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4.3 Discussion of the scientific goals of the above work, the results and their possible 

applications

Introduction

The charge of a protein is one of its key physicochemical characteristics. It is related to the 

dissociation constant pKa which is a quantitative measure of the strength of an acid in 

solution. For proteins and peptides, the ionizable groups of seven charged amino acids should 

be taken into account: histidine (imidazole side chains), glutamate (γ-carboxyl group), 

aspartate (β-carboxyl group), cysteine (thiol group), lysine (ϵ-ammonium group), tyrosine 

(phenyl group), and arginine (guanidinium group) (5). Furthermore, other groups can possess 

the charge, such as the amine and carboxyl-terminal groups of the polypeptide chain and the 

post-translational modifications (PTMs) that carry charged groups (e.g. phosphorylation and 

N-terminal acetylation). If known, the pKa values of charged groups can be used to calculate 

the overall charge of the molecule at a given pH and to estimate the isoelectric point (pI, 

IEP), that is, the pH at which there is an equilibrium of positive and negative charges and 

therefore the total net charge of the molecule is equal to zero (6). 

Both pKa and the isoelectric point are used in numerous techniques, such as two-dimensional 

polyacrylamide gel electrophoresis (2D-PAGE) (7, 8), capillary isoelectric focusing (9), 

crystallization (10), and mass spectrometry (11, 12). It should be stressed that experimental 

measurements of isoelectric points (SWISS-2DPAGE (13) and PIP-DB (14)) and pKa values 

(PKAD database (15)) are very limited (not more than a few thousand records), but the 

development of computational methods for predicting these features is possible.

Prediction of isoelectric point

The simplest approach for the computational prediction of the isoelectric point is to use the 

Henderson–Hasselbalch equation (6), where the charge of a macromolecule at a given pH is 

the sum of the negative and positive charges of the individual amino acids, given by 

Equations 1 and 2, respectively.

∑
i=1

n
−1

1+10pKn−pH    (Eq. 1)

where pKn is the acid dissociation constant of the negatively charged amino acid.
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∑
i=1

n
1

1+10pH− pKp
   (Eq. 2) 

where pKp is the acid dissociation constant of the positively charged amino acid.

As one can easily notice, the only variables are pKa values (namely pKn and pKp), and, by 

iteratively changing the pH, it is possible to find the isoelectric point. Therefore, in a gross 

approximation, the isoelectric point can be estimated by counting the number of charged 

amino acids in the protein/peptide sequence. Admittedly, in reality, the situation is more 

complicated than this, as many proteins are chemically modified (e.g. amino acids can be 

phosphorylated, methylated, acetylated), which can change their charge. For instance, the 

occurrence of cysteines (negative charge), which may oxidize and lose charge when they form

disulfide bonds in the protein, can be problematic. Moreover, one must consider the charged 

residue’s exposure to solvent, charge–dipole interactions (hydrogen bonds), dehydration (the 

Born effect), and charge–charge interactions. Nevertheless, the most critical factors are pKa 

values, and these can be obtained experimentally. However, many different pKa sets have 

been reported, depending on the experimental setup (e.g. the buffer, amino acids surrounding 

the charged group). The most commonly used pKa values for the ionizable groups of proteins 

are presented in Table 1.

The isoelectric point calculation algorithm is simple and can be summarized as finding the 

charge of zero (NQ) given partial sums related to the number of charged amino acids 

(Equation 3):

NQ=QN1+QN2+QN3+QN4+QN5+QP1+QP2+QP3+QP4  (Eq. 3) 

where QN1 is carboxyl-terminal charge, QN2 is aspartic acid charge, QN3 is glutamate 

charge, QN4 is cysteine charge, QN5 is tyrosine charge, QP1 is N-terminal charge, QP2 is 

histamine charge, QP3 is lysine charge, and QP4 is arginine charge, as calculated using 

Equations 1 and 2.

As stated previously, this can be done iteratively by setting the pH to 0 and then changing the 

pH by 0.01 (or any other precision). Although the formula is fairly simple and can be 

computed relatively fast, the iterative approach is ineffective from the algorithmic point of 

view. The problem can be solved more effectively using a bisection algorithm which in each 

iteration halves the search space (initially, the pH is set to 7) and then moves higher or lower 

by 3.5 (half of 7) depending on the charge. In the next iteration, the pH is changed by 1.75 

(half of 3.5), and so on. This process is repeated until the algorithm reaches the desired 
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precision. The bisection algorithm can improve the speed of isoelectric point estimation by 3–

4 orders of magnitude, and usually, after only approximately a dozen iterations, the algorithm 

converges with 0.001 precision.

When the Applicant started working on this problem, there were over a dozen different 

experimentally derived pKa sets and methods using them. However, nobody performed 

systematic studies to assess which was better for proteins or peptides (some attempts to build 

more sophisticated methods, such as those using genetic algorithms (16), artificial neural 

networks (17), and support vector machines (18), should be acknowledged here). Therefore, 

the very first step was to assemble the datasets that could be used for benchmarking the pKa 

sets’ usefulness for isoelectric point prediction (Tables 2 and 3). 

In 2015, the first data from the literature were gathered (Table 2). After combining various 

sources and cleansing the data of duplicates and obvious errors, it was possible to compose 

two major datasets: one for proteins and one for peptides. The protein dataset was derived 

from SWISS-2DPAGE (13) and PIP-DB (14): 2,324 proteins in total. The peptide dataset was

basad on two studies (Gauci et al. 2008 (19) and Heller et al. 2005 (20)): 16,882 peptides in 

total. The separation of the data into two datasets was necessary bacause the tasks of 

predicting of isoelectric point for proteins and peptides differ significantly.  The intact 

proteins (analyzed, for instance, with 2D-PAGE) have multiple charged residues that can 

possess many PTMs, and in general the number of charged groups is high; therefore, the 

isoelectric point estimation using a simple model, in which merely the number and type of 

charged residues are considered, would be fraught with high risk. The contrary is true if we 

consider short peptides (for improved resolution in mass spectrometry, the proteins are 

digested by trypsin or any other protease into short fragments), for which the number of 

charged residues is limited and the macromolecules lack any 3D structure.

Subsequently, having established the datasets with experimentally verified isoelectric points 

for proteins and peptides, it was possible to turn the problem around and design new, 

computationally optimized pKa sets. In practice, this can be brought down to finding nine 

variables (seven charged groups of amino acids and the COO– and NH+ terminal groups). 

