
S:Z-7rJ..... 
574rJ..... 

both pages. Now, it could be the case that all the keys have the same 
value for bit k, which would still leave us with a full node. If so, we 
simply go on to the next bit, continuing until we get a least one item 
in each page. The process must terminate, eventually, unless we have 
IV! values of the same key. We discuss that case shortly. 

As with B trees, we leave space for an extra entry in every page 
to allow splitting after insertion, thus simplifying the code. Again, this 
technique has little practical effect, and we can ignore the effect in the 
analysis. 

When we create a new page, we have to insert a pointer to it 
in the directory. The code that accomplishes this insertion is given 
in Program 16.8. The simplest case to consider is the one where the 
directory, prior to insertion, has precisely two pointers to the page that 
splits. In that case, we need simply to arrange to set the second pointer 
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,I 

/F'-----I OOli ""j"" 
017 i ""j"" 
061;

",,---""1 4.H.""j"" 

""j""-

-""'...-----1 001!
~()~6ir+ 
153,""j"" 
176;

;;;,----1 207 . ""j""
275 _ 

277 •...l-..l-

Figure I6.I3 
Extendible basb table con

struction, part 3 

Continuing the example in 
ures 16.11 and 16.12, we insert 
the 5 keys 526, 562, 017, 107, 
and 147 into the rightmost 8 tree 
in Figure 16.6. Node splits occur 
when we insert 526 (left) and 107 
(right). 
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Program I6.7 Extendible hashing insertion 

To insert an item into an extendible hash table, we search; then we insert 
the item on the specified page; then we split the page if the insertion 
caused overflow. The general scheme is the same as that for B trees, but 
tbe methods that we use to find the appropriate page and to split pages 
are different. 

The split function creates a new node, then examines the kth bit 
(counting from the left) of each item's key: if the bit is 0, the item stays 
in the old node; if it is 1, it goes in the new node. The value k + 1 is 
assigned to the "leading bits known to be identical" field of both nodes 
after the split. If this process does not result in at least one key in each 
node, we split again, until the items are so separated. At the end, we 
insert the pointer with the new node into the directory. 

link splitelink h) 
{ int jj link t = NEW()j 

while (h->m == 0 I I h->m M) 
{ 

h->m = OJ t->m = OJ 
for ej = OJ j < M; j++) 

if (bits(h->b[j], h->k, 1) == 0) 
h->b[(h->m)++] h->b[j]; 

else t->b[(t->m)++] = h->b[j] ; 
t->k = ++(h->k); 

} 

insertDIR(t, t->k); 
} 

void insert(link h, Item item) 
{ int i, jj Key v = key(item); 

for (j = OJ j < h->m; j++) 
if (less(v, key(h->b[j]») break; 

for (i = (h->m)++; i > jj i--) 
h->b[i] = h->b[i-1] ; 

h->bEj] = item; 
if (h->m == M) split(h); 

} 

void STinsert(Item item) 
{ insert (dir[bits (key(item), 0, d)], item)j } 
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Program r6.8 Extendible-hashing directory insertion 

This deceptively simple code is at the heart of the extendible-hashing 
process. We are given a link t to a node that carries items that match 
in the first k bits, which is to be incorporated into the directory. In the 
simplest case, where d and k are equal, we just put t into d [x] , where x 
is the value of the first d bits oft->b [0] (and of all the other items on the 
page). If k is greater than d, we have to double the size of the directory, 
until reducing to the case where d and k are equal. If k is less than d, 
we need to set more than one pointer-the first for loop calculates the 
number of pointers that we need to set (2d

-
k

), and the second for loop 
does the job. 

void insertDIR(link t, int k) 
{ int i, m, x = bits(t->b[O] , 0, k); 

while (d < k) 

{ link *old = dir; 
d += 1; D += D; 
dir malloc(D*(sizeof *dir)); 
for (i = 0; i < D; i++) dir[i] = old[i/2]; 
if (d < k) dir(bits(x, 0, d) ~ 1) = NEW(); 

} 

for (m l', k < d', k++) m *= 2; 

for (i 0', i < m; i++) dir [x*m+i] t; 


} 


to reference the new page. If the number of bits k that we need to 
distinguish the keys on the new page is greater than the number of bits 
d that we have to access the directory, then we have to increase the size 
of the directory to accommodate the new entry. Finally, we update the 
directory pointers as appropriate. 

If more than 1V! items have duplicate keys, the table overflows, 
and the code in Program I6.7 goes into an infinite loop, looking for a 
way to distinguish the keys. A related problem is that the directory may 
get unnecessarily huge, if the keys have an excessive number of leading 
bits that are equal. This situation is akin to the excessive time required 
for MSD radix sort, for files that have large numbers of duplicate keys 
or long stretches of bit positions where they are identical. We depend 
on the randomization provided by the hash function to stave off these 
problems (see Exercise I6.43). Even with hashing, extraordinary steps 
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must be taken if large numbers of duplicate keys are present, because 
hash functions take equal keys to equal hash values. Duplicate keys can 
make the directory artificially large; and the algorithm breaks down 
entirely if there are more equal keys than fit in one page. Therefore, we 
need to add tests to guard against the occurrence of these conditions 
before using this code (see Exercise 16.35). 

The primary performance parameters of interest are the number 
of pages used (as with B trees) and the size of the directory. The 
randomization for this algorithm is provided by the hash functions, so 
average-case performance results apply to any sequence of N distinct 
insertions. 

Property 16.5 With pages that can hold A;f items, extendible hash
ing requires about 1.44(N/A'i) pages for a file of N items, on the 
average. The expected number of entries in the directory is about 
3.92(Nl/M)(N/M). 

This (rather deep) result extends the analysis of tries that we discussed 
briefly in the previous chapter (see reference section). The exact con
stants are 19 e 1/ In 2 for the number of pages and e 19 e In 2 for 
the directory size, though the precise values of the quantities oscillate 
around these average values. We should not be surprised by this phe
nomenon because, for example, the directory size has to be a power of 
2, a fact which has to be accounted for in the result. _ 

Note that the growth rate of the directory size is faster than 
linear in N, particularly for small 1~1. However, for N and At in 
ranges of practical interest, N 1/ M is quite close to 1, so we can expect 
the directory to have about 4( N /lH) entries, in practice. 