Checking all possible combinations is not manageable, as even for nine variables in a pH 

range of 3 (i.e. ±1.5 pH units of the average for a given amino acid pKa) with 0.01 precision 

gives 1.97 × 1022 possibilities. However, there is a huge number of optimization algorithms 

suitable for these tasks. In this particular case, basinhopping optimization with a truncated 

Newton algorithm was used (21, 22), as implemented in SciPy (scipy.optimize.basinhopping 
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and scipy.optimize.minimize(method=‘TNC’)) (23). In the nutshell, the basinhopping 

algorithm is an iterative search procedure, with each cycle composed of the following steps: 

random perturbation of the coordinates; local minimization; and acceptance or rejection of the

new coordinates based on the minimized function value of the Metropolis criterion of the 

standard Monte Carlo algorithm. As an initial ‘seed,’ previously published pKa values were 

used. To limit the search space, a truncated Newton algorithm was used with 2-pH-unit 

bounds for pKa variables (e.g. if the starting point for the pKa for cysteine was 8.5, the solution

was allowed in the interval [6.5, 10.5]). The resulting pKa sets are presented in Table 1 

(IPC_protein and IPC_peptide sets implemented in Isoelectric Point Calculator). As shown in 

Table 4, the new optimized pKa sets yielded improved accuracy in all performance metrics; 

for instance, the root mean square deviation (RMSD) of 0.874 for IP_protein versus 0.934 for 

Toseland and of 0.251 for IPC_peptide versus 0.255 for Solomon.

From the algorithmic point of view, isoelectric point prediction based on the Henderson–

Hasselbalch equation with optimized pKa sets can be considered to be a highly simplified 

approach. Therefore, in the second attempt around 2020, more advanced machine learning 

approaches were used. First, other optimization algorithms were tested. Here, differential 

evolution was used instead basinhopping, as it performed significantly better 

(scipy.optimize.differential_evolution(popsize=50) (24); the resulting pKa sets are denoted 

IPC2_protein and IPC2_peptide in Table 1). In the next step, the machine learning approach 

adopted differed depending on the task. In the case of proteins, there was only a relatively 

small set of 2,324 experimentally validated measurements, so only a simple algorithm could 

be used. As there were already multiple methods based on the Henderson–Hasselbalch 

equation with different pKa sets, it was straightforward to design an ensemble method (here, 

support vector regression [SVR] with radial basis function [RBF] kernel and GridSearchCV 

parameter optimization; sklearn.svm.SVR) (25). The input vector, in this case, was composed 

of 19 isoelectric point values predicted by these methods (IPC2.protein.svr.19 and 

IPC2.protein.svr.19 in Table 5). For peptides, a larger dataset (119,092 cases) was available 

than for proteins, so algorithms that were more data-hungry could be used. Here, it was 

possible to start from simple dense networks (multi-layer perceptrons [MLPs]) with different 

numbers of dense layers and neurons interconnected with dropout and with different 

activation layers (preferably selu and elu). Subsequently, increasingly advanced architectures 

(e.g. VVG16-like, Inception-like) were tested. After thorough tests, the final architecture for 

peptide isoelectric point prediction was based on the stacking of separable convolution layers 

(Figures 4 and 5).

7/31



The input was integrated as a four-channel ‘image.’ In the first channel, the sequence was 

stored in one-hot-encoding format. The length of the peptide was up to 60 amino acids (with 

padding if needed). There were 20 amino acids plus X for unknown and 0 for padding, giving 

22 in total. In the second channel, the most informative features from AAindex (26) were 

encoded (univariate feature selection with regression [f_regression] and mutual information 

[mutual_info_regression] with recursive feature elimination (RFE) from the Scikit-learn 

package) (27)).  Both channels stored the information by amino acids. In the third and fourth 

channels, the amino acid counts and predictions from methods based on the Henderson–

Hasselbalch equation with pKa sets were stored. The scalars in these two channels were 

extended into vectors (an individual row corresponds to a single prediction; e.g. prediction by 

Dawson*60). This made it possible to share information about isoelectric point predictions 

across many filters during the convolution. The input shaped as described was processed by 

separable convolution filters (the use of separable filters was crucial here), followed by 

average pooling (here, better than the frequently used maxpooling). The initial filters had a 

size of 22 × 5 to allow efficient amino-acid-related motif discovery in the first and second 

channels. After two rounds of convolution and pooling, everything was flattened and 

processed by three dense layers. In all layers, selu activation was used (Figure 5). The final 

model, as summarized in Table 6, provided superior accuracy on all benchmark datasets.

Prediction of pKa dissociation constants

The prediction of pKa dissociation constants is a different issue, involving many other 

problems. First, the dataset of experimentally measured pKas is quite small (PKAD database 

(15), 1337 entries; Table 3), and, until this work, there were no other methods that could 

predict pKa dissociation constants directly from the sequence (the methods such as MCCE 

(28), H++ (29), Propka (30), and Rosetta pKa (31) require the protein structure or model with 

3D coordinates of the atoms). Therefore, the proposed approach was entirely novel. In the 

case of the charged groups for which the prediction of pKa dissociation constants is required, 

the focus was on the single charged amino acid and the few surrounding it. Therefore, 

information related to kmers of different sizes was used. With the increasing size of the kmer 

(from 3 to 15), the sequence (one-hot encoding) and the amino acid scores for the most 

informative features from AAindex were used. This information was used later as an input for

the MLP unit (three dense layers separated by dropout layers). Next, to boost the 

performance, an ensemble of nine models was used to build the final SVR model. To 

benchmark the resulting model(s), the same testing set as for the Rosetta pKa program was 
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used (Table 7). Although the IPC2_pKa model was not always better than Rosetta (for 

histidine, Rosetta pKa achieved an RMSD of 0.82, whereas IPC2_pKa achieved 0.85; for 

tyrosine, it was 0.78 vs 0.84 respecively), on average the pKa scores were improved 

significantly from the RMSD of 0.83 (Rosetta site repack model) to 0.58 for IPC2_pKa. More

significantly, the prediction was possible based entirely on the sequence, and it was very fast 

(the structure-based methods need hours to make predictions for a single protein, whereas the 

model presented here can perform predictions in fractions of a second). 

Databases of predicted isoelectric points and pKa dissociation constants

In the past, much work was put into creating databases with an experimentally measured 

isoelectric points (13, 14) and pKa dissociation constants (15), yet none of these databases 

contained more than 5,000 values, which is very few compared with the protein sequence data

currently available (counted in hundreds of millions). Therefore, the Proteome-pI and 

Proteome-pI 2.0 databases were an attempt to decrease this gap. Furthermore, the design of 

fast models like IPC2_protein and IPC2_pKa enabled proteome-wide predictions and 

enriched our knowledge regarding isoelectric points and charges of proteins in a high-

throughput manner.

Before the creation of the Proteome-pI database, there was only one significant effort in this 

respect. Kiraga and co-workers in 2007 analyzed 1,784 proteomes using one algorithm (the 

Bjellqvist method, as implemented in Compute pI/Mw tool at the ExPASy server) (32). 

However, this was a one-time analysis conducted over a decade ago, and the raw data behind 

it are not directly available. Consequently, in 2017, the Applicant developed the Proteome-pI 

database (http://isoelectricpointdb.org), which contains the predictions for 21,721,250 

sequences from 5,029 so called reference proteomes from UniProt database (33) with 

isoelectric points predicted using 18 algorithms. After developing IPC 2.0, consisting of 

improved models for isoelectric point prediction and a novel, sequence-based pKa dissociation

constant predictor, it was possible to update the database (Proteome-pI 2.0, 

http://isoelectricpointdb2.org), which now contains predictions for 20,115 proteomes 

(61,329,034 proteins) using 21 algorithms (for more details, see Tables 8–11). 

Another significant qualitative improvement presented in the Proteome-pI 2.0 database was 

the availability of pKa dissociation constant predictions. As mentioned previously, methods 

other than IPC2_pKa need protein structures or at least a decent protein model, so even very 

recent efforts have been limited to the Protein Data Bank. Using their structure-based 
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algorithm, PypKa, Reis and co-workers made predictions of isoelectric points and pKa values 

with increased throughput  (34). The resulting database, pKPDB, contained predictions for 

~70% of Protein Data Bank structures with ~10 million pKa and ~120,000 isoelectric points. 

In comparison, Proteome-pI 2.0 contains 5.38 billion pKa dissociation constant predictions for

proteins from 20,115 proteomes divided into major kingdoms (Viruses, Archaea, Bacteria, 

and Eukaryota). Therefore, the researcher is not limited to the analysis of single proteins and 

can ask more interesting questions than it was possible in the past. Individual proteome 

statistics allow the comparison of the distribution of isoelectric points, which can be 

significantly biased in some organisms (Figure 6). For example, Archaea have the smallest 

proteins (except for viruses), but the isoelectric point of the proteome can differ greatly 

among individual species. This may be because Archaea are known for living in extreme 

environments (e.g. low or high pH), which affects the range of isoelectric points in their 

proteomes (Figures 6 and 7). Similarly, high-throughput predictions allow the investigation 

of the distribution of pKa dissociation constants for specific charged groups (Figure 8). Here, 

it is worth mentioning that only histidine and, to a smaller extent, N-terminal pKa predictions 

are normally distributed, whereas glutamate, aspartate, and C- terminal pKa predictions have a

skewed distribution with a long tail towards the high pH values. The opposite is true for 

tyrosine and lysine pKa predictions (the skew is towards low pH values). This may indicate 

that, although most of the pKa predictions are focused on model pKa values (such as presented 

in Table 1), frequently this may not be the case, and they may change significantly, 

depending on the surrounding amino acids’ charges.

Additionally, Proteome-pI 2.0 contains the prediction of isoelectric points for in silico digests 

of proteomes (9.58 billion peptides) with the five most commonly used proteases (trypsin, 

chymotrypsin, trypsin + LysC, LysN, ArgC), facilitating bottom-up proteomics analyses.

Finally, both databases, Proteome-pI and Proteome-pI 2.0, allow downloading predictions of 

isoelectric point done with multiple methods for all major protein sequence databases (the last

update contains the predictions for the following databases: Swiss-Prot: ~561,000 (35, 36), 

PDB: ~601,000 (37), UniProtKB/TrEMBL: ~219 million (33), nr: 409 million (38) 

sequences).

10/31



User statistics of the Isoelectric Point Calculator (IPC), IPC 2.0, Proteome-pI, and 

Proteome-pI 2.0

The number of users that benefit from the work presented in the cycle of publications is hard 

to estimate but can be considered to be substantial. First, IPC and IPC 2.0 are computer 

programs that can be run both as standalone programs and via a web interface. In the latter 

case, some statistics are available (Table 12). The oldest version (IPC 1.0) was released in 

December 2015, and the webpage has since been visited by over 225,000 users. The upgraded

version, IPC 2.0, is a relatively young web service and has had only ~6,500 visitors to date. It 

is impossible to estimate the number of standalone version users. The programs can be 

downloaded as publication supplements, directly from web server pages, Python Package 

Index (PyPI), or RePOD repository. Moreover, IPC has been integrated into numerous 

programs (e.g. Rapid Peptides Generator (39), idpr Bioconductor package , Pep-Calc (40)). In

part, the popularity of the package may be due to its liberal licensing (in the public domain). 

This gives other researchers great freedom, and, although giving credit is not required, the 

program has been cited well in publications, books, websites, and even patents (e.g. 

TW202019466A). In contrast, the databases are available mainly from websites, and, 

although the number of visitors or publication readers is much smaller, this does not mean 

that the Proteome-pI database is not used or cited. 

The IPC and IPC 2.0 tools can be considered to be useful for many scientists (the isoelectric 

point is a fairly standard, yet useful, feature of the protein), and the Proteome-pI database is a 

highly specialized resource used extensively by experts. Although Proteome-pI was designed 

for biologists focused on a single model organism, quite unexpectedly some high-throughput 

follow-up studies that use a huge proportion of or even the entire Proteome-pI data for 

specialized analyses can also be noted (e.g. high-throughput analysis of specific taxons, such 

as plants (41), fungi (42), and groups of interacting proteins (43)).
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Figure 1. Histograms of the isoelectric points of proteins. The top and middle panels were calculated using the 
IPC_protein pKa set and represents the pI distribution (in 0.25-pH-unit intervals) in the SwissProt database, 
human proteome, Escherichia coli, and extreme halophilic archaeon Natrialba magadii. The bottom two panels 
present the isoelectric points of the yeast proteome (6,721 proteins) calculated using the EMBOSS pKa set (as 
presented in the Saccharomyces Genome Database (44)) (left) and the IPC_protein pKa set (right) for 
comparison. Reproduced from Kozlowski 2016.
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Figure 2. Example output of the Isoelectric Point Calculator for the Mycoplasma genitalium G37 proteome 

(476 proteins). The scatter plot with the predicted isoelectric points versus molecular weight for all proteins is 

presented at the top. Below this, for individual proteins, pI predictions based on different pKa sets are presented 

alongside the molecular weight and amino acid composition. Reproduced from Kozlowski 2016.
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Figure 3. An overview of the Proteome-pI 2.0 database. Isoelectric points and molecular weights for individual 

proteins from 20,115 proteomes are visualized on virtual 2D-PAGE plots (top left) and can be retrieved 

according to the predictions of one of 21 algorithms (top right). The data for individual proteins are accompanied

by dissociation constant (pKa) predictions (middle). The proteomes are digested in silico by one of the five most 

commonly used proteases (trypsin, chymotrypsin, trypsin+LysC, LysN, ArgC) (bottom right). Additionally, 

auxiliary statistics are provided (e.g. di-amino acid frequencies) (bottom left). Reproduced from Kozlowski 

2021b.
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Figure 4. A schematic workflow of the Isoelectric Point Calculator 2.0. The input (single sequence or multiple 

FASTA query) is processed by three independent models. For proteins, support vector regression is used. For 

peptides, a deep learning model is used (see also Figure 5). For pKa values, an ensemble of nine multilayer 

perceptron models based on kmers of different lengths is used.
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Figure 5. Deep learning architecture for peptide isoelectric point prediction. A) the input is integrated as a four-channel ‘image.’ The length of the peptide is up to 60 amino acids 

(with padding if needed; the width of ‘image’). There are 20 amino acids plus ‘X’ for unknown and ‘0’ for padding, giving 22 in total (the height of ‘image’). In the first channel, the 

sequence is stored in one-hot-encoding format. In the second channel, there are the AAindex features (for details, see Supplementary Table S2; 15 rows, seven remaining padded). 