We have considered the directory to be a single array of pointers. 
We can keep the directory in memory, or, if it is too big, we can keep 
a root node in memory that tells where the directory pages are, using 
the same indexing scheme. Alternatively, we can add another level, 
indexing the first level on the first 10 bits (say), and the second level 
on the rest of the bits (see Exercise r6.36). 

As we did for B trees, we leave the implementation of other 
symbol-table operations for exercises (see Exercises r6.38 and r6.4I). 
Also as it is with B trees, a proper delete implementation is a challenge, 
but allowing underfull pages is an easy alternative that can be effective 
in many practical situations. 
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Exercises 

t> 16.27 How many pages would be empty if we were to use a directory of size 
32 in Figure 16.10? 

16.28 Draw figures corresponding to Figures r 6.11 through 16.13, to illus
trate the process of inserting the keys 562,221,240,771,274,233,401,273, 
and 201 in that order into an initially empty tree, with lv! = 5. 

o r6.29 Draw figures corresponding to Figures 16.11 through 16.13, to illus
trate the process of inserting the keys 562, 221, 240, 771, 274, 233, 401, 273, 
and 201 in that order into an initially empty tree, with IV! 5. 

016.30 Assume that you are given an array of items in sorted order. Describe 
how you would determine the directory size of the extendible hash table cor
responding to that set of items . 

• 	16.31 Write a program that constructs an extendible hash table from an array 
of items that is in sorted order, by doing two passes through the items: one 
to determine the size of the directory (see Exercise r6.30) and one to allocate 
the items to pages and fill in the directory. 

016.32 Give a set of keys for which the corresponding extendible hash table 
has directory size 16, with eight pointers to a single page . 

•• 16.33 Create a figure like Figure 16.8 for extendible hashing . 

• 	16.34 Write a program to compute the average number of external pages and 
the average directory size for an extendible hash table built from 1'1 random 
insertions into an initially empty tree, when the page capacity is lVI. Compute 
the percentage of empty space, for lvI 10, 100, and 1000 and 1'1 = 103

, 104
, 

105
, and 106

• 

16.35 Add appropriate tests to Program 16.7 to guard against malfunction 
in case too many duplicate keys or keys with too many leading equal bits are 
inserted into the table . 

• 	16.36 Modify the extendible-hashing implementation in Programs 16.5 
through 16.7 to use a two-level directory, with no more than A1 pointers 
per directory node. Pay particular attention to deciding what to do when the 
directory first grows from one level to two . 

• 	16.37 Modify the extendible-hashing implementation in Programs 16.5 
through 16.7 to allow A1 items per page to exist in the data structure. 

016.38 Implement the sort operation for an extendible hash table. 

016.39 Implement the select operation for an extendible hash table . 

•• 16.40 Implement the delete operation for an extendible hash table. 

016.41 Implement the delete operation for an extendible hash table, using the 
method indicated in Exercise 
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•• 16.42 Develop a version of extendible hashing that splits pages when splitting 
the directory, so that each directory pointer points to a unique page. Develop 
experiments to compare the performance of your implementation to that of 
the standard implementation. 

016.43 	Run empirical studies to determine the number of random numbers 
that we would expect to generate before finding more than }vI numbers with 
the same d initial bits, for /vi 10, 100, and 1000, and for 1 ::; d ::; 20. 

• 	16.44 Modify hashing with separate chaining (Program 14.3) to use a hash 
table of size 2.tvf, and keep items in pages of size 21vI. That is, when a page 
fills, link it to a new empty page, so each hash table entry points to a linked 
list of pages. Empirically determine the average number of probes required for 
a search after building a table from N items with random keys, for }vI = 10, 
100, and 1000 and N 103

, 104
, 105

, and 106
• 

016.45 	Modify double hashing (Program 14.6) to use pages of size 21vI, treat
ing accesses to full pages as "collisions." Empirically determine the average 
number of probes required for a search after building a table from N items 
with random keys, for MIa, 100, and 1000 and N 103

, 104
, 105

, and 
106 

, using an initial table size of 3NjUv!. 

o 16.46 Develop a symbol-table implementation using extendible hashing that 
supports the initialize, count, search, insert, delete, ioin, select, and sort op
erations for first-class symbol-table ADTs with client item handles (see Exer
cises 12.4 and 12.5). 

16.5 Perspective 

The most important application of the methods discussed in this chap
ter is to construct indexes for huge databases that are maintained on 
external memory-for example, in disk files. Although the under
lying algorithms that we have discussed are powerful, developing a 
file-system implementation based on B trees or on extendible hash
ing is a complex task. First, we cannot use the C programs in this 
section directly-they have to be modified to read and refer to disk 
files. Second, we have to be sure that the algorithm parameters (page 
and directory size, for example) are tuned properly to the characteris
tics of the particular hardware that we are using. Third, we have to 
pay attention to reliability, and to error detection and correction. For 
example, we need to be able to check that the data structure is in a 
consistent state, and to consider how we might proceed to correct any 
of the scores of errors that might crop up. Systems considerations of 
this kind are critical-and are beyond the scope of this book. 
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On the other hand, if we have a programming system that sup
ports virtual memory, we can put to direct use the C implementations 
that we have considered here in a situation where we have a huge num
ber of symbol-table operations to perform on a huge table. Roughly, 
each time that we access a page, such a system will put that page in 
a cache, where references to data on that page are handled efficiently. 
If we refer to a page that is not in the cache, the system has to read 
the page from external memory, so we can think of cache misses as 
roughly equivalent to the probe cost measure that we have been using. 

For B trees, every search or insertion references the root, so the 
root will always be in the cache. Otherwise, for sufficiently large l\Cl, 
typical searches and insertions involve at most two cache misses. For 
a large cache, there is a good chance that the first page (the child of the 
root) that is accessed on a search is already in the cache, so the average 
cost per search is likely to be significantly less than two probes. 

For extendible hashing, it is unlikely that the whole directory 
will be in the cache, so we expect that both the directory access and 
the page access might involve a cache miss (this case is the worst case). 
That is, two probes are required for a search in a huge table, one 
to access the appropriate part of the directory and one to access the 
appropriate page. 

These algorithms form an appropriate subject on which to close 
our discussion of searching, because, to use them effectively, we need 
to understand basic properties of binary search, BSTs, balanced trees, 
hashing, and tries-the basic searching algorithms that we have studied 
in Chapters 12 through 15. As a group, these algorithms provide us 
with solutions to the symbol-table implementation problem in a broad 
variety of situations: they constitute an outstanding example of the 
power of algorithmic technology. 

Exercises 

16.47 Modify the B-tree implementation in Section 16.3 (Programs 16.1 
through 16.3) to use an ADT for page references. 

16.48 Modify the extendible-hashing implementation in Section 16.4 (Pro
grams 16.5 through 16.8) to use an ADT for page references. 

16.49 Estimate the average number of probes per search in a B tree for S 
random searches, in a typical cache system, where the T most-recently-accessed 
pages are kept in memory (and therefore add 0 to the probe count). Assume 
that S is much larger than T. 
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16.50 Estimate the average number of probes per search in an extendible hash 
table, for the cache model described in Exercise 16.49. 

016.51 If your system supports virtual memory, design and conduct experi
ments to compare the performance of B trees with that of binary search, for 
random searches in a huge symbol table. 

16.52 Implement a priority-queue ADT that supports construct for a huge 
number of items, followed by a huge number of insert and delete the maximum 
operations (see Chapter 9). 

16.53 Develop an external symbol-table ADT based on a skip-list representa
tion of B trees (see Exercise 13.80). 

• 16.54 If your system supports virtual memory, run experiments to determine 
the value of M that leads to the fastest search times for a B tree implementation 
supporting random search operations in a huge symbol table. (It may be 
worthwhile for you to learn basic properties of your system before conducting 
such experiments, which can be costly.) 

•• 16.55 Modify the B-tree implementation in Section 16.3 (Programs 16.1 
through 16.3) to operate in an environment where the table resides on external 
storage. If your system allows nonsequential file access, put the whole table 
on a single (huge) file, and use offsets within the file in place of pointers in 
the data structure. If your system allows you to access pages on external 
devices directly, use page addresses in place of pointers in the data structure. If 
your system allows both, choose the approach that you determine to be most 
reasonable for implementing a huge symbol table . 

•• 16.56 Modify the extendible-hashing implementation in Section 16-4 (Pro
grams 16.5 through 16.8) to operate in an environment where the table resides 
on external storage. Explain the reasons for the approach that you choose for 
allocating the directory and the pages to files Exercise 16.55). 
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Collision resolution, 573, 589, 


596 

Combine and conquer, 205, 229, 


355-357,412 

Command-line arguments, 86 

Comparators, 446 

Compare operation: see less 


compexch (item ADT compare

exchange operation), 256, 

285,481 


Complete tree, 230, 369 

Complex numbers ADT, 167-173, 


177-178,286 

Compound data structures 115

125 

Computational complexity, 62-64 

Coney Island, 662 

Connectivity, 6-11, 151 

Conquer and divide, 358 

Constant factors, 46 

Constant time, 37, 661 

Construct priority-queue ADT op


eration, 362 

Containers: see Generalized 


queues 

Conversion 


infix to postfix, 143-144, 196 

postfix to infix, 143, 196 


Copy generalized-queue ADT op

eration, 134, 173-174, 184, 

388,479 


Count generalized-queue ADT op

eration, 133, 195 


Cormen, T. H., 65, 691-692 

Coupon collector problem, 585

586 

Cubic running time, 38 

Cutoff for small problems, 316

323,344-345,417-421 


Data structures, 4, 81 

Data types, 71-82,257,282-294 


array, 283-284 

character, 71 

complex numbers, 168-173 

first class, 166-185 

floating point, 71 

floating-point key (item), 285

286 

integer, 71 

linked list, 283-284 

numbers, 75 

point, 79-80 

record (item), 290-292 
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string key (item), 287-288 