Both channels store the information by individual amino acids. In the third and fourth channels, the amino acid counts and Isoelectric Point Calculator (IPC) 1.0 predictions are 

stored. The scalars in these two channels are extended into vectors (an individual row corresponds to a single prediction; e.g. prediction by Dawson*60). This makes it possible to 

share the information about IPC 1.0 predictions across many filters during the convolution. B) The input is processed by separable convolution filters (the use of separable filters is 

crucial) followed by average pooling (here, better than maxpooling). The initial filters have a size of 22×5 to allow efficient amino-acid-related motif discovery in the first and 

second channels. After two rounds of convolution and pooling, everything is flattened and processed by three dense layers. In all layers, selu activation is used. Reproduced from 

Kozlowski 2021b.



Figure 6. Isoelectric point predictions according to different methods. (Top) Natronolimnobius baerhuensis: an
archaeon living  in  soda  lakes;  (middle)  Danio  rerio (expected,  bimodal  distribution  of  isoelectric  points);
(bottom) Methanothermus fervidus: a thermophilic methanogen. Reproduced from Kozlowski 2021b.

Figure 7. Isoelectric points and molecular weights across the kingdoms of life. (Top) Data from 135 archaea, 
127 viruses, >50 proteins, 3,775 bacteria, and 614 eukaryote proteomes; the plots are reproduced from 
Proteome-pI (Kozlowski 2017). (Bottom) Data from the proteomes of 331 archaea, 4,046 viruses, 8,105 bacteria,
and 1,612 eukaryotes with ≥50 proteins; the plots are reproduced from Proteome-pI 2.0 (Kozlowski 2021b). 
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Figure 8. Dissociation constant (pKa) predictions according to charge location. The plot is based on a random
selection of  400 proteomes (100 viruses,  100 archaea,  100 bacteria,  and 100 eukaryotes).  Reproduced from
Kozlowski 2021b.
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Table 1. The most commonly used pKa values for ionizable groups of proteins (a compilation of data from 

Kozlowski 2016 and Kozlowski 2021a). 

NH+ COO- Asp Glu Cys Tyr His Lys Arg

EMBOSS 
DTASelect 
Solomon 
Sillero 
Rodwell 
Patrickios 
Wikipedia
Lehninger 
Grimsley* 
Toseland 
Thurlkill 
Nozaki 
Dawson**
Bjellqvist
ProMoST
IPC_protein 
IPC2_protein
IPC_peptide 
IPC2_peptide

  8.600
  8.000
  9.600
  8.200
  8.000
11.200
  8.200
  9.690
  7.700
  8.710
  8.000
  7.500
  8.200
  7.500
  7.260
  9.094
  5.779
  9.564
  7.947

3.600
3.100
2.400
3.200
3.100
4.200
3.650
2.340
3.300
3.190
3.670
3.800
3.200
3.550
3.570
2.869
6.065
2.383
2.977

3.900
4.400
3.900
4.000
3.680
4.200
3.900
3.860
3.500
3.600
3.670
4.000
3.900
4.050
4.070
3.872
3.766
3.887
3.969

4.100
4.400
4.300
4.500
4.250
4.200
4.070
4.250
4.200
4.290
4.250
4.400
4.300
4.450
4.450
4.412
4.497
4.317
4.507

8.500
8.500
8.300
9.000
8.330
 -

8.180
8.330
6.800
6.870
8.550
9.500
8.300
9.000
8.280
7.555
7.890
8.297
9.454

10.100
10.000
10.100
10.000
10.070

-
10.460
10.000
10.300

9.610
9.840
9.600

10.100
10.000

9.840
10.850
11.491
10.071
  9.153

6.500
6.500
6.000
6.400
6.000
 -

6.040
6.000
6.600
6.330
6.540
6.300
6.000
5.980
6.080
5.637
5.492
6.018
6.439

  10.800
10.000
10.500
10.400
11.500
11.200
10.540
10.500
10.500
10.450
10.400
10.400
10.500
10.000

9.800
9.052

 9.247
10.517
 8.165

12.500
12.000
12.500
12.000
11.500
11.200
12.480
12.400
12.040
12.000
12.000
12.000
12.000
12.000
12.500
11.840
10.223
12.503
11.493

*Arg was not included in the study, and the average pKa from all other pKa sets was taken.

** NH2 and COOH were not included in the study, and they were taken from Sillero.

Note that Bjellqvist and ProMoST use different amounts of additional pKa values (not shown), which take into account the 

relative position of the ionized group (whether it is located on the N- or C-terminus or in the middle). 

Table 2. Detailed statistics for the available datasets used in the Isoelectric Point Calculator (IPC) 1.0. 
Reproduced from Kozlowski 2016, enriched with hyperlinks to the datasets.

Dataset
Initial no. 
of entries

No. of entries with 
sequence and pI

No. of entries after 
removing outliers

No. of entries after
 removing duplicates

Gauci et al. 5,758   5,758 NA NA
PHENYX 7,582   7,582 NA NA
SEQUEST 7,629   7,629 NA NA
IPC_peptide - 20,969 20,969 16,882  [25] [75]_
SWISS-2DPAGE 2,530   1,054    1,029       982_
PIP-DB 4,947   2,427    2,254    1,307
IPC_protein -   3,481    3,283    2,324  [25] [75]_
NA, not available; refers to the situation where the given dataset was not created because a merged version was used.

Note: all datasets presented in the table are available via hyperlinks; the final datasets were divided randomly into 75% 

training and 25% testing subsets (denoted as [75] and [25], respectively).
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http://ipc.netmark.pl/datasets/pip_ch2d19_2_1st_isoform_outliers_3units_cleaned_0.99_trainset_0.75.fasta
http://ipc.netmark.pl/datasets/pip_ch2d19_2_1st_isoform_outliers_3units_cleaned_0.99_testset_0.25.fasta
http://ipc.netmark.pl/datasets/pip_ch2d19_2_1st_isoform_outliers_3units_cleaned_0.99.fasta
http://ipc.netmark.pl/datasets/pip_ch2d19_2_1st_isoform_outliers_3units_cleaned.fasta
http://ipc.netmark.pl/datasets/pip_ch2d19_2_1st_isoform.fasta
http://ipc.netmark.pl/datasets/pip_db_normal_outliers_3units_cleaned_0.99.fasta
http://ipc.netmark.pl/datasets/pip_db_normal_outliers_3units_cleaned.fasta
http://ipc.netmark.pl/datasets/protein/pip_db_normal.fasta
http://ipc.netmark.pl/datasets/pip_db.tar.gz
http://ipc.netmark.pl/datasets/ch2d19_2_1st_isoform_outliers_3units_cleaned_0.99.fasta
http://ipc.netmark.pl/datasets/ch2d19_2_1st_isoform_outliers_3units_cleaned.fasta
http://ipc.netmark.pl/datasets/ch2d19_2_1st_isoform.fasta
http://ipc.netmark.pl/datasets/ch2d19_2.dat
http://ipc.netmark.pl/datasets/Gauci_PHENYX_SEQUEST_0.99_duplicates_out_trainset_0.75.fasta
http://ipc.netmark.pl/datasets/Gauci_PHENYX_SEQUEST_0.99_duplicates_out_testset_0.25.fasta
http://ipc.netmark.pl/datasets/Gauci_PHENYX_SEQUEST_0.99_duplicates_out.fasta
http://ipc.netmark.pl/datasets/Gauci_PHENYX_SEQUEST.fasta
http://ipc.netmark.pl/datasets/Gauci_PHENYX_SEQUEST.fasta
http://ipc.netmark.pl/datasets/SEQUEST_Heller_2005_suppl2.fasta
http://ipc.netmark.pl/datasets/Heller_2005_suppl2.pdf
http://ipc.netmark.pl/datasets/PHENYX_Heller_2005_suppl1.fasta
http://ipc.netmark.pl/datasets/Heller_2005_suppl1.pdf
http://ipc.netmark.pl/datasets/gauci_dataset.fasta
http://ipc.netmark.pl/datasets/pmic_200800295_sm_tables.xls


Table 3. Detailed statistics for the available datasets used in the Isoelectric Point Calculator (IPC) 2.0. Reproduced from Kozlowski 2021a.