Databases, 657-660 

Date, C. J., 691-692 

de la Briandais, R., 614 

Declaration (of C function), 73 

Definition (of C function), 73 

Delete generalized-queue ADT 


operation, 133-134, 387-388, 

392,402 


Delete priority-queue ADT opera

tion, 387,402 


Delete symbol-table ADT opera

tion, 479-485, 486, 524, 527, 

536,567,584,593,602,622, 

631,648,676,688 


Delete-the-maximum priority 

queue ADT operation, 361, 

374-376,386,391-392,398 


Deletion in linked lists, 195 

Dense graph, 122 

Depth of recursion, 193 

Depth-first search, 241-249 

Destroy ADT operation, 134, 174, 


184,362,388,479 

Dictionaries: see Search algo


rithms 

digi t (item ADT digit-extraction 


operation), 407-408 

Digital search tree (DST), 610

614, 649 

Dijkstra, E., 324 

Directory, 217, 662-691 

Disks, 201, 455, 656 

Distribution sort: see key-indexed 


counting 

Divide and conquer, 51-52, 196

209,229,343,444,498,500 

Double hashing, 594-599, 603

608, 688 

Double rotation, 540-542 

Doubly linked list: see Linked list, 


doubly linked 

Driver program: see Client 

DST: see Digital search tree 

Dummy nodes, 91, 99-102, 503

504,554 

Duplicate items, 161-166 


Duplicate keys, 298-301, 307
308, 324-327, 412-413, 487, 

499,507,543-544,557,587, 

592,614,623, 686 


Dutch national flag problem, 324 

Dynamic hashing, 599-608 

Dynamic memory allocation: see 


Memory allocation 

Dynamic programming, 209-217 


Eager algorithms, 365,488-489 

Edge, 120, 218 

Empirical analysis, 28-33 


balanced trees, 571 

elementary sorts, 272 

hash tables, 606 

heapsort,381 

mergesort, 352 

quicksort, 322 

quicksort variants, 328 

radix sorts (string keys), 436 

sequential and binary search, 59 

shell sort increment sequences, 


279 

string key search, 641 

symbol table implementations, 


515 

trie implementations, 630 

union-find algorithms, 20 


Empty bins, 417-421, 638 

End recursion: see tail recursion 

eq (item ADT equality-test opera

tion), 133, 481 

Equal keys: see duplicate keys 

Equivalence relations ADT, 145

153, 178 

Equivalence: see Connectivity 

Eratosthenes, sieve of, 83-84 

Euclid's algorithm, 191, 194 

Euler's constant, 42 

Exception dictionary, 605, 607 

exch (item ADT exchange opera

tion), 256-257,285,481 

Existence TST, 638-641 

Existence table, 487, 489, 623, 


633 

Existence trie, 633-637 


Exponential time, 38-40, 203, 

209-210 


Expression evaluation 

prefix (recursive), 192, 240 

postfix, 139-141, 144, 195 

prefix, 192-193,195 


Extendible hashing, 676-691 

External devices, 454-4.56, 656 

External node, 218-219, 226-230, 


.502 

External path length, 227-230, 


509-.511 

External searching, 6.55-691 

External sorting, 255, 4.54-472 

Extracting digits (digit), 407

408,609-610 


Factorial function, 42-43, 189-90 

Fagin, R., 691-692 

FAQs, C, 250 

Fast Fourier transform, 452 

Fibonacci numbers, 42-43,209

212, 463-464 

Fibonacci tree, 229 

FIFO queue, 153-161, 174-178, 


234-235,246-247,365 

FIFO queue ADT operations 


get, 153-161 

put, 153-161 


Find operation, 10-23, 149-153 

Find-the-maximum priority-queue 


ADT operation, 197,361 

Finger search, 484 

First-class ADT, 171-18.5 


complex num ber, 171-174 

FIFO queue, 174-178 

polynomial, 179-184 

priority queue, 384-389 

pushdown stack, 178-179 

symbol table, 481, 485, 488, 


494,496,504,514, .523-527, 

572,588,688 


First-class data type, 166-171 

Flaiolet, P., 2.50, 691-692 

Floating-point keys, 285-286 

Floor function (LxJ), 41-43 

Floyd, R., 380-381 


http:454-4.56


Folklore, 427, 659 

Forest, 16,218,223 

Forget-the-old-item policy, 163

166,245-247 

4-5-6-7-8 search tree, 663 

Fractals, 205-209 

Fredkin, E., 614 

Fredman, M. L., 473-474 

free: see Memory allocation 

Free list, 106-108 

Free tree, 218-219,224-226 

Frobenius problem, 277 

Function (in C), 73 

Functional approximations, 46

49 


Garbage collection, 107 

Gaussian distribution, 281,320, 


323,353,383,409,430 

General tree: see ordered tree 

Generalized queue, 133-135, 361 


deque, 159-161 

FIFO queue, 153-161 

forget-the-old-item policy, 163

166 

ignore-the-new-item policy, 


163-166 

priority queue, 159-161 

pushdown stacks, 135-139 

random queue, 158-161 

symbol table, 160-161 


Generalized queue ADT opera
tions 


count, 133 

delete by key, 160 

delete, 133-134, 158-161 

delete the minimum, 159-161 

delete random, 158-161 

destroy, 134 

get, 153-161 

initialize, 134 

insert, 133-134, 158-161 

pop, 136, 145-148 

push, 136, 145-148 

put, 153-161 

test if empty, 133 


Golden ratio (1)),42-43,209-212, 

463-464,577-578 


Gonnet, G. H., 65, 249,473, 691 

Graham, R., 65 

Grains of sand, 662 

Graph, 10, 120-123, 125,224

225 

adjacency-lists representation, 


121-123, 125 

adjacency-matrix representation, 


120-121, 125 

traversal, 241-249 


Greatest common divisor, 191 

Growth of functions, 36-44 

Guibas, L., 596, 691-692 


Handle, 171, 384, 391, 396-397, 

504 


Hanson, D., 249 

Harmonic numbers, 42-43, 312, 


597 

Hash functions, 574-583 


floating-point keys, 580 

integer keys, 580-581 

modular, 575-583 

multiplicative, 574-575, 580 

string keys, 578-583 

universal, 579-580 


Hashing, 573-608, 629-630, 641, 

676-690 


double hashing, 594-599, 603
608, 688 


dynamic hashing, 599-608 

linear probing, 588-594,603

608,688 

separate chaining, 583-588, 


603-608 

extendible hashing, 599-608 


Head node: see Dummy node 

Heap, 369-392 


-based priority queue, 374 

construction, 377-378 

definition, 369 

fixUp operation, 372 

fixDown operation, 373 

heapify operation, 372-373 

ordering, 369 


sortdown, 376-383 

Heapsort, 377-383,436,466 

Height 


binary tree, 227 

BST, 527, 653 

trie, 621-623,653 

tree, 21 


Hoare, CAR., 303, 473-474 

Hopcroft, J., 65, 558 

Horner's algorithm, 182,577-578 

Hybrid sorts, 316-319, 352 


Ignore-the-new-item policy, 163
166 


Implementations (of ADT inter

faces), 28-33, 76-80, 128
131,282-295 


array, 284 

array-based FIFO queue ADT, 


155, 157, 160-161 

array-based stack ADT, 146

148 

complex numbers ADT, 173 

complex numbers data type, 


171 

equivalence relations ADT, 152 

first-class FIFO queue ADT, 177 

floating-point key (item), 286 

linked list, 284 

list-based HFO queue ADT, 


155-157,160-161 

list-based stack ADT, 146-148 

list processing, 106 

point data type, 80 

polynomial, 183 

priority queue: see Priority 


queue ADT implementations 

record (item), 291-292 

sequence, 298 

string key (item), 288 

symbol table: see Search algo


rithms 

In-place merge (abstract) 339-341 

In-place sorting (in situ permuta


tion),293-294 

include directive, 76-77 
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Increment sequences (for shell

sort),274-281 


Index (in an array), 84, 87 

items, 163-166, 185,288-294, 


298-301,389-392,415-416, 

485-489,511-516 


priority queue, 389-392 

set AD1~ 185 

sorting, 288-294, 405 


Index (for a database), 511-516, 

658-691 


Indirect 260, 287-294 

Induction: see Matbematical in


duction 

Infix, 139, 142-144 

Information retrieval: see Search 


algorithms 

Initialize generalized-queue ADT 


operation, 134, 362,479 

Inorder: see Tree traversal 

Insert ADT operation, 361, 374

376,386-388, 402 

Insert ADT op

eration, 133-134 

Insert priority-queue ADT 


tion, 363-368, 374, 

396 


Insert symbol-table ADT opera

tion, 479-485, 486,490,503, 

506,518,534,542,554,565, 

584,590,595,600,611, 61~ 


627,634,638,643,648, 669, 

684 


Insertion sort, 98-100, 256, 262
265,298,301,433-434 


Integer functions, 41, 50 

Integer keys, 256 

Interface (ADT definition), 


128-131,282-295,298 

array, 283 

complex numbers ADT, 172 

equivalence relations ADT, 150 

FIFO queue ADT, 154 

first-class FIFO queue ADT, 174 

floating-point key (item), 285 

linked list, 283 

list processing, 102 


point data type, 79 

polynomial ADT, 181 

priority queue (basic), 363 

priority queue (first-class), 385 

priority queue (index items), 


390 

record (item), 290-291 

stack ADT, 137 

string key (item), 287 

symbol-table ADT, 480 


Internal node, 218-219, 226-230, 

502 


Internal path length, 227-230, 

241,508-511,653 


Internal sorting, 255 

Interpolation search, 500-501 

Inversions, 270-271 

Item (object type for item ADT), 


256, 285,481 

Item ADT interfaces, 133,285, 


287,290 

Item ADT implementations 133, 


255, 480-481 

duplicates, 161-166 

index, 163-166, 185,288-294, 


298-301,389-392,415-416, 

485-489,511-516 


integer, 133,256 

floating-point, 285-286 

string, 287-288 

record,292 


ITEMrand (item ADT random

object operation), 284-286, 

481 


ITEMscan (item ADT input-object 

operation), 284-286, 481 


ITEMshow (item ADT output

object operation), 284-286, 

481 


Iterated logarithms, 41, 44 


Join priority-queue ADT opera
tion, 362, 387-388, 

401-402 


.loin symbol-table ADT operation, 

479-485, 527,536,631, 

648 


Josephus problem, 103
104 


Karp, R., 535 

Kernighan, B., 66, 249 

Key (item ADT key type), 481 

key (item ADT key-extraction op


eration),256,285,28~481 

Key generators, 420-421, 648 

Key-indexed counting sort, 298

301,415-416,434 

Key-indexed search, 485-489 

Keys, 255,408,480-481 

Keyword searching, 513 

Knapsack problem, 211-217 

Knuth, D. E., 65,249,274,276, 


473-474,592,691-692 

Koch star, 208-209 

Komlos, J., 450 


Landis, E., 557 

Layers of abstraction, 127, 186 

Lazy algorithms, 488, 501, 599, 


603 

Leading term, 38, 45-47 

Leaf, 218-219, 615-618 

Least-significant-digit-first radix 


sort: see LSD radix sort 

Left-child-right-sibling correspon


dence, 223-224 

Leiserson, C. E., 65, 691-692 

less (item ADT comparison oper

ation), 256, 285, 287, 481 

Level, 227 

Level order: see Tree traversal 

Lexicographic order, 111 

Library call numbers 640, 646 

LIFO queues: see Pushdown 


stacks 

Linear probing, 588-594, 603

608, 688 

Linear running time, 37-40, 209, 


212 

Linked list, 90-108, 193-195 


array representation, 96, 107
108 


circular, 91-96, 355 




deletion, 92-96 

doubly linked, 103-105 

FIFO queue implementation, 


155-157, 160-161 

first-class FIFO queue imple


mentation, 177 

hashing with separate chaining, 


583-588 

head node, 99-102 

insertion, 92-96 

null links, 91, 96, 101 

merge, 355 

polynomial ADT implementa


tion, 182, 184 

sort driver program, 295 

sorting, 98-101,295-298,309, 


354-357,428 

stack implementation, 146-148 

symbol table implementation, 


490,495 

tail node, 100-101 

traversal, 97 


Load factor, 589 

Logarithmic running time, 37-40 

Logarithms 


IgN (binary), 40-41 

In N (natura!), 40-41 

log N (generic), 40-41 


Lower bounds, 63 

LSD radix sorting, 425-437, 466 

Lukasiewicz, J., 139 


Machine addresses, 405 

malloc: see Memory allocation 

Management, 342,358,372-373 

Markov chain, 671 

Martinez, c., 691-692 

Mathematical induction, 190-193, 


197,203-204 

Mathematical tools, 36-53 

Matrices, 184 

McCreight, E. M., 691 

McIlroy, M. D., 324, 473-474 

McIlroy, P. M., 473-474 

Median-finding, 329-333 

Median-of-three quicksort, 319

323 


Mehlhorn, K., 691-692 

Memoization: see top-down dy


namic programming 

Memory allocation, 85-86, 92, 


105-108,113, 115-117, 148, 

174,391-392 


Memory leaks, 174, 182,184, 

402 


Mergesort, 206, 335-359, 436 

block merging, 347 

bottom-up, 348 

bottom-up (linked list), 357 

linked list, 352-357 

natural, 355-356 

top-down, 341-347 

top-down (linked list), 356 

versus heapsort, 381-382 

versus quicksort, 381-382 

no copying, 345 


Merging 335-341 

Batcher (nonrecursive), 448 

Batcher (recursive), 443 

comparator, 468 

linked list, 355 

multi way, 456-466 

networks, 446-454 

-until-empty, 462 


Mistakes, 32 

Moby Dick, 436, 513-514, 637 

Modular hash functions, 575-583 

Monks, overworked, 201 

Morrison, D., 623 

Most-significant-digit-first (MSD) 