Dataset Entries Details

IPC2_protein
  - IPC_protein_25 (25% test set)
  - IPC_protein_75 (75% training set)

2,324
581

1,743

The dataset consists of proteins derived from two databases: PIP-DB and SWISS-2DPAGE (13, 14). The outliers are defined at 0.5-pH-unit 
difference between the predicted and experimental isoelectric point threshold. The same protein dataset is used in IPC and IPC 2.0. Average protein 
size: 387 amino acids. 

IPC2_peptide
  - IPC2_peptide_25 (25% test set)
  - IPC2_peptide_75 (75% training set)

119,092
29,774
89,318

The dataset consists of the peptides from HiRIEF high-resolution isoelectric focusing experiments from Branca et al. 2014 (12) and Johansson et al.
2019 (12). Merged dataset from seven independent experiments: 3.7–4.9 (8,713 peptides), 3.7–4.9 (7,361 peptides), 3.7–4.9 (35,595 peptides), 
3–10 (23,975), 3–10 (15,000 peptides), 6–11 (36,827 peptides), 6–9 (38,057 peptides). Average peptide size: 14.6 amino acids.

IPC2_pKa
  - IPC2_pKa_25 (test set)
  - IPC2_pKa_75 (training set)

1,337
260

1,079 

pKa values from PKAD database (157 proteins). Due to the small number of samples, the test set and training set were built as follows: 260 pKa 
values from 34 proteins used in the pKa Rosetta method (15) were selected as a test set; the remaining samples from the PKAD database were used 
as the training set.

The full datasets were not used directly. First, the sequences were clustered (to remove duplicates and to average isoelectric points if multiple experimental data existed), then they were split randomly 

into 25% and 75% sets (test and training datasets, respectively). The training sets were used for the training and (hyper)parameter optimization, and the test sets were used only once to assess the final 

performance of the models. For individual datasets’ sequences and experimental isoelectric points, see Supplementary Data 1 in Kozlowski 2021a.



Table 4. Prediction of isoelectric points using the 25% testing datasets in the Isoelectric Point Calculator (IPC) 1.0. Reproduced from Kozlowski 2016. A similar table for the 75% 
training datasets is available in Kozlowski 2016.

Method
Protein dataset

Method
Peptide dataset

RMSD % Outliers RMSD % Outliers
IPC_protein
Toseland
Bjellqvist
Dawson
Wikipedia
Rodwell
ProMoST
Grimsley
Solomon
Lehninger
pIR
Nozaki
Thurlkill
DTASelect
pIPredict
EMBOSS
Sillero
Patrickios

Avg_pI*

0.874
0.934
0.944
0.945
0.955
0.963
0.966
0.968
0.970
0.970
1.013
1.024
1.030
1.032
1.048
1.056
1.059
2.392

0.960

0
14.9
17.7
17.8
20.5
22.8
23.6
24.2
24.8
25.0
38.0
41.3
43.4
44.1
49.4
52.3
53.2

3201.8

22.1

46---
52---
47---
56---
55---
58---
52---
60---
58---
59---
58---
56---
61---
58---
56---
69---
63---

227---

53---

IPC_peptide
Solomon
Lehninger
EMBOSS
Wikipedia
Toseland
Sillero
Dawson
Thurlkill
Rodwell
DTASelect
Nozaki
Grimsley
Bjellqvist
pIPredict
ProMoST
pIR
Patrickios

Avg_pI

0.251
0.255
0.262
0.325
0.421
0.425
0.428
0.435
0.481
0.502
0.550
0.602
0.616
0.669
1.024
1.239
1.881
1.998

0.454

0
0.9
2.5

18.5
47.9
49.1
50.3
52.9
69.7
78.4
99.1

124.3
131.4
161.5
493.6
873.4

4159.7
5479.1

59.6

232--
 235--
 236--
 372--

1467--
  990--
1223--
1432--
1361--
1359--
1714--
1368--
1550--
1583--
2720--
2649--
3358--
2739--

1571--

* Average from all pKa sets without Patrickios (highly simplified pKa set) and IPC sets. Note that the average pI is calculated on the level of individual protein or peptide; therefore, it does not represent 

the average of values presented in the table for the individual methods.

%: note that the pH scale is logarithmic with base 10; therefore, the percentage difference corresponds to pow(10, x), where x is equal to the delta of the RMSDs of two error estimates represented in pH 

units; for example, the % difference between Toseland and IPC_protein is pow(10, (0.934 – 0.874)).

Protein dataset: IPC_protein was trained on 1,743 proteins with 10-fold cross-validation (data in Table 2 in Kozlowski 2016); tested on 581 proteins not used for training (data in this Table 4).

Peptide dataset: IPC trained on 12,662 peptides with 10-fold cross-validation (data in Table 2 in Kozlowski 2016); tested on 4,220 peptides not used for training (data in this Table 4). Outliers 

correspond to the number of predictions for which the difference between the experimental pI and predicted pI was greater than the threshold of the mean standard error (MSE) of 3 for the protein 

dataset and MSE of 0.25 for the peptide dataset.



Table 5. Isoelectric point prediction accuracy on leave-out 25% datasets. Reproduced from Kozlowski 2021a.