radix sort, 413-425, 429-437, 

460,466, 638 


Multidimensional array, 115-117 

Multikey quicksort, 425 

Multilists, 119, 125 

Multiplicative hash functions, 


574-575,580 

Multiply operation, 182-184 

Multiway merging, 456-466 

Multiway root, 622, 643-646 

Multiway tries, 418-421, 632-649 


N log N running time, 37-40 


Name equivalence: see Connectiv
ity 


Natural mergesort, 355-356 

Near-neighbor searching, 485 

Needles, diamond, 201 

Nested function calls: see Recur

sive call chain 

Nievergelt, J., 691-692 

Node (vertex), 120,218-219 

Nonadaptive sorting, 258, 441 

Nonrecursive versions of recursive 


algorithms 

Batcher's merge, 448 

Batcher's sort, 450 

binary tree search, 506, 527 

mergesort, 348, 357 

quicksort, 313-316 


Nonterminal nodes, 219 

Normal approximation, 86-88 

NULLitem (null object for item 


ADT),481 

Null links, 91,96, 101,504,615

618, 632-636 


O-notation (0),44-49 

Occupancy problems, 585-586 

Odd-even mergesort: see Batcher's 


odd-even mergesort 

One-way branching, 621-622, 


643 

Online algorithms, 19 

Opaque type: see Abstract data 


type 

Open addressing, 588-608 

Operator overloading, 167 

Optimization 


programs, 6, 39 

algorithms, 530-532 


Order statistics, 329 

Ordered hashing, 60S 

Ordered tree, 218-220, 223, 226 


Pages, 657-691 

Parallel arrays, 512 

Parallel sorting, 446-454 

Parent, 219 

Parse tree, 239-241 
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Partial match search, 642 

Partially sorted files, 270-271, 


273 

Partitioning, 304-309, 319-325, 


524 

duplicate keys, 324-327 

element, 305, 

leading bit, 409-413 

median-oF-three, 319-323 

R-way, 420 

three-way, 324-327 

tree, 412 


Patashnik, 0., 65 

Path (in a tree), 218 

Path length, 227 

Patricia, 623-632, 643-653 

Perfect shuffle (and unshuffle), 


442,450-454,460 

Performance 


bugs, 112,581 

guarantees, 54, 60-64 

limitations, 60-64 

predictions, 33, 57, 60-64 


Permutation, 293-294, 442-444, 

537 


Pippenger, N., 691-692 

Plauger, P., 250 

Pointer sorts, 287-294, 301 

Pointers, 80-81, 84-85, 111-112, 


114,116 

Poisson approximation, 43, 586 

Polish notation: see Prefix 

Polynomial ADT, 179-184 

Polynomial evaluation, 182-184, 


452 

Polyphase merge, 462-466 

Pop stack ADT operation, 136, 


145-148 

PostScript, 141-142,144,208, 


249,273 

Postfix, 139-144 

Postorder: see Tree traversal 

Power-of-2 heap, 394-402 

Pratt, V., 277-278 

Prefix expression evaluation, 192, 


240 

Prefix, 139 


Prefix-free, 634, 651 

Preorder: see Tree traversal 

Prime numbers, 577 

Priority queue ADT interfaces 


basic, 363 

first-class, 385 


Priority queue ADT implementa
tions, 361-402, 485, 690 


binomial queue, 396-401 

doubly-linked list, 385 

elementary, 365-368 

heap, 374 

index heap, 391 

ordered array, 367 

ordered list, 368 

unordered array, 366 

unordered list, 368 


Priority-queue ADT operations 

delete the minimum, 159-161, 


361-365 

insert, 133-134, 158-161, 361

365 

Probabilistic algorithms: see ran

domized algorithms 

Probe, 589, 657-691 

Proportional to, 46-47 

Pugh, W., 561 

Punched cards, 427 

Push stack ADT operation, 136, 


145-148 

Pushdown stack ADT, 135-149, 


178-179,193,231-235,243
247,311-314,317,365,587 


Pushdown stack ADT operations 

pop, 136, 145-148 

push, 136, 145-148 


Puzzle, 190 


Quadratic running time, 38-40 

Queue-based graph traversal 


(breadth-first search), 246-247 

Queue-based tree traversal (level 


order), 234-235 

Queues: see FIFO queues, general


ized queues 

Quicksort, 303-333, 434-437, 


460,466,507 


-based median-finding, 329-333 

binary, 409-413 

multikey, 425 

strings, 327-329 

three-way partitioning, 326 

three-way radix, 421-425 

vectors, 327-329,424-425 

versus heapsort, 379, 381-382 

versus mergesort, 352,381-382 


Radix search, 609-652 

Radix sorting, 403-437 

Radix, 403 

Radix-exchange sort: see binary 


quicksort 

Random hashing, 596 

Random numbers, 535-536 

Randomized algorithms, 530-531, 


533-539 

BST, 533-539 

quicksort, 319 

skip list, 561-572 


Range searching, 484, 499 

Records, 290-292 

Recurrences, 49-53, 197, 201, 


215-216,342-343,453,509, 

535, 620 


Recursion: see Recursive func

tions 


Recursion tree, 198,211-212, 

214,216,316,343,349 


Recursive programs, 187-248. 

B tree insertion, 669-670 

B tree search, 668 

BST delete, 524 

BST insertion, 503 

BST join, 525 

BST partitioning, 522 

BST root insertion, 518 

BST search, 503 

BST selection, 522 

BST sort, 505 

Batcher's odd-even merge, 443 

binary search, 498 

binary-tree height, 236 

binary-tree node count, 236 

binary-tree quick print, 237 




700 

binary-tree traversal, 231 

depth-first search, 243 

digital tree search, 611 

digital tree search, 611 

digital tree search, 611 

Euclid's algorithm, 191 

extendible hash insertion, 684

685 

extendible hash search, 679 

factorial function, 189 

Fibonacci numbers, 210 

find the maximum, 197 

knapsack problem, 213 

list processing, 195 

mergesort, 341-347 

parse tree construction, 240 

patricia trie insertion, 627 

patricia trie 624 

patricia trie sort, 628 

prefix expression evaluation, 


192 

puzzle, 190 

quicksort (median-of-three), 321 

quicksort (three-way), 326 

quicksort, 305 

randomized BST insertion, 534 

red-black BST insertion, 554 

ruler drawing, 202 

selection, 330 

skip list deletion, 567 

skip list insertion, 565 

skip list search, 563 

splay BST insertion, 542 

tournament construction, 238 

towers of Hanoi solution, 199 

trie existence table 


634 

trie existence table 634 

trie insertion, 617 

trie search, 615 

TST existence table insertion, 


638 

TST existence table search, 638 

TST insertion, 643 

TST partial matching, 641 

TST search, 644 

2-3-4 BST insertion, 546-561 


Recursive call chain, 190-192, 

196,200,202,205,231,243 


Recursive data structures, 193
196 


Recursive descent, 192 

Recursive functions: see Recursive 


algorithms 

Red-black tree, 551-561, 569-572 

References, 65-66, 249-250, 473

474,691-692 
Removing recursion: see Nonre

cursive versions of recursive 
algorithms 

Repeat search, 653 

Replace-the-maximum priority


queue ADT operation, 361, 

375 


Replacement selection, 460-461, 

465-466 


Representations 

binary tree, 221 

linked list, 91 


Retrieval, 614 

Ritchie, D., 66, 249 

Rivest, R. L., 65, 473-474, 691

692 

Root, 218-219 

Rooted tree: see unordered tree 

Rotation, 516-518, 540-542, 


553-556 

Roura, S., 691-692 

Ruler drawing, 201-208, 231 


Samplesort, 322-323 

Search algorithms, 53-59,477

690 

B tree, 668-670 

TST,638,644 

binary search, 56-59 

binary tree (randomized), 534 

binary tree (red-black), 554 

binary tree (root insertion), 518 

binary tree (splay insertion), 


542 

binary tree (standard), 503 

binary, 498 

digital tree, 611 


extendible hash, 679-685 

hashing (double hashing), 595 

hashing (dynamic hashing), 600 

hashing (linear probing), 590 

hashing (separate chaining), 584 

index items, 511-516 

key-indexed, 486 

ordered array, 486 

ordered list, 495 

partial match, 642 

patricia trie, 624 

sequential search, 53-56 

sequential, 490, 492 

skip list, 563-567 

trie, 615, 634 

unordered array, 495 

unordered list, 492 


Search hit, 493 

Search miss, 493 

Search symbol-table ADT opera


tion, 479-485, 486, 490, 503, 

563,584,590,595,615,624, 

634,638,644,668,679 


Search-and-insert symbol-table 
ADT operation, 479,507 


Seconds, 38 

Select symbol-table ADT opera


tion, 479-485, 486, 490,521, 

622,631,648,676,688 


Sedgewick, R., 66,250,473-474, 

691-692 


Selection 329-335 

heap-based, 379, 382 

ADT operation: see Select 


Selection sort, 261-262,267-273, 
296-298 


Self-organizing search, 496 

Self-referent structures: see Linked 


list 

Sentinel keys, 264-265, 306, 317, 


339-340 

Separate chaining, 583-588, 603

608 

Sequential access, 454-455, 660

662 

Sequential search, 489-497 

Shaker sort, 270, 273, 281 
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Shell, D., 274 