Method
Protein dataseta

Method
Peptide datasetb

RMSD MAE R2 Outliersc RMSD MAE R2 Outliersc

IPC2.protein.svr.19
IPC2_protein
IPC_protein
ProMoST
Toseland
Dawson
Bjellqvist
Wikipedia
Rodwell
Grimsley
Lehninger
Solomon
pIR
Nozaki
Thurlkill
DTASelect
EMBOSS
Sillero
Patrickios
PredpI-TMT6
PredpI-plain
PredpI-iTRAQ8

0.8479
0.8608
0.8677
0.9113
0.9278
0.9365
0.9369
0.9484
0.9579
0.9588
0.9617
0.9631
1.0148
1.0164
1.0250
1.0278
1.0498
1.0519
2.3764

NA
NA
NA

0.5906
0.6052
0.6109
0.6444
0.6537
0.6586
0.6536
0.6795
0.6762
0.6953
0.6783
0.6746
0.7556
0.7219
0.7573
0.7798
0.7757
0.7694
1.8414

NA
NA
NA

0.5934
0.5748
0.5760
0.5183
0.5095
0.4977
0.5005
0.4860
0.4706
0.4779
0.4607
0.4606
0.4161
0.3980
0.3948
0.3947
0.3734
0.3461

<0
NA
NA
NA

247
251
250
263
250
263
260
262
262
265
266
272
315
288
302
319
308
308
517
NA
NA
NA

       IPC2.peptide.Conv2D
IPC2.peptide.svr.19
IPC2_peptide
Bjellqvist
Nozaki
DTASelect
Thurlkill
Sillero
Dawson
Wikipedia
Grimsley
Rodwell
Toseland
EMBOSS
PredpI-iTRAQ8
PredpI-TMT6
PredpI-plain
IPC_peptide
Solomon
Lehninger
pIR
ProMoST
Patrickios

0.2216
0.2299
0.2482
0.4051
0.4083
0.4235
0.4466
0.4747
0.4910
0.5178
0.5264
0.5855
0.5860
0.5971
0.6302
0.6365
0.6480
0.7459
0.7518
0.7697
0.8529
1.1026
2.0172

0.1216
0.1155
0.1394
0.2836
0.2673
0.2796
0.2535
0.2696
0.2642
0.2974
0.3796
0.3429
0.3896
0.3557
0.3503
0.3518
0.3710
0.4860
0.4929
0.5209
0.7303
0.7562
1.3927

0.9761
0.9743
0.9700
0.9204
0.9191
0.9130
0.9033
0.8907
0.8831
0.8700
0.8656
0.8337
0.8335
0.8271
0.8027
0.7988
0.7913
0.7302
0.7259
0.7127
0.6387
0.4104

<0

2691
2490
3179

11639
9837

10606
7182
7607
6698
8326

15956
9857

13152
11022
12059
12135
12813
13599
13777
15200
27158
18513
22818

aProtein dataset consisting of 581 proteins (25% randomly chosen proteins, not used for the training or optimization); the same as for the Isoelectric Point Calculator (IPC) 1.0.
bPeptide dataset consisting of 29,774 peptides (25% randomly chosen peptides, not used for the training or optimization).
cThe outliers were defined at 0.5- and 0.25-pH-unit differences between the predicted and experimental pI thresholds for the protein and peptide datasets.

NA: the PredpI program was designed only for peptides within the 3.7–4.9 pH range; therefore, for proteins, it returned 0 and could not be evaluated on the protein dataset.

New machine learning models developed in the IPC 2.0 study are shown in bold, and the first version of IPC (Kozlowski 2016) is underscored. Scores were calculated after 10-fold cross-validation. The

table is sorted by RMSD. For individual methods’ predictions, see Supplementary Data 2 in Kozlowski 2021a. For more details about the datasets, see Table 3.



Table 6. The effect of model architecture on the performance of isoelectric point prediction. Reproduced from Kozlowski 2021a.

Method
Peptide test dataset (30,279)   

Method
Protein test dataset (581)   

RMSD MAE R2 Outliers RMSD MAE R2 Outliers

IPC2.peptide.Conv2D
IPC2.peptide.svr.19
IPC2.peptide19
IPC2.peptide1320
IPC2_peptide
Bjellqvist
IPC_peptide

0.2216
0.2298
0.2376
0.2394
0.2483
0.4051
0.7458

0.1216
0.1155
0.1271
0.1245
0.1394
0.2836
0.4860

0.9761
0.9743
0.9726
0.9721
0.9700
0.9204
0.7302

2691
2490
2980
3055
3179

11639
13599

IPC2.protein.svr.19
IPC2_protein
IPC_protein
ProMoST

0.8466
0.8590
0.8679
0.9116

0.5907
0.6052
0.6109
0.6443

0.5965
0.5835
0.5779
0.5219

247
251
250
263

IPC2.peptide.Conv2D: an input layer is an ‘image’ (60 × 22 × 4). The rows correspond to amino acid register (up to 60, padded if necessary). The columns in the first channel correspond to amino acid 
sequence (60 × 22: 20 standard, ‘X’ for unknown amino acid, and ‘0’ for padding). The second channel corresponds to the most informative features from AAindex (60 × 15). The third channel contains
charged amino acid counts, and the predicted pI from other simple methods is stored (60 × 20) in the fourth channel. The scalars in the third and fourth channels are duplicated to form a 60-long vector. 
Then, the SeparableConvolution2D, AveragePooling2D, and Dense layers follow. For details of the model architecture, see Figure 5.

IPC2.peptide.svr.19: a support vector regression (SVR) model with 19 isoelectric points predicted by simple methods (those that use the Henderson–Hasselbach equation, including the IPC2_peptide 
model). The input was limited to pI values only, as adding other features worsened the SVR convergence and the prediction accuracy. SVR parameters were optimized by GridSearchCV (RBF kernel, 
C = 1,500, epsilon = 0.1293). Note that this model is better than the optimized version (IPC2_peptide), which means that SVR could learn from pIs predicted by other methods better than the 
optimization and even better than simple multilayer perceptron (MLP) models based on sequence alone (IPC2.peptide1320) – the same input as IPC2.peptide19. Additionally, the SVR model produces 
the fewest outliers.

IPC2.peptide19: a model that takes 19 isoelectric points predicted by simple methods as input (the same input as IPC2.peptide.svr.19). MLP model: dense (760, selu), dense (760, softplus), dense (190, 
selu), dense (1). The number of neurons and type of activation were optimized by RandomizedSearchCV.

IPC2.peptide1320: a model that takes one-hot-encoded sequence (a flat vector of 1320; 60 × 22) as input. MLP model: dense (1320, softplus), dropout (0.7), dense (60, selu), dense (30, selu), dense (1). 
The number of neurons and type of activation were optimized by RandomizedSearchCV.

IPC2_peptide: a simple model based on the optimization of pKa values conducted similarly to the Isoelectric Point Calculator (IPC) 1.0 in 2016, but using a larger and more robust dataset (119,093 
peptides, split into 75% for training and 25% for validation) and differential evolution instead of basinhopping. For individual pKa values, see Table 1.

Bjellqvist: the best method for a peptide dataset developed by other researchers (based on a simple algorithm using pKa values by Bjellqvist and the Henderson–Hasselbach equation; used in the Expasy 
Compute pI/MW tool).

IPC_peptide: a peptide model based on basinhopping optimization of pKa values performed in 2016 (IPC 1.0).

IPC2.protein.svr.19: identical to IPC2.peptide.svr.19, but optimized with the protein dataset.

IPC2_protein: identical to IPC2_peptide, but optimized with the protein dataset.

IPC_peptide: a peptide model based on basinhopping optimization of pKa values conducted in 2016 (IPC 1.0).

ProMoST: the best method for a protein dataset developed by other researcher  (based on a simple algorithm using pKa values and the Henderson–Hasselbach equation; 72-parameter model, including 
C- and N-terminal corrections for charges).



Table 7. Accuracy of pKa prediction using the Rosetta pKa dataset. Reproduced from Kozlowski 2021a.

Method
Rosetta pKa dataseta

Method
Rosetta pKa dataseta

RMSD MAE Outliersb RMSD MAE Outliersb

D (74; 3.45 ± 0.80)
IPC2_pKa
Rosseta (Site repack)
Rosseta (Ensemble average)
Rosseta (Neighbor repack)
Rosetta (Standard)

H (76; 6.58 ± 0.98)
Rosseta (Site repack)
IPC2_pKa
Rosseta (Neighbor repack)
Rosseta (Ensemble average)
Rosetta (Standard)

E (71; 4.16 ± 0.80)
IPC2_pKa
Rosseta (Neighbor repack)
Rosetta (Standard)
Rosseta (Site repack)
Rosseta (Ensemble average)

0.3883
0.8193
0.8413
0.8676
1.0651

0.8247
0.8523
0.8559
1.0244
1.2303

0.3625
0.8744
0.8880
0.9303
0.9317

0.2238
0.5824
0.5460
0.6378
0.8554

0.6408
0.5105
0.6487
0.7566
0.9961

0.1951
0.5887
0.7324
0.6549
0.6972

6
27
25
34
46

31
27
32
39
50

7
29
38
30
34

       Y (17;  10.89 ± 0.82 )
Rosseta (Site repack)
Rosseta (Neighbor repack)
Rosetta (Standard)
IPC2_pKa
Rosseta (Ensemble average)

K (22; 10.66 ± 0.52)
IPC2_pKa
Rosseta (Neighbor repack)
Rosetta (Standard)
Rosseta (Site repack)
Rosseta (Ensemble average)

All (260*)
IPC2_pKa
Rosseta (Site repack)
Rosseta (Neighbor repack)
Rosseta (Ensemble average)
Rosetta (Standard)

0.7750
0.8370
0.9579
0.9766
1.1892

0.2933
0.6216
0.6498
0.6705
0.7135

0.5762
0.8262
0.8332
0.9207
1.0300

0.6177
0.6647
0.8000
0.8261
0.9529

0.1909
0.5091
0.5046
0.5227
0.5364

0.3364
0.6165
0.6185
0.6746
0.8296

7
9
9

10
13

2
7
8
7
6

54
102
111
114
151

aFor the validation of pKa, the dataset from Kilambi and Gray 2012 (31) was used (260* residues from 34 proteins). The numbers next to the residue type indicate the number of cases and the average 
pKa value with standard deviation.

bThe outliers are defined at 0.5-pH-unit differences between the predicted and experimental pKa thresholds.

*The dataset consists of 260 instead of 264 residues due to parsing problems (four missing residues could not be mapped to the protein sequence, due to the wrong residue register). Scores were 

calculated after 10-fold cross-validation.



Table 8. General statistics of the Proteome-pI database (5,029 proteomes with 21,721,250 proteins in total). Reproduced from Kozlowski 2017.

Number of
proteomes

Total number
of proteins

Mean number of
proteins (±SD)

Mean size of
proteins (±SD)

Mean mw of
proteins (±SD)

Viruses
Archaea
Bacteria
Eukaryote 
Eukaryote (major)
Eukaryote (minor)

504
135

3,776
614
614
448

20,920
318,388

12,082,903
9,299,039
8,629,591

669,448

     42 ±     89
  2,358 ±    920
  3,200 ±  2,510
 15,145 ± 11,830
 14,055 ±  9,899
  1,494 ±  5,130

297 ± 375
283 ± 212
311 ± 240
438 ± 429
434 ± 416
495 ± 564

33 ± 42
31 ± 23
34 ± 26
49 ± 48
48 ± 46
55 ± 63

Table 9. General statistics of the Proteome-pI 2.0 database (20,115 proteomes with 61,329,034 proteins in total). Reproduced from Kozlowski 2021b.

Number of
proteomes

Total number
of proteins

Mean number of
proteins (±SD)

Mean size of
proteins (±SD)

Mean mw of
proteins (±SD)

Viruses
Archaea
Bacteria
Eukaryote 
Eukaryote (major)
Eukaryote (minor)

10,064
331

8,108
1,612
1,612

637

518,140
767,951

30,290,647
29,752,296
25,437,198
4,315,098

51 ± 85
2,320 ± 1,263
3,736 ± 1,785
18,457 ± 16,804
15,780 ± 11,138
 6,774 ± 14,244

237 ± 300
278 ± 211
320 ± 246
467 ± 471
438 ± 420
638 ± 676

26.6 ± 33.2
30.6 ± 23.1
35.1 ± 26.8
52.1 ± 52.4
48.8 ± 46.7
71.2 ± 75.4

Table 10. Amino acid frequency for the kingdoms of life in the Proteome-pI database. Reproduced from Kozlowski 2017.

Kingdom Ala Cys Asp Glu Phe Gly His Ile Lys Leu Met Asn Pro Gln Arg Ser Thr Val Trp Tyr
Total amino 
acids

Viruses
Archaea
Bacteria
Eukaryota
All

6.61
8.20

10.06
7.63
8.76

1.76
0.98
0.94
1.76
1.38

5.81
6.21
5.59
5.40
5.49

6.04
7.69
6.15
6.42
6.32

4.25
3.86
3.89
3.87
3.87

5.79
7.58
7.76
6.33
7.03

2.15
1.77
2.06
2.44
2.26

6.53
7.03
5.89
5.10
5.49

6.35
5.27
4.68
5.64
5.19

8.84
9.31

10.09
9.29
9.68

2.46
2.35
2.38
2.25
2.32

5.41
3.68
3.58
4.28
3.93

4.62
4.26
4.61
5.41
5.02

3.39
2.38
3.58
4.21
3.90

5.24
5.51
5.88
5.71
5.78

7.06
6.17
5.85
8.34
7.14

6.06
5.44
5.52
5.56
5.53

6.50
7.80
7.27
6.20
6.73

1.19
1.03
1.27
1.24
1.25

3.94
3.45
2.94
2.87
2.91

6,150,189
89,488,664

3,716,982,916
3,743,221,293
7,555,843,062

Similar statistics for all 5,029 proteomes included in Proteome-pI are available online on individual subpages. For di-amino acid frequencies, see Supplementary Table S2 in the Proteome-pI publication 
(Kozlowski 2017) or http://isoelectricpointdb.org/statistics.html

Table 11. Amino acid frequency for the kingdoms of life in the Proteome-pI 2.0 database. Reproduced from Kozlowski 2021b.