Shellsort, 273-281, 298, 442 

Shuffle network, 450-454 

Shuffling: see Perfect shuffle 

Sibling split heuristic, 675 

Sibling, 219, 

Sieve of Eratosthenes 83-84 

Simulation, 87, 89-90, 361, 671 

Skip list, 561-572, 690 

Sleator, D. D., 473-474, 691-692 

Social Security, 662 

Software engineering, 176, 185, 


249 

Sort symbol-table ADT operation, 


479-485,486,490,505,622, 

628,648,676,688 


Sort-merge, 456 

Sorting, 253-471 


Batcher's odd~ven mergesort, 

443 


Batcher's odd~ven sort (nonre
cursive), 450 


balanced merge, 456-466 

bubble sort, 266 

driver program, 256, 282 

heapsort, 377-383 

in-place, 293-294 

index, 288-294 

indirect, 287-294 

insertion SOrt (nonadaptive), 


256 

insertion sort, 98-100,264 

key-indexed counting, 275 

linear time, 300 

LSD radix sort, 426 

median-of-three quicksort, 35 

MSD radix sort, 416 

parallel block sorting, 468-471 

pointer, 287-294 

polyphase merge, 462-466 

punched cards, 427 

quicksort, 118, 305 

selection sort, 262, 297 

shaker sort, 271 

shellsort, 275 

special purpose, 439-471 

sublinear time, 433-437 


three-way radix quicksort, 422 

Sorting networks, 446-454 

Spanning tree, 10, 242 

Sparse graph, 122 

Sparse matrices, 119 

Special functions, 40-43 

Special-purpose sorting methods, 


439-471 

Specification, 13 7-138 

Splay tree, 540-546, 569-572 

Split-interleave merging, 451-453 

Splitting 


pages in B tree, 664-670 

pages in extendible hashing, 


680-685 

directory in extendible hashing, 


680-685 

nodes in 2-3-4 tree, 547-548 

nodes in red-black tree, 553

554 

Stability (in sorting), 259-260, 


304,343-344,358-359,425
427 


Stack size, 197,234,245,247, 

314, 319 


Stack-based graph traversal, 231
235 


Stack-based tree traversal, 231
235 


Stack: see pushdown stack 

Standard C libraries, 77, 87, 118

119,480 

Standard deviation, 75 

Standish, T., 250 

Stirling's formula, 42 

Storage allocation: see Memory 


allocation 

Straight-line programs, 441 

Strings, 108-114, 184-185,406 


append,114 

arrays of, 117-119 

comparison, 110-111, 114 

copy, 112-114 

indexing, 513, 623 

keys, 287-288 

keyword search, 513-514 

memory allocation, 114 


MSD radix sort, 417-418 

pointers, 652 

quicksort, 117-119, 327-329 

search, 110-111,641,646-649, 


652 

Strong, H. R., 691-692 

Structures (struct), 78-80, 91, 


122, 170-185,221,503,639, 

667,678 


Stubs, 176 

Successful search: see Search hit 

Suffix tree, 513, 649-653 

Summit, S., 250 

Symbol table ADT implementa


tions: see Search algorithms 

Symbol-table ADT operations 


delete, 133-134, 158-161 

insert, 133-134, 158-161 

search, 479-483 


Szemeredi, E., 450, 596 


Tail node: see Dummy node 

Tail recursion, 194,315 

Tapes, 656 

Tarjan, R. E., 63, 66,473-474, 


691-692 

Telephone book, 643 

Telephone books: see Search algo

rithms 

Telescoping (a recurrence), 50 

Terminal node: see Leaf 

Ternary search tree (TST), 636

649 

partial match search, 642 

string index, 649-653 


Ternary tree, 222, 380 

Test if empty generalized queue 


ADT operation, 133, 362 

Text processing: see String pro


cessing 

Text-string indexes, 511-516, 


649-653 

Thrashing, 465 

Three-way radix quicksort, 421

425,432-437 

Time, 39 

Top-down 2-3-4 tree, 546-561 




702 

Top-down algorithms: see Recur

sive algorithms 


Top-down dynamic programming, 

210-217 


Tournaments, 237-239, 241 

Towers of Hanoi, 199-204, 208, 


231 

Traversal 


graphs, 241-249 

linked list, 195 

linked list (reverse order), 195 

tree, 230-23,11· 


Tree, 217-248 

binary, 220-241 

free, 218-219,224-226 

height, 21, 653 

isomorphism, 224 

lvE-ary, 220, 222 

ordered, 218-220, 223, 226 

rooted, 218, 224 

ternary 380 

traversal, 230-235 

unordered (rooted), 218-219, 


224-226 

Tries, 412-413, 614-623 


height, 653 

multiway: see Multiway tries 


Triply-linked structures, 369-370, 

393,402 


Try: see Trie 

TST; see ternary search tree 

Two-dimensional 


array, 115-11 7 

array of list, 123-125 


2-3 search tree, 558-560 

2-3-4 search tree, 546-561, 568, 


663 

Type definition (typedef), 75-77, 


91,132-133 

Types: see Data types 


Ullman, J., 65 

Undirected graphs: see Graphs 

union, 616, 622 

Union operation, 10-23, 149-153 

Union-find algorithms, 10-23 


path compression by halving, 

18-21 


path compression, 18-22 

quick find, 12-13, 19-21 

quick union, 13-16, 19-21 

weighted quick union, 16-18, 


19-21 

Universal hashing, 579-580 

Universe, size of, 662 

Unordered rooted (tree), 218-219, 


224-226 

Unsuccessful search: see Search 


miss 

Upper bounds, 62-63 


van Leeuwen, J., 66 

Variable-length keys, 621, 623, 


623-632 

Vectors, 86, 184,287,327-329, 


424-425 

Vertex (in a graph): see Node 

Virtual memory, 464-466, 658, 


690 

Vuillemin, J., 394, 473-474 


Words, 405-409 

World, end of, 201 

Worst case, 61 


Yao, A., 671 


Zero-one principle, 444, 468 

Zipf's law, 496 




This is an eminently readable book which an ordinary program
mer, unskilled in mathematical analysis and wary of theoretical 
algorithms, ought to be able to pick up and get a lot out of 

- Steve Summit, author of CProgramming FAQs 

Sedgewick has a real gift for explaining concepts in a way that 
makes them easy to understand. The use of real programs in 
page-size (or less) chunks that can be easily understood is a 
real plus. The figures, programs, and tables are a significant 
contribution to the learning experience of the reader; they 
make this book distinctive. 

- William A Ward, University of South Alabama 

Robert Sedgewick has thoroughly rewritten and substantially 
expanded his popular work to provide current and comprehen
sive coverage of important algorithms and data structures. 
Many new algorithms are presented, and the explanations of 
each algorithm are much more detailed than in previous edi
tions. A new text design and detailed, innovative figures, with 
accompanying commentary, greatly enhance the presentation. 
The third edition retains the successful blend of theory and 
practice that has made Sedgewlck's work an invaluable 
resource for more than 250,000 programmers! 

This particular book, Parts 1-4, represents the essential first 
half of SedgeWlc~'s complete work It provides extensive cov
erage of fundamental data structures and algorithms for sort
ing, searchmg, and related apphcatlons The algorithms and 
data structures are expressed In conCise Implementations In C, 
so that you can both appRJCt8t8 their fundamental properties 
and test them on real applicatiOR$. Of course, the substance 0' 
1M book applies to prograIRIRIl1g In any Iangu.IiQe. 

Highlights 

• Expanded coverage of arrays, linked lists, strings, trees, 
and other basic data structures; 

• 	Greater emphasis on abstract data types (ADTs) than in 
previous editions; 

• Over 100 algorithms for sorting, selection, priority queue 
ADT implementations, and symbol table ADT (searching) 
implementations; 

• 	New implementations of binomial queues, multiway radix 
sorting, Batcher's sorting networks, randomized BSTs, 
splay trees, skip lists, multiway tries, and much more; 

• 	Increased quantitative information about the algorithms, 
including extensive empirical studies and basic analytic 
studies, giving you a basis for comparing them; 

• 	Over 1000 new exercises to help you learn the properties 
of algorithms. 

Whether you are a student learning the algorithms for the first 
time or aprofessional interested in having up-to-date reference 
material. you will find a wealth of useful information in this 
book. 

Robert S....awick is the William 0 Baker Professor of 
Computer SCience at Princeton University He received hIS Ph 0 
from Stanford University (under Donald E. KnuthL He IS a 
Director of Adobe Systems, and has served on the research 
staffs at Xerox PARC. the Institute for Defense Analyses, and 
lNMIA. Professor ~ isCOIlibor PbiIippe fIajafet)of:.""""'•• __ (/~ 