Kingdom Ala Cys Asp Glu Phe Gly His Ile Lys Leu Met Asn Pro Gln Arg Ser Thr Val Trp Tyr Total amino
acids

Viruses
Archaea
Bacteria
Eukaryota
All

7.81
8.95

10.64
7.38
8.72

1.29
0.90
0.90
1.85
1.46

6.20
7.00
5.67
5.34
5.49

6.46
7.94
6.06
6.55
6.36

3.91
3.65
3.76
3.79
3.78

6.72
7.84
8.01
6.35
7.04

1.96
1.86
2.08
2.50
2.32

6.05
6.03
5.52
4.94
5.19

6.24
4.18
4.22
5.64
5.05

8.28
9.11

10.12
9.38
9.67

2.51
2.14
2.31
2.27
2.29

4.99
3.36
3.35
4.13
3.81

4.25
4.36
4.82
5.56
5.24

3.62
2.48
3.49
4.27
3.94

5.31
5.83
6.18
5.71
5.90

6.47
6.12
5.75
8.45
7.33

6.14
5.84
5.58
5.56
5.57

6.66
8.16
7.42
6.24
6.74

1.42
1.06
1.31
1.24
1.27

3.71
3.18
2.81
2.81
2.81

122,870,810
213,285,886

9,693,905,784
13,901,635,566
23,931,698,046

Similar statistics for the 20,115 individual proteomes included in Proteome-pI 2.0 are available online on separate subpages. Additionally, the online version of the table 
http://isoelectricpointdb2.org/statistics.html is accompanied by an error estimated with 1,000 bootstraps. For di-amino acid frequencies, see Supplementary Table S3 in the Proteome-pI 2.0 publication 
(Kozlowski 2021b).

http://isoelectricpointdb2.org/statistics.html
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Table 12. User statistics.

Citations  
Google Scholar

Article 
access

Release date Number of users Link to statistics

IPC 
Proteome-pI
IPC 2.0
Proteome-pI 2.0

245
175

4
0

>26,000
  >6,000
  >2,000
     >300

December 2015
September 2016
December 2020
September 2021

>225,000
  >19,000
    >6,500
       >300

https://bit.ly/3BnrJBl 
https://bit.ly/3iHhsZd 
https://bit.ly/2Yz2sWr 
https://bit.ly/3aeAVMv 
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5 Presentation of significant scientific activity carried out at more than one university, 
scientific institution, especially at foreign institutions

The scientific activity of the Applicant began during studies at Akademia Swietokrzyska 

(currently Jan Kochanowski University, Kielce, Poland). His interests were already at the 

overlap of biology and computer science. First, he simultaneously attended biology (MSc in 

genetics, 2006) and computer science studies (BSc, 2007). Subsequently, there was a one-year

internship (supervisor: Prof. Dr. Hab. Jan Pałyga). In this period, his work focused on linker 

histone analyses (both theoretical and experimental: phylogenetics, PCR, SDS-PAGE, etc.). 

Additionally, he taught the classes from genetics and presented some popular science lectures 

(Science Festival).

In 2007, the Applicant moved to Warsaw to start Ph.D. studies in the Laboratory of 

Bioinformatics and Protein Engineering headed by Prof. Dr. Hab. Janusz M. Bujnicki at the 

International Institute of Molecular and Cell Biology. His work has since focused on 

computational biology. This includes both using the methods already available (e.g. 

homology modeling, next-generation sequencing [NGS] data analysis) and developing new 

bioinformatics methods and databases (e.g. a MetaDisorder program for predicting 

intrinsically disordered proteins, which was the best program in this category during the 

biannual, blind experiment Critical Assessment of Protein Structure Prediction in 2008 and 

2010). When the Applicant worked in the Laboratory of Bioinformatics and Protein 

Engineering (2007–2015), he was also the lead developer of the GeneSilico Metaserver 

(https://genesilico.pl/meta2). This webserver was initially published in 2003 and allowed 

~10–20 methods to be run. Up to 2015, over 120 bioinformatics methods were integrated. 

Eventually, the webserver was closed in 2017. Moreover, in this period, the Applicant 

developed the following resources: 

- mRNA3db http://mrna3db.netmark.pl,

- CompaRNA http://genesilico.pl/comparna,

- GDFuzz3D http://iimcb.genesilico.pl/gdserver/GDFuzz3D/.

The Ph.D. defense took place in 2013, and the Applicant stayed in the Laboratory of 

Bioinformatics and Protein Engineering for the next two years to finish ongoing projects and 

grants (for instance, NGS sequencing analysis for the Exgenome and Iuventus Plus grants). 

This resulted in additional publications (e.g. Sierocka et al. 2014, Plotka et al. 2014, Głów et 

al. 2015, Pietal et al. 2015, Plotka et al. 2015).
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In June 2015, the Applicant moved to Dr. Johannes Soding’s group at the Max Planck 

Institute for Biophysical Chemistry in Göttingen, Germany, for postdoctoral research (over 

two years). During this period, he was responsible for developing a deep learning program for

predicting the strength of transcription activation for proteins containing transcription 

activation domains (tADs). The experimental data, related to over one million random 

mutants sorted with FACS according to the transcription activation, was obtained by Dr. Ariel

Erijman from the Fred Hutchinson Cancer Research Center (USA). The Applicant was 

responsible for the bioinformatics part of the study. The work was published in 2020 in 

Molecular Cell (Erijman, Kozlowski, et al. 2020).

After returning to Poland, the Applicant was employed at the Institute of Informatics, Faculty 

of Mathematics, Informatics, and Mechanics, University of Warsaw, where he still works 

today. His current research is focused on proteomics (for instance, the presented cycle of 

publications) and genomics. Moreover, he continues to work in the structural biology field 

(bioinformatic analyses of thermophilic proteins, together with Prof. Dr. Hab. Tadeusz 

Kaczorowski’s group from the University of Gdansk). For his ongoing studies, he actively 

establishes new scientific collaborations (for instance, the Isoelectric Point Calculator 2.0 

project required experimental data that were kindly provided by Prof. Janne Lehtiö from the 

Karolinska Institute in Sweden).

6 Presentation of teaching and organizational achievements as well as achievements in 

popularization of science

The Applicant worked for most of his scientific career in research institutes (IIMCB, Max 

Planck); therefore, until 2018, his teaching experience was limited: one semester of classes 

(biochemistry and genetics) at Jan Kochanowski University in 2006/2007; and two short, 

dedicated tutorials on protein modeling at the University of Warsaw (2012) and Göttingen 

University (2016). Furthermore, he supervised one Master’s thesis at Warsaw University of 

Technology (2014).

Since October 2018, he has been employed as assistant professor (pol. adiunkt) in the Institute

of Informatics, Faculty of Mathematics, Informatics, and Mechanics, at the University of 

Warsaw, where the Applicant has taught the following subjects:
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 Web applications (classes/laboratory, 30h)
 Introduction to computer science (classes, 30h)

30/31



 Probability theory and statistics (classes, 30h)
 Probability theory and statistics (laboratory, 15h)
 Statistical data analysis 2 (laboratory, 2x30h)*

2019/20

 Data analysis and visualization (lecture, 30h)*
 Data analysis and visualization (laboratory, 2x30h)*

2020/21

 Data analysis and visualization (lecture, 30h)*
 Data analysis and visualization (laboratory, 3x30h)*
 Architecture of large projects in bioinformatics (lecture, 30h)*
 Architecture of large projects in bioinformatics (laboratory, 30h)*

2021/22

 Introduction to computer science (classes/caboratory, 30h)

Classes: whiteboard exercises (old-school method); laboratory (in front of the computer).
* In italics the classes were taught in English

Additionally, the Applicant has reviewed a few Master’s and Bachelor’s theses. Currently, he
is supervising another Bachelor’s thesis.

10.12.2021

……………..……..……………….
           (Applicant’s signature)
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